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Torsion of abelian schemes and

rational points on moduli spaces
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Abstract

In [CT], we proved, in characteristic 0 ,
certain 1‐dimensional base versions of the

uniform boundedness conjecture for p‐primary torsion of abelian varieties and of Fried�s

modular tower conjecture related to the regular inverse Galois problem. In this paper,

we prove these results in arbitrary characteristics.
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A[N]^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\mathrm{K}\mathrm{e}\mathrm{r} : A\rightarrow A) ,

where [N] stands for the multiplication‐by‐N endomorphism (N\geq 1) ,

A_{\mathrm{t}\rightarrow}^{\mathrm{d}\mathrm{e}\mathrm{f}}\mathrm{o}\mathrm{r}\mathrm{s}_{N}=\underline{1}\mathrm{i}A[N] (i.e., A_{\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}}(T)=\underline{1}\mathrm{i}\rightarrow A[N](T)N for each S‐scheme T),

A[p^{\infty}]^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\underline{1}\mathrm{i}\rightarrow A[p]n (i.e., A[p^{\infty}](T)=\underline{1}\mathrm{i}\rightarrow A[p^{n}]n(T) for each S‐scheme T),

A[p^{n}]^{*}=A[p^{n}]\backslash A[p^{n-1}]\mathrm{d}\mathrm{e}\mathrm{f}(A[p^{0}]^{*}=A[p^{0}])\mathrm{d}\mathrm{e}\mathrm{f}.

If, moreover, S=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k) for some field k of characteristic \neq p ,
we also use the following

notations:

T_{p}(A)^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\llcorner \mathrm{i}\mathrm{m}A[p](k)n (the p‐adic Tate module of A),

T_{p}(A)^{*}=T_{p}(A)\mathrm{d}\mathrm{e}\mathrm{f}\backslash pT_{p}(A)=\llcorner \mathrm{i}\mathrm{m}A[p^{n}]^{*}(\overline{k})n,
V_{p}(A)^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}T_{p}(A)\otimes_{\mathrm{Z}_{p}}\mathrm{Q}_{p},

and

\mathrm{Z}_{p}(1)^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}T_{p}(\mathrm{G}_{m}) ,

where \mathrm{G}_{m}^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\mathrm{P}^{1}\backslash \{0, \infty\} is the multiplicative group scheme.

§1. Introduction.

In this §, we shall explain two important problems in arithmetic geometry that have

motivated our study — the uniform boundedness conjecture for torsion of abelian vari‐

eties and the regular inverse Galois problem (especially, the modular tower conjecture).

\langle Uniform boundedness conjecture for torsion of abelian varieties \rangle

Let  k be an algebraic number field (i.e.,  d^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}[k:\mathrm{Q}]<\infty ) and  g an integer \geq 0.

Uniform Boundedness Conjecture (UB).
There exists a constant N=N(k, g)\geq 0 ,

such that for any g ‐dimensional abelian

variety A over k and any v\in A_{\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}}(k) , the order of v is\leq N.

(UB) is trivially valid for g=0 and has been proved for g=1 (by Mazur, Kamienny,
Abramovich for smaller values of d and by Merel [Me] for d general) via intensive study
of geometry of modular curves. However, it is widely open for g>1.

We also have the following variant. Let p be \mathrm{a} (fixed) prime number.
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p‐Uniform Boundedness Conjecture (p\mathrm{U}\mathrm{B}) .

There exists a constant N=N(k, g, p) ,
such that for any g ‐dimensional abelian variety

A over k and any v\in A[p^{\infty}](k) ,
the order of v is\leq N.

(p\mathrm{U}\mathrm{B}) is trivially valid for g=0 and has been proved for g=1 by Manin [Ma2].
Although (p\mathrm{U}\mathrm{B}) is clearly weaker than (UB), it is still widely open for g>1.

\langle Inverse Galois problem \rangle
Let  G be a finite group and k an algebraic number field.

Inverse Galois Problem (IGP).
Does there exist a Galois extension L/k ,

such that \mathrm{G}\mathrm{a}1(L/k)\simeq G^{l}?

The following variant of (IGP) is more closely related to our study in this paper.

