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Iwahori-Hecke type algebras
associated with the Lie superalgebras
A(m,n), B(m,n), C(n) and D(m,n)

By

HIROYUKI YAMANE*

Abstract

In this paper we give Iwahori-Hecke type algebras H,(g) associated with the Lie superal-
gebras g = A(m,n), B(m,n), C(n) and D(m,n). We classify the irreducible representations
of H,(g) for generic g.

Introduction

Recently, motivated by a question posed by V. Serganova [S| and study of the
Weyl groupoids [H1][H2] associated with Nichols algebras [AS1][AS2] including gener-
alizations of quantum groups, I. Heckenberger and the author [HY] introduced a notion
of ‘Coxeter groupoids’ (in fact they can be defined as semigroups), and showed that
a Matsumoto-type theorem holds for the groupoids, so they have the solvable word
problem. We mention that the Coxeter groupoid associated with the affine Lie super-
algebra D™ (2,1; ) was used in the study [HSTY], where Drinfeld second realizations
of U, (D™ (2,1;z)) was analized by physical motivation in recent study of AdS/CFT
correspondence.

It would be able to be said that one of the main purposes at present of the rep-
resentation theory is to study the Kazhdan-Lusztig polynomials (cf. [Hu, 7.9]) and
their versions. The polynomials are defined by using the standard and canonical bases
of the Iwahori-Hecke algebras. The existence of those bases is closely related to the
Matsumoto theorem of the Coxeter groups. So it would be natural to ask what to be
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the Iwahori-Hecke algebras of the Coxeter groupoids. In this paper, we give a tentative
answer to this question for the Coxeter groupoids W associated with the Lie superalge-
bras g = A(m,n), B(m,n), C(n) and D(m,n). We introduce the Iwahori-Hecke type
algebra H,(g) (in the text, it is also denoted by H,(W)) as g-analogue of the semigroup
algebra CW/CO0, where 0 is the zero element of W. We also show that if ¢ is nonzero
and not any root of unity, H,(g) is semisimple and there exists a natural one-to-one cor-
respondence between the equivalence classes of the irreducible representations of H,(g)
and those of the Iwahori-Hecke algebra H (W) associated with the Weyl group Wy of
the Lie algebra g(0) obtained as the even part of g = g(0) ® g(1).

Until now, no relation has been achieved between the groupoids treated in [SV]
and this paper.

This paper is composed of the two sections. Main results and their proofs are given
in Section 2. Results of [HY] used in Section 2 are introduced in Section 1.

The author thanks to the referee for careful reading and valuable comments, which
encourage him so much to make future study.

§1. Preliminary—Matsumoto-type theorem of Coxeter groupoids

This section is preliminary. Here we collect the results which have already been
given in [HY] and will be used in the next section.
§1.1. Semigroups and Monoids

Let K be a non-empty set. Assume that K has a product map K x K — K,
(x,y) — xy. We call K a semigroup if (zy)z = x(yz) for ¥V z,y,z € K. We call K a
monoid if K is a semigroup and there exists a unit 1 € K, that is, lx = 1 = z for all
reK.

§1.2. Free semigroup F_;(N) and Free monoid Fjy(N)

Let N be a non-empty set. Let F_1(N) be the set of all the finite sequences of
elements of IV, that is

F_y(N):= ] N"={(h1,... ., hn)In € N,h; € N}.
n=1

We regard F_;(N) as the semigroup by

(hl7 .- -ahm)(hm—l—la .- 'ahm—l—n) = (hla s 7h’mah’m+la .- 'ahm+n)~

Then we call F_1(N) a free semigroup. Let Fy(IN) be the semigroup obtained by adding
the unit 1, that is, Fo(NV) := {1} UF_1(N), 1 ¢ F_1(N), and lz = z1 = « for all
X € Fo(N)
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§1.3. Semigroup generated by the generators and and defined by the
relations

Let @ = {(z;,y;)|j € J} be a subset of F_1(IN) x F_1(IN), where J is an index
set. For g1, go € F_1(N), we write g; ~1 g2 if there exist (x,y) € @ and (f1, f2) €
Fy(N) x Fy(N) such that either of the following (i), (ii), (iii) holds.

(i) g1 = fizfo # g2 = fryfe.
(ii) g1 = fryfo # g2 = frzfo.
(iii) g1 = g2 = fizfo = fryfo.

For g, ¢ € F_1(N), we write g ~ ¢’ if ¢ = ¢’ or there exists r € N and ¢1,...,9, €
F_1(N) such that g1 = g, g- = ¢/, and g; ~1 giy1 for 1 <i <r —1. Then F_1(N)/~
can be regarded as a semigroup by the product [g][¢'] = [g¢'], where for g € F_1(N),
we denote [g] := {¢'|¢’ ~ g} € F_1(N)/~. We call F_1(N)/~ the semigroup gener-
ated by N and defined by the relations v; = y; (j € J). When there is no fear of
misunderstanding, we also denote [g] by its representative g by abuse of notation.
§1.4. Free group Fy(N) and Involutive free group Fy(N)

Let N be a set. Let N~! be a copy of N so that the bijective map N — N1,

x — 71, is given. Let F}(N) be the semigroup generated by
{eJUNUN"! (disjoint union)

and defined by the relations

ce=e, ex=wxe=uzx, er ‘=z te=at, zrl=zlzr=e forVezeN.

We call Fy(N) the free group over N.
Let F5(NN) be the semigroup generated by

{e} UN (disjoint union)

and defined by the relations

ce=e, er=xe=zx, x>=ce forVeeN.

We call F»(N) the involutive free group over N. Note that F»(N) can be identified with
the quotient group of F;(N) in the natural sense:

F(N)=F(N)/{avigr " gv29. Ir e Nyy; e NUNTY g € Fi(N)}.
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§1.5. Action > of F3(N) on A
Let N and A be non-empty sets. An action > of F5(INV) on A is a map
p:Fh(N)xA— A
such that
epa=a, gb>(hra)=(gh)>a forVg,Vh € Fy(N), Va € A.

Note that n> (n>a) =a for all n € N,a € A.
For n, n’ € N and a € A, define

O(n,n;a) :=={(nn" )" >a, (n'n)">a|m e NU{0}}.
Let
O(n,n’;a) := |0(n,n’;a)).
This is the cardinality of ©(n,n’;a), which is either in N or is co. One obviously has

©(n,n';a) = O(n/,n;a) and O(n,n’;n>a) =nv (N, n;a).

Let ag := a, by := a, and define recursively ;11 := n > by, bypyy1 := n' > a,, for all
m € NU{0}. That is:
bp:=a, a:=nbda, by:=n'vn>a, az:=n>n'>nda,...

ag:=a, by:=n'va, ay:=nvn'va, by:=n'pn>n'va,...
Then we have

o(n n'a) = 00 if ay, # by, for all m € N|
C min{m € N|a,, = b,,} otherwise.