Regular Inverse Galois Problem (RIGP).
Does there exist a Galois extension \mathcal{L}/k(T) (T : indeterminate), such that \mathcal{L} is regular
over k(i.e. \mathcal{L}\cap\overline{k}=k) and that \mathrm{G}\mathrm{a}1(\mathcal{L}/k(T))\simeq G^{l}?

It is well‐known that (RIGP) implies (IGP) (by Hilbert�s irreducibility theorem).
While (IGP) is purely number‐theoretic, (RIGP) is arithmetico‐geometric in nature,

as follows. First, we have the following one‐to‐one correspondences:

a Galois extension \mathcal{L}/k(T) with \mathrm{G}\mathrm{a}1(\mathcal{L}/k(T))\simeq G

\underline{1:1}\mathrm{a} (branched) connected Galois cover Y\rightarrow \mathrm{P}_{k}^{1} with \mathrm{A}\mathrm{u}\mathrm{t}(Y/\mathrm{P}_{k}^{1})\simeq G

\underline{1:1} a surjection $\pi$_{1}(\mathrm{P}_{k}^{1}\backslash S)\rightarrow G ,
considered modulo Inn (G)

(where S runs over the finite sets of closed points of \mathrm{P}_{k}^{1} ).
Here, $\pi$_{1} stands for the étale fundamental group of scheme (with a suitable base point).

Moreover, in these one‐to‐one correspondences, the condition for the first object
\mathcal{L}/k(T) that \mathcal{L} is regular over k corresponds to the condition for the second object
f : Y\rightarrow \mathrm{P}_{k}^{1} that Y_{\overline{k}} is connected (or, equivalently, f is �geometric�), and to the

condition for the third object $\pi$_{1}(\mathrm{P}_{k}^{1}\backslash S)\rightarrow G that the induced map $\pi$_{1}(\displaystyle \mathrm{P}\frac{1}{k}\backslash S_{\overline{k}})\rightarrow G
is already surjective. Note that $\pi$_{1}(\mathrm{P}_{k}^{1}\backslash S) fits into the following exact sequence of

profinite groups:

1\displaystyle \rightarrow$\pi$_{1}(\mathrm{P}\frac{1}{k}\backslash S_{\overline{k}})\rightarrow$\pi$_{1}(\mathrm{P}_{k}^{1}\backslash S)\rightarrow \mathrm{G}\mathrm{a}1(\overline{k}/k)\rightarrow 1,
where $\pi$_{1}(\mathrm{P}_{k}^{1}\backslash S) and $\pi$_{1}(\displaystyle \mathrm{P}\frac{1}{k}\backslash S_{\overline{k}}) are sometimes referred to as the arithmetic and the

geometric fundamental groups, respectively.
It is well‐known that (as k is of characteristic 0 ) the geometric fundamental group

$\pi$_{1}(\displaystyle \mathrm{P}\frac{1}{k}\backslash S_{\overline{k}}) is a free profinite group of rank r-1
,

where r is the cardinality of the

point set S_{\overline{k}} . Thus, it is easy to construct a surjection $\pi$_{1}(\displaystyle \mathrm{P}\frac{1}{k}\backslash S_{\overline{k}})\rightarrow G . (Indeed, this

is possible if and only if G is generated by at most (r-1) elements.) However, it is a

subtle descent problem to extend a surjection $\pi$_{1}(\displaystyle \mathrm{P}\frac{1}{k}\backslash S_{\overline{k}})\rightarrow G to $\pi$_{1}(\mathrm{P}_{k}^{1}\backslash S) .

The above geometric interpretation of (RIGP) further leads to a modular interpreta‐
tion of (RIGP), as follows. For this, let us introduce moduli spaces of covers of curves,

i.e., Hurwitz spaces. (For details, see, e.g., [BR].)
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Denition. Let G be a finite group and r an integer \geq 0.

(i) We denote by \mathcal{H}_{G,\mathrm{P}^{1},r} the moduli stack (over \mathrm{Z}[1/|\mathrm{G}] ) of pairs (f, t) ,
where f :

Y\rightarrow \mathrm{P}^{1} is a geometric Galois cover equipped with \mathrm{A}\mathrm{u}\mathrm{t}(Y/\mathrm{P}^{1})\simeq G ,
and t\subset \mathrm{P}^{1} is an

étale divisor of degree r that contains the branch locus of f . It is known that \mathcal{H}_{G,\mathrm{P}^{1},r}
is a Deligne‐Mumford stack and that the associated coarse space H_{G,\mathrm{P}^{1},r} is a scheme.

(ii) Let g be an integer \geq 0 with the hyperbolicity condition 2-2g-r<0 . Then we

denote by \mathcal{H}_{G,g,r} the moduli stack (over \mathrm{Z}[1/|\mathrm{G}] ) of pairs (f, t) ,
where f : Y\rightarrow X is

a geometric Galois cover over a proper, smooth, geometrically connected curve X of

genus g equipped with \mathrm{A}\mathrm{u}\mathrm{t}(Y/X)\simeq G ,
and t\subset X is an étale divisor of degree r that

contains the branch locus of f . It is known that \mathcal{H}_{G,g,r} is a Deligne‐Mumford stack and

that the associated coarse space H_{G,g,r} is a scheme.

By definition, each geometric Galois cover f : Y\rightarrow \mathrm{P}_{k}^{1} over k equipped with

\mathrm{A}\mathrm{u}\mathrm{t}(Y/\mathrm{P}_{k}^{1})\simeq G ,
whose branch locus in \mathrm{P}_{k}^{1} is contained in an étale divisor t of de‐

gree r
,

defines a k‐rational point in H_{G,\mathrm{P}^{1},r}(k) depending on the pair (f, t) . (When the

branch locus coincides with t
,

this k‐rational point depends only on f ,
since t is then

determined by f. ) If, moreover, \mathcal{H}_{G,\mathrm{P}^{1},r} is representable (i.e., \mathcal{H}_{G,\mathrm{P}^{1},r}=H_{G,\mathrm{P}^{1},r} ), then

this defines a one‐to‐one correspondence between the set of isomorphism classes of such

(f, t) and H_{G,\mathrm{P}^{1},r}(k) . Similarly, for a proper, smooth, geometrically connected curve

X of genus g over k
,

each geometric Galois cover f : Y\rightarrow X over k equipped with

\mathrm{A}\mathrm{u}\mathrm{t}(Y/X)\simeq G ,
whose branch locus in X is contained in an étale divisor t of degree

r
,

defines a k‐rational point in H_{G,g,r}(k) depending on the pair (X, f, t) . (When the

branch locus coincides with t
,

this k‐rational point depends only on (X, f) ,
since t is

then determined by (X, f). ) If, moreover, \mathcal{H}_{G,g,r} is representable (i.e., \mathcal{H}_{G,g,r}=H_{G,g,r} ),
then this defines a one‐to‐one correspondence between the set of isomorphism classes

of such (X, f, t) and H_{G,g,r}(k) .

Facts. Here, \dim stands for the relative dimension over the base.

(i) \dim(H_{G,\mathrm{P}^{1},r})=r ,
unless H_{G,\mathrm{P}^{1},r}=\emptyset. \mathcal{H}_{G,\mathrm{P}^{1},r} is representable if and only if either

\mathcal{H}_{G,\mathrm{P}^{1},r}=\emptyset or the center of  G is trivial.

(ii) \dim(H_{G,g,r})=3g-3+r ,
unless H_{G,g,r}=\emptyset. \mathcal{H}_{G,g,r} is representable if and only if,

for any object f : Y\rightarrow X classified by \mathcal{H}_{G,g,r} ,
the centralizer of G in \mathrm{A}\mathrm{u}\mathrm{t}(Y) is trivial.

(iii) H_{G,\mathrm{P}^{1},r}/PGL_{2}=H_{G,0,r} (for r\geq 3 ).

\langle Fried�s modular tower conjecture \rangle

The modular tower conjecture is a conjecture arising from (RIGP) that was posed
by M. Fried in the early  1990\mathrm{s} . Here, we formulate some variants of this conjecture.
For more details, see [F], [FK] and [D].

Let p be a prime number. Let \mathrm{G}=\{G_{n+1}\rightarrow G_{n}\}_{n\geq 0} be a projective system of

finite groups, such that G^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\llcorner \mathrm{i}\mathrm{m}G_{n} is p‐obstructed in the following sense:

Denition. We say that a profinite group G is p‐obstructed, if G contains an open

subgroup that admits a quotient isomorphic to \mathrm{Z}_{p}.