§1.6. Coxeter groupoids
Definition 1.1. [HY, Definition 1] Let N and A be non-empty sets. Let > be a
transitive action of F5(N) on A. For each a € A and i,j € N with i # j let
Mijia = Mjiza € (N4 1) U{oo}

Mi,jia
0(i,5;a)

be such that 6(i,j;a) € N = € NU {oo} or 0(7, j;a) = 00 = m; j,o = 00. Set
m = (mi,j;a|i7j € N,i#ja€A).
Let

(1.1) W = (W,N, A m)
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be the semigroup generated by the set
{0,€q4,8i0la € Ajie N}

and defined by the relations

(1.2) 00 =e,0 = 0e, = 5,40 =0s;, =0,
2
€, =€q, eqep =0 for a # b,
(1.3)
€iraSi,a =Si,a€a = Si,ay Si,iraSi,a =C€a;

8iSj -+ 8;Sia = 5;Si - 8iSja (Mjj.a factors) if m; j.q is finite and odd,
(1.4)

$jSi**8jSia = 5iS;j - 8iSja (Mj j.q factors) if m; j.q is finite and even,

where we use the convention:
(1.5) 8;Si,a ‘= SjivaSi,as  SiSjSi,a i= Si jpivaSjSi,as- -

See also (1.7) below.

§1.7. Sign representation

Let ZA be the free Z-module generated by A, that is,
Z7ZA = Bycala.

Then there exists a unique semigroup homomorphism

sgn: W — Endz(ZA)
such that
(1.6) sgn(0)(b) =0, sgni(eq)(b) =danb, sg0(8i.0)(b) =(—1)dapi > a
for a,b € A and i € N, where § means Kronecker’s symbol. Hence for w € W one has

w # 0

if and only if w = e, for some a € A or there exist m € N and ¢; € N, b; € A with
1 <j <msuch that b; = 441> b1 and w = 84, by *** Siyy_1.byw_15im,bm- 1f this is the
case, we use the convention

(1.7) Siy *t Siny 1 i b 1= W,

and, if m =0, s;, ---5;,,_,Si,,.o Means e,. We note again
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Lemma 1.2. (1) s, -+ Si,,_,Si,,.a 70 for alla € A and m € NU{0}.
(2) If Siy *+ Sipy 1 Sipna = Sj1 " Sj._15j.b, thena =0, i1 -+ ip>a = ji---jr>b and

(=1 = (1)

§1.8. Generalization of Root systems

Definition 1.3.  [HY, Definition 2] We call a quadruple (R, N, A,>) a multi-
domains root system if the following conditions hold.

1. N and A are non-empty sets and > is a transitive action of F5(N) on A.
2. Let Vj be the |N|-dimensional R-linear space. Then
R={(R4,Ta,Sq) |a € A},
where 7, = {anq|n € N} C R, C Vp, and 7, is a basis of Vj for all a € A.
3. Ry =R U—R for all a € A, where R} = (NU{0})m, N Ry,.
4. For any i € N and a € A one has R, o "Ry = {0, —i 0}
5. Sq ={0ia|i € N}, and for each a € A and ¢ € N one has 0;, € GL(Vp),
Oi.a(Ra) =Rivas  0ia(®ia) =— Qiiva, 0ia(Qja) € Qjiva + (NU{0}) ivq
for all j € N\ {i}.
6. 0iipa0iq =1d fora € Aand ¢ € N.

7. Letac A, i,je N,i# j,and d = [(NU{0})a; 0 + (NU{0})evj o) N R,|. If dis
finite then 6(i, j; a) is finite and it divides d.

Convention. We write
(R,N,A>p)ER

if (R, N, A,p>) is a multi-domains root system, that is, R = {(R, N, A,>)} denotes the
family of all the multi-domains root systems.

Definition 1.4.  [HY, Definition 4] Let (R, N, A,>) € R. Let m := (m; j.o | i,] €
N,i# j,a € A) be such that m; j.q == [(NU{0}) o + (NU{0})a; ) N R,|. Then we
call (W, N, A,>,m) the Cozxeter groupoid associated with (R, N, A,1).

Theorem 1.5.  [HY, Theorem 1] Let (R, N, A,>) € R. SetV = @, 4 Va, where
Vo=Vo. Let P, : V — V, and 1o : V, — V be the canonical projection and the canonical
inclusion map respectively. Then the assignment p : 0 — 0 -idy, eq — Py, Sija —
Lisa0i,aPa, gives a faithful representation (p, V') of the Coxeter groupoid (W, N, A,>, m)
associated with (R, N, A,1>).
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§1.9. Matsumoto-type theorem

Define ¢ : W — NU{0} U{—o0} to be the map such that £(0) = —o0, ¢(e,) = 0 for
all a € A, and

l(w) =min{m € N|w = s;, -+ 8;,,_,8i, .o for some iy,...,i, € N, a € A}

for all w € W\ ({0} U{eq|a € A}); we also refer to Lemma 1.2 (1) for this definition of
¢. One has

(1.8) f(w) =b(w™)

for w € W\ {0}, and

(1.9) (ww') <l(w) + £(w")

for w,w’ € W. We say that a product w = s;, - ++ i, _,Si, .o € W is reduced if m = £(w).

Definition 1.6. [HY, Definition 5] Let W = (W, N, A,>,m) be a Coxeter
groupoid. Let W = (W, N, A;>, m) denote the semigroup generated by the set

{0,€4,8iala € Ajie N}

and defined by the relations

(1.10) 00 =0, 06, =2¢€,0=05,=35;,0=0,

(1.11) 62 =84, Eubp=0fora#b, Epadia=35iaba=5ia,

|12 8i8j 884 =258;8 884 (M; j:q factors) if m; j.q is finite and odd,
(1.12) §j8;-+8;8iqa=38;8;-8;8;4 (M; j,q factors) if m;_ j.q is finite and even.