Modular Tower Conjecture (MT).
Let k be an algebraic number field and r an integer \geq 0.
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(i) There exists a constant N=N_{1}(p, \mathrm{G}, r, k) ,
such that, for any n\geq N and for any

geometric Galois cover f : Y\rightarrow \mathrm{P}_{k}^{1} with group G_{n} ,
the degree of the (reduced) branch

divisor of f in \mathrm{P}_{k}^{1} is>r.

(ii) There exists a constant N=N_{2}(p, \mathrm{G}, r, k) ,
such that  H_{G_{n},\mathrm{P}^{1},r}(k)=\emptyset for any

 n\geq N.

(iii) Let g be an integer \geq 0 with 2-2g-r<0 . Then there exists a constant N=

N_{3}(p, \mathrm{G}, g, r, k) ,
such that  H_{G_{n},g,r}(k)=\emptyset for any  n\geq N.

Here, the projective systems \{H_{G_{n},\mathrm{P}^{1},r}\}_{n\geq 0} and \{H_{G_{n},g,r}\}_{n\geq 0} of Hurwitz spaces

are often referred to as �modular towers�. Note that the following implications are

immediate:

(MT)(iii) for  g=0\Rightarrow (MT)(ii) \Rightarrow (MT)(i).

Finally, the following (weaker) variant of (MT)(iii) has been already proved in ar‐

bitrary characteristics. Here, for a profinite group  G ,
denote by $\Sigma$_{G} the set of prime

numbers which divide the order of (some finite quotient of) G.

Theorem 1.1 ([C], Corollary 3.6. See also [BF], [K]). Let k be a field finitely
generated over the prime field of characteristic q\not\in$\Sigma$_{G} (hence, in particular, q\neq p),
and g, r integers \geq 0 with 2-2g-r<0 . Then we have

\llcorner \mathrm{i}\mathrm{m}H_{G_{n},g,r}(k)=\emptyset.

§2. Main results.

The main results of this paper are solutions of certain 1‐dimensional versions of (p\mathrm{U}\mathrm{B})
and (MT) over fields finitely generated over the prime field of arbitrary characteristic

\neq p . To state the former in some more generality, we shall introduce the notion of

non‐Tate characters as in [CT].

Denition. Let p be a prime number and k a field of characteristic q\neq p . (Denote by
$\Gamma$_{k} the absolute Galois group \mathrm{G}\mathrm{a}1(k^{\mathrm{s}\mathrm{e}\mathrm{p}}/k) of k. ) We say that a character  $\chi$ :  $\Gamma$_{k}\rightarrow \mathrm{Z}_{p}^{*}
is non‐Tate, if it does not appear as a subrepresentation of the p‐adic representation
associated with an abelian variety over k . Equivalently,  $\chi$ is non‐Tate if and only if, for

any abelian variety  A over k,

A[p^{\infty}]( $\chi$)^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}} { T\in A[p^{\infty}](\overline{k})|^{ $\sigma$}T= $\chi$( $\sigma$)T for all  $\sigma$\in$\Gamma$_{k} }

is finite.

When k is finitely generated over the prime field, the trivial character and the p‐adic

cyclotomic character are typical examples of non‐Tate characters. (See [CT].)
Let d be an integer \geq 0 . Now, we can formulate the d‐dimensional version of (p\mathrm{U}\mathrm{B}) ,

as follows.
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Conjecture (p\mathrm{U}\mathrm{B}_{d}) . Let p be a prime number. Let k be a field finitely generated over

the prime field of characteristic q\neq p and  $\chi$ :  $\Gamma$_{k}\rightarrow \mathrm{Z}_{p}^{*} a non‐Ta te character. Let S be

a scheme of finite type over k with \dim(S)\leq d and A an abelian scheme over S. Then

there exists an integer N=N(p, k,  $\chi$, S, A) ,
such that A_{s}[p^{\infty}]( $\chi$)\subset A_{s}[p^{N}](\overline{k}) for any

s\in S(k) .