Theorem 1.7. [HY, Theorem 5] (Matsumoto-type theorem of the Coxeter
groupoids)  Let
W = (W,N,A> m)

be the Coxeter groupoid associated with (R, N, A,>) € R (see Definition 1.4). Suppose
that m e NU {0}, a € A, and (i1,...,%m), (J1,---,Jm) € N™ such that
g(sil e sim—lsim»a) =m
and equation
87:1 T sim—lsim»a = sjl T Sjm—lsjmva
holds in W. Then in the semigroup (W, N, A,>,m) one has

Sil e Sim—lszm»a = 8.71 e Sjm—lsjmva'
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Corollary 1.8. [HY, Corollary 6] Let
W = (W,N,A> m)

be the Coxeter groupoid associated with (R, N, A,>) € R (see Definition 1.4). Suppose
that m € NU {0}, a € A, and (i1,...,im) € N™ such that €(s; -+~ Si,, 1 Sin,.a) < M
holds in (W, N, A,>,m). Then there exist ji,...,jm € N andt € {1,...,m — 1} such
that j; = jy+1 and in the semigroup (W, N, A,>,m) one has the equation

Siy i 1Sim,a = Sj1 " 855541 T Sim—1Sim,a-
In the next section, we also need

Proposition 1.9. [HY, Corollary 3] Let m € N, (i1,...,im,j) € N™ and
a € A, and suppose that £(s;, -+ si, _,Si, o) =m. Then:

(1) m = |Oil e 'aim—laimaa(le_) n _RZ---im>a|‘

(2) E(Sil o 'Simsj,jba) =m—-1<— Oy = aim—laimaa(ajaa) € _Rz—'t---imba'

(3) E(Sil o 'Simsj,jba) =m+1<— Oy = aim—laimaa(ajaa) € Rz—'t---imba‘

Example 1.10. Here we treat the finite dimensional simple Lie superalgebra
D(2,1;z), where x ¢ {0, —1}. Note that it has 14 (positive and negative) roots. One has

My jia(k) = 2+0k0+ (1= 06k0) (dik +051) and o o) (A .a(k)) = Qjiva(k) T03,m, .00 Visiva(k)
for ¢ # 7. Moreover

R}y = Tatk) U{ia(e) T (k) M, jia(r) = 3}
U{,a(k) + Q2,0(k) + Q3,a(k) }
@ a(k) + 20k,0(k) + Qja(h) M o) = 2}-
Note that D(2,1;1) = D(2,1) = 0sp(4]2) (see also Section 2.2).

Let wq(2) = $3,a(2)52,a(0)53,a(3) 51,a(3)53,a(0)52,a(2)S1,a(2)- Lhen p(wa(2)) = —idy, ,, -
Indeed:

A1 .a(2) = —01,a(2) = —C&1,a(0) — @2,a(0) T —X1,a(3) — ¥2,a(3) — 2043,a(3)
= —01.6(3) — ¥2,4(3) — 2043,a(3) = —01,6(0) — ¥2,a(0) 77 —®1,4(2) 7 —O1,a(2)>
02,4(2) 7 1,q(2) T O2,4(2) 7 O1,4(0) ™ ¥1,a(3) T O3,4(3) 7 O3,4(3) = —Q3,4(0)
= =0 q(2) — ¥3.4(2) 7 —Q24(2),
Q3,4(2) 7 A3.4(2) 7 Q2.4(0) T O3,4(0) 7 X2,4(3) M X2.4(3) F Q2.4(0) T O3,4(0)

= Q3.q(2) 77 —®3.4(2)-
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a(2) a(1)

1 €T 1 —x—1
O ® O O ® O
1 2 3 2 1 3
1
2
1
_1 1
a(0) T a(3)
< & 3 O x ®—x — IO
2 ~T 3 2 3 1

Figure 1. Dynkin diagrams of the Lie superalgebra D(2, 1; x)

By Proposition 1.9(1), we have £(wq(2)) = |R:{(2)| = 7, wq(2) is the longest word. Let
/

w o= (83,(1(2)82,(1(0))_111)@(2). Then ¢(w’) = 5. By Theorem 1.7, w’ has the following
four reduced expressions:

w' =83,a(3)51,a(3)53,a(0)52,a(2)51,a(2) = $1,a(1)53,a(1)51,a(0)52,a(2)51,a(2)

=581,a(1)53,a(1)52,a(1) $1,a(0)52,a(2) = 51,a(1)52,a(1)53,a(1)51,a(0)52,a(2)-

§2. Main theorems—Irreducible representations of the Iwahori-Hecke
type algeras H,(A(m,n)), Hy(B(m,n)), Hy(C(n)) and H,(D(m,n)) associated
with the Lie superalgebras A(m,n), B(m,n), C(n), D(m,n)

§2.1. Definition of Lie superalgebras

As for the terminology concerning Lie superalgebras, we refer to [K].
Let v = v(0) @ v(1) be a Z/2Z-graded C-linear space. If i € {0,1} and j € Z such
that j —i € 27 then let v(j) = v(i). If X € v(0) (resp. X € v(1)) then we write

(2.1) deg(X) =0 (resp. deg(X) =1)

and we say that X is an even (resp. odd) element. If X € v(0) Uv(1), then we say that
X is a homogeneous element and that deg(X) is the parity (or degree) of X. If o C v is
a subspace and 0 = (0 N v(0)) B (v Nv(1)) (resp. w C v(0), resp. w C v(1l)), then we
say that tv is a graded (resp. even, resp. odd) subspace.
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Let g = g(0) ®g(1) be a Z/2Z-graded C-linear space equipped with a bilinear map
[,]:gxg — gsuch that [g(i),g(j)] C g(i +j) (i, j € Z); we recall from the above
paragraph that

(2:2) g(i) = {X € g|deg(X) = i}.

We say that g = (g, [, ]) is a (C-)Lie superalgebra if for all homogeneous elements X,
Y, Z of g the following equations hold.

Y, X] = - (—1)deg(X)deg(Y) [X,Y], (skew-symmetry)
[X,[Y, Z]] =[[X,Y], Z] + (—1)deeX)desM [y [ X, 7]). (Jacobi identity)

We call the Lie algebra g(0) the even part of g.

§2.2. Lie superalgebras gl(m + 1|n+ 1) and osp(m|n)
Let m, n € NU{0}. Let:

m—+n+2
Dm+1|n+1 = {(p17 s >pm+n+2) € Zm—l—n—l—Q |pi € {07 1}7 Z pi=n-+ 1}'

i=1
For i,j € {1,...,m +n + 2}, let E; ; denote the (m + n + 2) x (m + n + 2) matrix
having 1 in (4, j) position and 0 otherwise, that is, the (7, j)-matrix unit. Let E,,,42
denote the (m +n + 2) x (m + n + 2) unit matrix, that is, Epinio = > T2 E, .
Denote by My, 4n+2(C) the C-linear space of the (m + n + 2) x (m + n + 2)-matrices,
Le., My sni2(C) = @TH2CE; ;.
Let d = (p1, .-, Pmint2) € Dymyipns1- The Lie superalgebra gl(m+1|n+1) = gl(d)
is defined by gl(d) = My4+n+2(C) (as a C-linear space),

(2-3) 9[(d)(0) = @1Spi:pj Sm+n+2CEi,ja 9[(d)(1) = ®1§p#pj§m+n+QCEi,ja

and [X,Y] = XY — (=1)""2Y X for X € gl(d)(r1) and Y € gl(d)(r2),

where XY and Y X mean the matrix product, that is, E; jE;; = d;,E;;. Define
the C-linear map str : gl(d) — C by str(E; ;) = J; j(—1)?". The Lie subsuperalgebra
{X € gl(d)|str(X) = 0} of gl(d) is denoted as sl(m + 1|jn + 1) = sl(d). The finite
dimensional simple Lie superalgebra A(m,n) is defined as follows, where m +n > 1.
Let 3 be the one dimensional ideal CE,,4p42 of gl(d). If m # n, then A(m,n) means
s[(d). On the other hand, A(n,n) means sl(d)/3, and is also denoted as psl(n+1jn+1).

Letd = (p1,...,Pm+2n) € Dpj2n. Definethemap 6 : {1,... ,m+2n} — {1,...,m+
2n} by 0(i) = m +2n + 1 — 4. Assume that pg;) = p;. Let g; € {1,—1} be such that
gi = —1if p, =1 and i < 0(i) and g; = 1 otherwise. We have an automorphism  of
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gl(d) defined by Q(E; ;) = —(—1)P?itPig;g;Eg(;) 0(:)- The Lie superalgebra osp(m|2n)
means {X € gl(d)|Q(X) = X}. We also denote osp(m|2n) as follows:

B(m —1,n) = osp(2m — 1|2n) if m, n e N,
D(m +1,n) = osp(2m + 2|2n) if m, n eN,
C(n+1) = o0sp(2]2n) itneN.

We also note that osp(2m + 1|0), 0sp(0|2n), and o0sp(2m|0) are isomorphic to the simple
Lie algebras of type B,, (if m > 2), C,, (if n > 3) and D,, (if m > 4) respectively, so
osp(2m + 1]0) = 0941, 05p(0|2n) = spy,, and 0sp(2m|0) = 09,,. As for the even part
osp(m|2n)(0) of osp(m|2n), we have

(2.4) osp(m|2n)(0) = osp(m|0) & osp(0]|2n).

§ 2.3. Definition of Iwahori-Hecke type algebras

Definition 2.1. Let W = (W, N, A,>, m) be the groupoid introduced in (1.1).
Assume that A is finite. Let ¢ € C. Let H, (W) be the C-algebra (with 1) generated by

(2.5) {Eu.,Tiala € Aji € N}

and defined by the relations

(2.6) E2 = E,,
(2.7) EivoTiaEa = T a,
(2.8) > E,=1
acA
(2.9) E,Ey =0 if a # b,
(2.10) (Tha = 4Ea)(Tha + Ea) = 0 ifiva=a,
(2.11) TiivaTia = Ea if iva# a,
(212) TT;---T;T; 0 =T,T; - - - TiTj o (my j.q factors)  if m; ;.4 is finite and odd,
(213) T;T;---T;T; 0 =TT - - TiTj o (my j.q factors) if m; ;.4 is finite and even,

where, in (2.12)-(2.13), we use the same convention as that of (1.5) with s; , in place of
T q-

Lemma 2.2. Let W = (W, N, A,>,m) be the Coxeter groupoid associated with
an element (R, N, A,>) of R (see Definition 1.4). Assume that A is finite. Then there
exists a map f: W — Hy(W) such that

(2'14) f(O) =0, f(ea) = Eq,
(2.15) f(si,qw) =T o f (W) if we W\ {0} and £(s; qw) =1+ £(w).
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Further, as a C-linear space, Hy(W') is spanned by f(W \ {0}). In particular, if W is
finite, then

(2.16) dim Hy(W) < |W| - 1.

Proof. Let W be the semigroup introduced in Definition 1.6 for W. It is easy to
show that there exists a unique semigroup homomorphism f : W — H,(W) such that

~ ~

f(O) =0, f(éqa) = E, and f(8;4) = Tio- By Theorem 1.7, there exists a unique map
f W — Hy (W) such that f(0) =0 and f(w) = f(5;, - 8i,,_,8i,,.a) if we W\ {0},
l(w)=m and w =s;, - S, _,S,,.a- Lhen f satisfies (2.14)-(2.15), as desired.

We show
(2.17) Vw € W,Vi € N,Va € A, T; o f (w) € Cf(s;qw) + Cf(w).

If s; qw = 0, then clearly T; , f (w) = 0 holds. If w # 0, s; qw # 0 and £(s; qw) = 1+4(w),
then (2.17) follows from (2.15). Assume that w # 0, s; qw # 0 and £(s; qw) # 1+ 4(w
Then by (1.8) and Proposition 1.9, we have £(s; qw) = {(w)—1, s0 f(w) = T} iva f(Si,qw
Since T o f (W) = T;.0Tiivaf(Siaw), we have T; o f(w) = f(s;qw) if i>a # a, and
Tiof(w) = (¢ —1)f(w) + qf(si,qw) otherwise. Hence we have (2.17), as desired.

It is clear from (2.17) that the rest of the statement follows. O

).
).

Notation. Let r € N. Let VO(T) be the r-dimensional R-linear space with a basis
{eill <i<r}. Let VO(T)’/ be the subspace of Vb(T) formed by the elements >_._, x;&; with
z; € R and Z;zl x; = 0, so dim VO(T)’/ = r — 1. For a non-zero element x = Zgll x;e; of
VO(T) with z; € R, define 7, € GL(VO(T)) by 0,(g;) = €5 — 2%(211"1 x?)" 1z, that is, 7,
is the reflection of VO(T) with respect to the hyperplane of VO(T) orthogonal to . Note
that if 2 € V", then 5, (V") = V"

§2.4. Basic of Iwahori-Hecke algebras

For the basic facts about the Iwahori-Hecke algebras, we refer to [GU]. Let W =
(W, N, A,>, m) be the groupoid introdued in (1.1). In this subsection we always assume
that

(2.18) |A| =1 and N and W are finite.

Let a € A, s0o A ={a}. Then W\ {0} is nothing but the Coxeter group associated with
the Coxeter system (W \ {0}, {siq|,7 € N}). In this case, we also denote H,(W) and
T;.q by Hy(W \ {0}) and T; respectively. That is, H,(W \ {0}) is the C-algebra (with
1) generated by T; (i € N) and defined by the relations

(2.19) (Ti —q)(T; + 1) =0,

;- 150 = T5T; - - Ty (my 4.4 factors) if m; j.q is odd,

(2.20)
T']T'Z Tt Tsz = TZTJ ce TliT] (mi,j;a factors) if mi ja is even.
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It is well-known that dim H,(W \ {0}) = [W \ {0}|. In this paper we fix a complete set
of non-equivalent irreducible representations of H,(W \ {0}) by

(2.21) {or,w\1on,x + Ho(W\{0}) — Ende (Vi (w\ (o1, 2) A € Am,w\(op }

where Ap, (w\ {oy) is an index set. Define the polynomial Py (0y(¢q) in ¢ by

(2.22) Pygoy(@) = Y, ¢"™.
weW\{0}
This is called the Poincaré polynomial of W\ {0}.
It is well-known [GU] (see also [CR, (25.22) and (27.4)]) that for ¢ € C\ {0}, the
following three conditions are equivalent.