(\mathrm{p}\mathrm{U}\mathrm{B}) follows immediately from the definition of non‐Tate characters. Now, the

first main result of this paper is:

Theorem A. (\mathrm{p}\mathrm{U}\mathrm{B}) holds.

Next, we formulate the d‐dimensional version of (MT) (in arbitrary characteristics).

Conjecture (MT). Let p be a prime number and \mathrm{G}=\{G_{n+1}\rightarrow G_{n}\}_{n\geq 0} a projective

system of finite groups, such that G\mathrm{d}\mathrm{e}\mathrm{f}=\llcorner \mathrm{i}\mathrm{m}G_{n} is p ‐obstructed. Let g, r be integers
\geq 0 with 2-2g-r<0 . Let k be a field finitely generated over the prime field of
characteristic q\not\in$\Sigma$_{G} (hence, in particular, q\neq p), S a scheme of finite type over k

with \dim(S)\leq d ,
and  $\xi$ :  S\rightarrow H_{G_{0},g,r} a k ‐morphism. Then there exists an integer

N=N(p, \mathrm{G}, g, r, k, S,  $\xi$) ,
such that  S_{n}(k)=\emptyset for any  n\geq N. Here, we set S_{n}\mathrm{d}\mathrm{e}\mathrm{f}=

S\times H.

Observe that (\mathrm{M}\mathrm{T}) implies (MT)(iii) for (g, r) with 3g-3+r\leq d. (\mathrm{M}\mathrm{T}) (hence,
(MT)(iii) for (g, r)=(0,3) and (MT)(i)(ii) for r=3 ) follows immediately from Theorem

1.1. Now, the second main result of this paper is:

Theorem B. (\mathrm{M}\mathrm{T}) holds. (In particular, (MT)(iii) for (g, r)=(0,4), (1,1) and

(MT)(i)(ii) forr=4 hold.)
Theorem A in characteristic 0 and the deduction Theorem \mathrm{A}\Rightarrow Theorem B in

arbitrary characteristics are main results of [CT]. In this paper, we shall give a proof of

Theorem A in arbitrary characteristics, eventually in §4. Before that, we shall collect

some preliminaries in the next §.

§3. Preliminaries.

In this §, we collect various arithmetico‐geometric preliminaries for the proof of

Theorem A in the next §. They were not needed in [CT], but are needed here to cover

arbitrary characteristics. Some of them may be of some interest independent of the

proof of Theorem A.

\langle Non‐Tate characters \rangle
Fix a prime  p and let k be a field of characteristic q\neq p . The following was proved

in [CT].
Lemma 3.1. For any finitely generated extension K of k,  $\chi$ :  $\Gamma$_{k}\rightarrow \mathrm{Z}_{p}^{*} is non‐Ta te

if and only if  $\chi$|_{$\Gamma$_{K}} : $\Gamma$_{K}\rightarrow \mathrm{Z}_{p}^{*} is non‐Ta te. Here, we set  $\chi$|_{$\Gamma$_{K}}\mathrm{d}\mathrm{e}\mathrm{f}= $\chi$ 0|_{k^{\mathrm{s}\mathrm{e}\mathrm{p}}} ,
where

|_{k^{\mathrm{s}\mathrm{e}\mathrm{p}}} : $\Gamma$_{K}\rightarrow$\Gamma$_{k} stands for the restriction from K^{\mathrm{s}\mathrm{e}\mathrm{p}} to k^{\mathrm{s}\mathrm{e}\mathrm{p}} (with respect to a fixed
embedding k^{\mathrm{s}\mathrm{e}\mathrm{p}}\mapsto K^{\mathrm{s}\mathrm{e}\mathrm{p}} over k).

Here, we shall prove two more lemmas on non‐Tate characters.
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Lemma 3.2. The following are all equivalent:

(i) The p ‐adic cyclotomic character $\chi$_{\mathrm{c}\mathrm{y}\mathrm{c}}:$\Gamma$_{k}\rightarrow \mathrm{Z}_{p}^{*} has open image and is non‐Ta te.

(ii) For any finitely generated extension K of k and any character  $\chi$ :  $\Gamma$_{K}\rightarrow \mathrm{Z}_{p}^{*},  $\chi$($\Gamma$_{K\overline{k}})
is finite.
(ii�) For any finitely generated extension K of k and any (additive) character  $\psi$ :  $\Gamma$_{K}\rightarrow

\mathrm{Z}_{p},  $\psi$($\Gamma$_{K\overline{k}}) is trivial.