(i) PW\{O} (q) 75 0 holds.
(ii) Hy(W \ {0}) is a semisimle algebra.
(iii) The map

(2.23) B rmwopa: HHVA{0) = @ Ende(Vir,m gop.a)
AEAH,;(W\{O}) AeAHq(W\{O})

defined by X — @AEAHL](W\{O})qu(W\{O}),,\(X) is a C-algebra isomorphism.

In particular,

(224) ¢ Puroy(@) #0 = dim H,(W\{0}) = > (dim Vi, (opa)>
AEA L (W {0})

Assume that N = {1,2,...,n} and m; 41, = 3 and m; j.,, =2 (|j —¢| > 2). Then
W is the Coxeter groupoid associated with (R, N, A,>) € R such that Vy = VO(nH)’/,
Rf ={ei—¢ll <i<j<n+1}, ajg =g —eip1 and 054 = Fq,,. As a group,
W\ {0} is isomorphic to the symmetric group Sy41, so we also denote W\ {0} by Sp+1
by abuse of notation. Note that dim Hy(Sp4+1) = (n +1)!.

Assume that N ={1,2,...,n} and m; i11,, =3 (1 <i <n—3), mp_1,ne =4 and
M j.a = 2 (|j—i| > 2). Then W is the Coxeter groupoid associated with (R, N, A,>) € R
such that Vp = Vo(n), RF ={e; —egjei+¢5]1 <i < j<npU{gll <i<n},
Qig=¢6i —€it1 (1 <i<n—1), anq, =¢p and 0y, = 04, ,- We also denote W\ {0} by
W (B,,) and W(C,,). Note that dim H, (W (B,,)) = 2"nl.

Assume that N = {1,2,...,n} and m;i+1.4 =3 (1 < i < n—2), mp_1na = 2,
Mp—2na = 3 and m; j.o =2 (| —i| > 2and 1 <i <n—3). We also denote W \ {0}
by W(D,,). Note that dim H,(W(D,,)) = 2" !nl. Then W is the Coxeter groupoid
associated with (R, N, A,>) € R such that Vj = Vo(n), RI ={e;—¢gje,+¢ej|l1 <i<
JE<n}h ajg=¢6—¢€iy1 (1<i<n—1), ana=¢cn_1+epand 054 = 0q,,-
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It is well-known (cf. [C, Theoerem 10.2.3 and Proposition 10.2.5]) that

n r+1
q —1
(225) Po.ata) = [ 5
r=1
no2r
" —1
(2.26) Py (,)(q) = H =1
r=1

(2.27) Pw(p,)(q) =

§2.5. Iwahori-Hecke type algebra H,(A(m,n)) associated with the Lie
superalgebra A(m,n)

Let
> Sm—l—n—|—2 X Dm+1|n+1 - Dm+1|n+1
denote the usual (left) action of the symmetric group Syini2 00 Dyyiqjp41 by permu-

tations, that is, for o € Sy, 12,

o> (P1,- - Pmgnt2) = (pcr—l(l)a e 7pcr_1(m+n+2))'

Let 0; := (i,i + 1) € Simant2. Let W be the Coxeter groupoid associated with
(R,N,A,>) € R such that N = {1,2,....,m+n+1}, A =Dy jpt1, i>d = 0; > d,
Vo = Vo(m+n+2)’/, Ry ={ei—¢gj|l<i<j<m+n+1},a;qg=¢;—¢i41 and 0,4 = Ty
Denote Hy (W) by Hy(A(m,n)). Then H,(A(m,n)) is the C-algebra (with 1) generated
by

and defined by the relations (2.6)-(2.11) and the relations

(229) E,g’jgibdiz—jj,o'ibdn,d :T'j,aiajdei,odeTj,d if |Z - .7| = 17
(2.30) Tiopdla =1j0,0dT5.a if |i —j| > 2.

Define de, do € Dyyy1jns1 by

m—+1 n+1 n+1 m—+1
I~ —— —
(2.31) de :=(0,...,0,1,...,1), do :=(1,...,1,0,...,0).
For d = (p1,...,Pmin+2) € Diypsijnt1, define the two elements

(2.32) T+.d,T—.d € Sm_|_n_|_2
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by
1F1 . . . . .
(2.33)  Pryae) = —5 and 74 .4(7) < 74 .4(J) if1<i<j<m+1,
1+1
(2.34)  pr L6 = — and 714 4(1) < 74 .4(j) ifm+2<i<j<m-+n+2.

Then 74 4 (resp. 7_ 4) is the minimal length element among the elements o € Sy, 4 p42
satisfying the condition that for any 4, i-th component of d. (resp. d,) is the same as
o(i)-th component p, ;) of d.

Example 2.3.  Assume that m = n = 1. Then Dyp = {d. = (0,0,1,1),d; =
(0,1,0,1),d> = (1,0,0,1),ds = (0,1,1,0),ds = (1,0,1,0),d, = (1,1,0,0)}. Then

Thd. = (1534 T, = [5325) T = [1324) T = (3323 Ty = 3324 Ty =
[1423]’ TH.ds = [1423]7 T—ds = [2314]’ Thdy = [2413]7 T—ds = [1324]7 T+do = [3412]’

T—d, = [ggjﬂ See also Figure 2.

Now we consider |W|. Recall p and d. from Theorem 1.5 and (2.32) respec-
tively. Tt is easy to see that Py p(eq, Wea, )ta, C {(37" Ea(i)i)|vo(m+"+2)v’|a €
Smant+2,0({1,...,m+1}) = {1,...,m + 1}}. Hence |egq, Weq | < (m + 1)!(n + 1)!
by Theorem 1.5, so |[W \ {0}| = [Dys1jns1[*ea. Wea, | < % Hence by (2.16),
we conclude
((m +n+2)1)?

(m+Dln+ 1)

(2.35) dim H,(A(m,n)) <

Proposition 2.4. Let V and W be finite dimensional C-linear spaces, and let
1: Hy(Sym+1) — Ende(V) and r : Hy(Sp+1) — Endc(W) be C-algebra homomorphisms,
i.e., representations. Let 1®r : Hy(Smi1) ® Hy(Sp+1) — Endc(V ® W) denote the
tensor representation of 1 and r in the ordinary sense. Let Cygw.qa be copies of the
C-linear space V@ W, indered by d € Dy, yqjny1- Let Cvow = ®d€Dm+1|n+1CV®W;d-
Let Py : Cygw — Cveow.a and tq : Cyvew.a — Cvew denote the canonical projection
and the canonical inclusion map respectively. Then there exists a unigue C-algebra
homomorphism 1 KA v o H (A(m,n)) — Endc(Cvew) satisfying the following
conditions:

(i) For each d € Dy y1jny1, one has (1KA1Y (Ey) = 140 Py,
(ii) For eachi € {1,...,m+n+ 1} and each d = (p1,...,Pmin+2) € Dmtijntis
one has
Popaota if pi # Pit1,
(2.36) (ARAC) £) (T} 4) = { ta© (T ) @idw) o Py if pi = pia = 0,
tao (idy ® r(TT_—‘ld(i))) oPy ifpi=pit1=1.
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Figure 2. Dynkin diagrams of the Lie superalgebra A(1,1)

Di Pit1 Piv2 €1{0,1} {0,1} > p; Dit1  DPit2
d | | d | |
ivd | | (i+1)>d | |
(t+1)>ivd | | i>(i+1)>d | |
ir(i+1)rivd | | G@i+1)piv(i+1)>d | |
Dit2 Pit1 Pi Div2 DPit1 DPi

Figure 3. Braid relation
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Proof. This can be checked directly. Refer to Figure 3. We explain by using an ex-
ample. Denote (14 ) (T 4/) by S g for any d’ and i’. Let d = (p1, ..., Pmins2) €
Dptijn+1 and @ € {1,...,m + n} and assume p; = p;y1 = 0 and p;yo = 1. Let
dy :=ivd(=o0;>d),ds = (i+1)>dy, d3:=i>ds, dy = (i +1)>d, ds :=i>dy and
dg := (i + 1) > dy. Then

(237) d= dl :(pla ey Pi—1, 07 07 17pi+27 v 7pm+n+2)7
(238) d2 = d4 :(pla ey Pi—1, 07 17 O7pi+27 v 7pm+n+2)7
(239) d3 = d5 = d6 Z(pl, ceeyPi—1, 1, O, O,pi+2, e 7pm—|—n—|—2)-

Note that 74 4, = 0;0i117+.4. Hence 7_ (z +1) = TJ:ld(z) Then we have S; 4 =
ta© (T, -1 y) ®idw) o Pa, Sitr,a, = ta, OPd, Sidy = tdy © Pays Sit1,a4 = tdy © Pa, Siay =
ds © Pa, and S;1 4. = ta, o ((T o (Z)) ® idw) o P4,. Hence we have S; 4,Si+1,4,5i.d =

Sit1,dsSi,dySit1,d = tds © (1T, o (Z)) ® idw ) o Py, as desired. O
For A € Ay, (s,,.,) and p € Ay, (s,,,), we denote pp,_(s,,.1).x xA(m.n) PHy(Spi1)t
by pA(m ") and we denote Cvew, P, tq for V = VHq(SmH),A and W = VHq(SnH),u by

A(m n) A, A,
C P M dM

A respectively.

Theorem 2.5. Let g € C and assume that

(240) qPSm-‘,-l( )PSn—‘,-l( ) 7£ 0.

Then the C-algebra homomorphism

A(m,n
(2.41) a o)
(M) EAH (S 1) XN HG(Sp 4 1)
A(m,n
Hy(A(m,n)) — an Ende(Co0™"™)

Mot) €A (8 y1) XD Hg(Spp1)
is an isomorphism. Further we have

((m +n+2)!)?
(m+1D)!(n+1)!"

(2.42) dim H,(A(m,n)) =

Moreover Hy(A(m,n)) is a semisimple C-algebra and a complete set of non-equivalent
A(m,n)

irreducible representations of Hq(A(m,n)) is given by {p 5 /" |(A, 1) € Am,(s,.,,) X

AHq(Sn+1)}‘

Proof. Define the C-algebra homomorphism

fl . Hq(Sm+1) & Hq(Sn+1) — Hq(A(m, TL))
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by fi(T; ®1) = T; . and f1(1®Tj) = Tiny14j.e- Let

A n
Ry = (LQ;M © Pc?e’“)End(C(Cq;;?: ))(LQ;M ° P‘Z“)'

Let fy denote the homomorphism of (2.41). It follows from (2.40) that Hy(Sy+1) ®
H,(Sp+1) is a semisimple C-algebra. This implies
Im(f2 O fl) = @ R}\,,u'

()‘aN)GAHq(Sm+1) XAHq(Sn-i-l)

On the other hand, we have

A(m, A, A, A, A,
End@(C'q;yZn)) = @ (gt o PRy (et o PLM).

d1,d2€D 41 n41

Hence by (2.36) we can easily see that fo is surjective. In particular, we have

dim Hy(A(m,n))

> Z |Dm—|—l|n+l|2 dim R,
()\,/.L)GAHq(Sm+1)XAHq(Sn-',-l)
= Donsapsa ) dim B,
(}\,,LL)GAHq(SmJ’_l) XAHq(Sn-i-l)
(m+ 1)l(n+1)!
Z (dlm VHq(Sm+1),>\)2(dim VHq(Sn-‘,-l)»,u)Q
(X»N)EAHq(SmJ,-UXAHq(Sn-H)

_( (m+n+2)!
N (m A+ D(n+1)!
B ((m+n+2)"?
 (m+Dli(n+ 1)

)2 dim Hy(Sp+1) dim Hy(Sp11)

Hence by (2.35), we have (2.42). Hence f is an isomorphism. Then the rest of the state-
ment follows from well-known facts concerning semisimple algebras (cf. [CR, (25.22)
and (27.4)]). O

§2.6. Iwahori-Hecke type algebra associated with the Lie superalgebra
osp(2m + 1]2n)

Let m € NU{0} and n € N. Ler £ := m +n. For 1 < i < {, define 6; € Sy by
G;:=0; (1<i<{€—1). and 6, := id.

Let W be the Coxeter groupoid associated with (R, N, A,>) € R such that N =
(1,2, 0}, A= Dy, ivd =6;0d, Vo = V™™, R = {e; — 5,60 — 51 <i < j <
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d=(0,0,1) O——xR——=0

=010  @F——=CR@——0

d=(1,0,0) RK———CO——®

Figure 4. Dynkin diagrams of the Lie superalgebra B(1,2)
U{el <i<t}, ayg=6; —€ip1 (1 <i<L€—1), apqg=e¢and 054 = 0q, ,- Denote
H, (W) by Hy(B(m,n)). Then H,(B(m,n)) is the C-algebra (with 1) generated by
(243) {Ed | de Dm|n} U {Ti,d | 1<i<{,de Dmln}

and defined by the relations (2.6)-(2.11) and the relations

(2.44)

To-1,60_yvdles, yvdle—1,dTe,a =Te,aTe-1,6,_10dTt,6,_ypdle—1,d
(245) T, 6wdlivro0dlid =Tiv1,6:6:010d15,6,00dLit1,d if1<i<e-1,
(2.46) T 6,0dTj.a =165, if i — j| > 2.

Recall p and d. € D,;,};,, from Theorem 1.5 and (2.31) respectively. Then

Pa.p(ea Weq, )i,
C L 2 B0 (1) |0 € Smin,zi € {—1,1},0({1,...,m}) = {1,...,m}}.

Hence |eq, Weq,| < 2™+"mln! by Theorem 1.5, so [W \ {0} = |Dpn|?les. Wea,| <

2m 1 (m4n)!)?
min!

. Hence by (2.16), we conclude

2" ((m +n)!)?
min! '

(2.47) dim H,(B(m,n)) <

Proposition 2.6. Let V} and V; be finite dimensional C-linear spaces, and let
1: Hy(W(By,)) — Endc(V1) and r : Hy(W(B,)) — Endc(V;) be C-algebra homomor-
phisms, i.e., representations. Let 1@ r : Hy (W (By,)) ® Hy(W(B,)) — Endc(\i ® V1)
denote the tensor representation of 1 and r in the ordinary sense. Let Cy;gv,.a be copies
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of the C-linear space V1 @ V., indexed by d € D,,),,. Let Cygv, = @deDmmCV]@Vr;d-
Let Py : Cvigv, — Cvew:a and tq : Cyew.a — Cvigv, denote the canonical projection
and the canonical inclusion map respectively. Then there exists a unique C-algebra ho-
momorphism 1Kr = IRE(mn) ¢ . H,(B(m,n)) — Endc(Cv,ev,) satisfying the following
conditions:

(i) For each d € Dy, one has 1R r)(Eq) = tq0 Py,
(ii) For each i€ {1,...,£ =m+n} and each d = (p1,...,pe¢) € Dy, one has

(2.48)

4

Psnq0tq if 1<i<fl—1 and p; # pit1,
tgo (T _1(i))®idvr)OPd if1<i<{l—1 andp; =p;+1 =0,

(IXr)(Tiq) =  tgo (idy; @ (T _1()))oPd if1<i<fl—1andp; =pir1 =1,
tgo (I(Ty,) ®idy, ) o Py if i =4 and p;, = 0,
lao(idy @ X(T) 0 Py ifi={ andpy =1,

where T+ 4 are the ones of (2.32).

Proof. We can check out this directly in a way similar to that for Proof of Propo-

sition 2.4. |

For A € Az, (w(B,,)) and (1 € g, (w(s,)), we denote pa, (w(5,.)) AZ7 ™ pw (5,)).p

by pf;f\?;’n) and we denote Cygw for V. = Vg (w s, ). and W = Vg w(B,)).u bY
CB(m,n)
cAp

Theorem 2.7. Let g € C and assume that

(2.49) Pw (B,.)(0)Pw(B,)(q) # 0.
Then the C-algebra homomorphism
B(m,n
(2:50) D P
(N EANH (W (B ) XA (W (BR))
B(m,n
H,(B(m,n)) — @ End@(cq;i,u ))

(M) EAH (W (Bm)) XM Hg (W (BR))
is an isomorphism. Further we have

2mF ((m + n)!)Q'

(2.51) dim Hy(B(m,n)) = "

Moreover Hy(B(m,n)) is a semisimple C-algebra and a complete set of non-equivalent
B(m,n)

irreducible representations of Hq(B(m,n)) is given by {p,\ ;" |(A\ 1) € Am (w(B,.)) X

Ap,w(B.)}-
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Proof. Let 1 : Hy(W(By)) — Endc(V1) and r : H,(W(B,)) — Endc(V;) be
Hq(B(m,n)) — End(c(ovl@\/r) be the
representaion introduced in Proposition 2.6 for these 1 and r. By (2.48), we can easily
see that

irreducible representations. Further, let I r :

(2.52) Vd/,Vd” S Dm|n, Py oy € Im(l X I').

Define the representation fi : Hy(W(B,,))® Hy(W (By,)) — Endc(Cwigv,d.) by fi(1i®
1) = (Pa.ota,)(IXr)(Th44,4,)) (Pa,ota, ) and f1(1&T;) = (IX¥r)(Ty+j,4. ). The condition
(2.49) implies that f; is an irreducible representaion of H,(W(B,,)) ® Hy(W (B,)).
Moreover, using (2.52), we can easily see that 1 X r is an irreducible representation of

He(B(m,n)).

By the above argument, together with (2.47), in the same way as that for Proof of
Theorem 2.5, we can complete the proof of this theorem. O
§2.7. Iwahori-Hecke type algebra associated with the Lie superalgebra
osp(2m|2n)

Let m, n € N. Define the set Dgﬁl by
(2.53) Dgﬁ ={dP|d= (p1,...,Pmin) € Dpnjns Pmin = 0}
U {dg, d€|d = (pla - >pm+n) S Dm|n> Pm+n = 1}7
so that
(2.50) |Df{;ﬁl|:(m+n_1)! (m—l—n—l)!:(m—l—n—l)!(m—l—Qn)'
(m —1)n! m!(n —1)! m!n!
Let £ :=m+nand N = {1,...,/}. Define the action > of F»(N) on Dgﬁb by
((0;1>d)P ifa=dP, 1<i</{-2and p; # pit1,
(o;>d)¢ ifa=dP,i=1/¢—1and p; # pis1,
(oio1>d)® ifa=dP,i=/{andp;_1 # p;,
(2.55) ira={ (0;>d)¥ ifa=d{,1<i<{—2and p; # pi+1,
(o;>d)P ifa:dg,izﬁ—landpi;épiﬂ,
oi_1bd)? ifa=d%, i="¢and p;_1 # ps,
La otherwise.
Now we define R = (R, N, Dgﬁw >) € R as follows. Let N be as above. Let A = D¢P

Let Vo = VO(E). Let a = dP, df

or d¢ € DS;D with d =

|n (p]_,...

apm—l-n) € Dm|n- Let
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R} be the subset of Vj formed by the elements &; — €5, €i+¢5, (1 <i<j<{) and
(£1)%¢2¢), (1 <k < £ and py, = 1, and = is the one of d¥). Define

;

gi—gip1 ifa=dPord{and1<i</l-1,
gi—¢cip1 ifa=d%and1<i<l—2,
cro1+er ifa=dP andi="¢,

2ey ifa:dg and i =/,

—2¢y ifa=d® andi=1¢—-1,

(€1 +e ifa=d® and i ="

(2.56) Qg =

Define 0, , := 04, ,. Let W be the Coxeter groupoid associated with R. Recall p and
de € Dy, from Theorem 1.5 and (2.31) respectively. It is easy to show that

pleyrWe,yr) =

J4 14
" zBegyslo € Sp,z € {-1,1}, [] z=10({1,....n}) ={1,...,n}},
j=1

j=n+1

s0 e,y pWe,yp| < minl2°=1 by Theorem 1.5. Hence |[W \ {0}] < |Df;;ﬁl|2m!n!2£_l.
Denote H,(W') by Hy(osp(2m|2n)). By (2.16) and (2.54), we have

2 (4 Dl(m £ 20))?

(2.57) dim H,(osp(2m|2n)) < Yy

Recall that H,(osp(2m|2n)) is the C-algebra (with 1) generated by

(2.58) (E,la e DEPYU{Tia|1<i<m+n,acDD}

m|n mln

and defined by the relations (2.6)-(2.11) and the relations

(2.59) (T1aTj.0)? = (T;0T50)* ifa=dS, ppo1 =prand i =0 — 1, j = £,

(2.60)  TioTjo=TjaTiaifa=dP po1=prandi=~—1,j=1,

(2.61) T; jivalyisalia = Ty ijealijoaly,a if pe—1 #peand i =40 —1, j =4,
(2.62) T jivalyiwali,a = Tjijeali jeal,a if1<i<l-3,j=1+1,

(2.63) T jiwalyiwali,a = Tjijeali jedly,d ifa=df andi=1¢—-2,j=10—1,
(2.64) T jiwalyiwali,a = Tjijeali jedlyd ifa=d% andi=10-2,j=1¢,
(2.65)  Tijiwaljiwalia = Tjijpdli jpaTlja if a =dP and i =€ —2, j € {{ — 1,4},
( ) T isdlia = T; jwal}a if ¢ < j, and 4, j are not the ones in (2.64)-(2.65).

Recall that W(Cy) = W(By) and Hy(W(Cy)) = Hy(W (Bx)).
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1 2 _—(0O4
) @—0O
¥O3
1
2 _—04 4)
2) ®—® O O &—0
2 4 3

4
3 O—& ,
1 2 2 3 O O &—0
2

3 4

where 1) (1,0,0,0)”, 2) (0,1,0,0)7, 3) (0,0,1,0)”, 4) (0,0,0,1)¢, 5) (0,0,0,1)¢

Figure 5. Dynkin diagrams of the Lie superalgebra D(3,1)
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Proposition 2.8.  Let Vi and V; be finite dimensional C-linear spaces, and let
1: Hy(W(Dy,)) — Endc(W1) and r : H,(W(C,,)) — Endc(V:) be C-algebra homomor-
phisms, i.e., representations. Let 1@ r : Hy(W(D,,)) ® Hy(W(Cy)) — Endc(Vi ® V1)
denote the tensor representation of 1 and r in the ordinary sense. Let Cy,gv,.q be copies
of the C-linear space Vi ® Vi, indexed by a € Dm|n Let Cypv, = @depiﬁlo\/l@vr;d.
Let P, : Cvigv, — Cvew.a and i : Cyew.a — Cyvigv. denote the canonical projection
and the canonical inclusion map respectively. Then there exists a unique C-algebra ho-
momorphism 1Ky = 1XPr . H,(osp(2m|2n)) — Endc(Cyvigy,) satisfying the following
conditions:

(i) For each a € Dm|n, one has (1K r)(E,) = tq 0 P,.
(ii) For eachi € {1,...,£ =m-+n} and each a € Dgﬁ with d = (p1,...,0¢) € Dy,
such that a = dg, d® or dD, one has

(2.67)
(P, ou, if1<i<landiva+a,
ta o (I(T —1(Z)®idvr)opa if1<i<{l—1andp; =pi11 =0,
te o (U(T)) ®idy,) o P, if i = ¢ and py = 0,
(18 r)(T ) = La © (idy; ® r( T_l(z))) oP, if1<i<fl—2andp; =piy1=1,
tq o (idy; ® (T, )) ifi=4—1 cmdpg_lngzl,a:dg.
oo (idy, @ r(T},)) o ifi=0—1andp; =1, a=d°.
oo (idy, @ r(T},)) o ifi=4¢andp, =1, a=dS.
[ ta © (idy; @ r(Th— )) ifi=Candpy_1=p;=1,a=d",

where T4 q € Spin are the ones of (2.32).

Proof. We can check out this directly in a way similar to that for Proof of Propo-
sition 2.4. O

FOI‘ A E AH (W(Dn)) and n e AH <(W(Cr))» we denote pH (W(Dm)),A IZICD pW(C )) w
by pq D . and we denote Cvew for V =V (w(p,.)» and W = Vi w(c,)).u by C’ o

Theorem 2.9. Let g € C and assume that

(2.68) aPw p,)(@)Pwc,)(q) # 0.
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Then the C-algebra homomorphism
269) &
(M) EAH, (W (D)) X AH (W (Cn))
H,(0sp(2m|2n)) — &b Endc(CSY,)
(M) EAH (W (D)) XN HG (W (Cn))
is an isomorphism. Further we have
2mtn=L((m +n — 1)!(m+2n))?
m!n! ’

(2.70) dim H,(osp(2m|2n)) =

Moreover H,(osp(2m|2n)) is a semisimple C-algebra and a complete set of non-equivalent
irreducible representations of H,(osp(2m|2n)) is given by {pg£“|(A, 1) € N, (w(D,n)) X
Ag,we.nt

Proof. Note that W (D,,) x W(C,) = 2™ Imln!l. Then we can prove this
theorem in the same way as that for Proof of Theorem 2.7. O

Remark 1. Now, by (2.3), (2.4) and Theorems 2.5, 2.7 and 2.9, it has turned
out that if ¢ is non-zero and not any primitive root of unity, then as a C-algebra,
H,(g) = Hy(W) introduced in this section for the Lie superalgebra g = A(m,n) or
osp(m|2n) is very similar to the Iwahori-Hecke algebra H,(Wy) associated with the
Weyl group Wy of the Lie algebra g(0) given as the even part of g, that is, Morita
equivalence.

Remark 2. Assume g to be an element of C transcendental over Q. Then the Z-
subalgebra (with identity) of C generated by ¢ can also be regarded as the polynomial
ring Z[g] in the variable g over Z. Let W be one of the Coxeter groupoids treated
in Subsections 2.5, 2.6 and 2.7. By Lemma 2.2 and (2.42), (2.51), (2.70), one see
that {f(w)|lw € W\ {0}} is a C-basis of H,(W), that is, Hy(W) = @wew {01 Cf(w).
Define Hyg (W) to be the Z[g]-submodule generated by {f(w)lw € W\ {0}}. Using
Theorem 1.7 and Corollary 1.8, one see that Hyzjq (W) is also a Z[g]-subalgebra of
H,(W). Let A be any commutative ring (with identity). Let ¢ be any element of A.
Regard A as a Z[g|-algebra via the Z-algebra homomorphism Z[g] — A that takes ¢ to (.
Let Hy (W) be the A-algebra (with identity) defined by Hy (W) := Hy[q) (W) ®zq A.
For X € Hyjq (W), we also denote the element X ®1 of Hy ¢(W) by X. Then Hy (W)
is a free A-module with an A-basis {f(w)|w € W \ {0}}, that is,

(2.71) l“aIlkAHA’C(W) = |W| — 1.

Using Theorem 1.7 and Corollary 1.8 again, one see that Hp ¢(W) can also be defined
by the same generators as (2.5) and the same relations as (2.6)-(2.13) with ¢ in place
of q.
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The same properties as above seem to be true for many Coxeter groupoids, which
might be able to be proved in a way similar to that of the proof of [L, Proposition 3.3].
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