Proof. First, as \mathrm{Z}_{p}^{*}\simeq \mathrm{Z}_{p}\times M with M finite, the equivalence (\mathrm{i}\mathrm{i})\Leftrightarrow(\mathrm{i}\mathrm{i}') is clear.

Next, assume that (i) holds. We shall prove the assertion of (ii�) by induction on the

transcendence degree d of K over k . If d=0 ,
the assertion is trivial. If d>0 ,

take a

subextension k'/k of K/k with transcendence degree d-1 . Replacing k' by its algebraic
closure in K

,
we may assume that k' is algebraically closed in K

,
hence the natural

map $\Gamma$_{K}\rightarrow$\Gamma$_{k'} is surjective. Now, observe that the conditions of (i) are also satisfied

when k is replaced by k' . Indeed, as the natural map $\Gamma$_{k'}\rightarrow$\Gamma$_{k} has open image, the

first condition is satisfied, and, by Lemma 3.1, the second condition is satisfied. Thus, if

we assume the implication (\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{i}') for d=1 (for k' ),  $\psi$ :  $\Gamma$_{K}\rightarrow \mathrm{Z}_{p} factors through
$\Gamma$_{K}\rightarrow$\Gamma$_{k'} , or, equivalently, induces a character \overline{ $\psi$} : $\Gamma$_{k'}\rightarrow \mathrm{Z}_{p} . Applying the assumption
of induction to the finitely generated extension k'/k and the character \overline{ $\psi$} : $\Gamma$_{k'}\rightarrow \mathrm{Z}_{p},
we are done.

Thus, up to replacing K/k by K/k' ,
it suffices to settle the case where d=1 and k

is algebraically closed in K . Let k^{\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{f}} denote the perfect closure of k . Then, Kk^{\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{f}} is

regarded as the function field of a proper, smooth, geometrically connected curve C_{k^{\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{f}}}
over k^{\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{f}} . Further, C_{k^{\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{f}}}\rightarrow \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k^{\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{f}}) descends to a proper, smooth, geometrically
connected curve C_{\overline{k}} over some finite subextension \tilde{k} of k in k^{\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{f}}

,
so that K\tilde{k} is regarded

as the function field of C_{\overline{k}} . Now, by Lemma 3.1, we may replace K/k by K\tilde{k}/\tilde{k} and

assume that K is the function field of a proper, smooth, geometrically connected curve

C over k.

For each closed point x of C ,
denote the residue field at x by k(x) and let $\Gamma$_{K}\supset

 D_{x}\supset I_{x} be the decomposition and the inertia subgroups (defined up to conjugacy). It

is well‐known that the maximal pro‐p quotient I_{x}^{p} of I_{x} is isomorphic to \mathrm{Z}_{p} (as p\neq q )
and that the natural action of $\Gamma$_{k(x)} on I_{x}^{p}\simeq \mathrm{Z}_{p} (induced by the conjugate action of D_{x}
on I_{x}) is via $\chi$_{\mathrm{c}\mathrm{y}\mathrm{c}}|_{$\Gamma$_{k(x)}} . Since the p‐adic cyclotomic character $\chi$_{\mathrm{c}\mathrm{y}\mathrm{c}}:$\Gamma$_{k}\rightarrow \mathrm{Z}_{p}^{*} has open

image by assumption, so is $\chi$_{\mathrm{c}\mathrm{y}\mathrm{c}}|_{$\Gamma$_{k(x)}} ,
hence (I_{x}^{p})_{$\Gamma$_{k(x)}} is finite. (Here, for \mathrm{a} (topological)

group G and \mathrm{a} (topological) G‐module M, M_{G} denotes the coinvariant module of M,
i.e., the maximal quotient of M on which G acts trivially.) Now, first, since \mathrm{Z}_{p} is pro‐p,

 $\psi$|_{I_{x}} : I_{x}\rightarrow \mathrm{Z}_{p} factors through I_{x}^{p} . Next, since \mathrm{Z}_{p} is abelian,  $\psi$|_{D_{x}} factors through D_{x}^{\mathrm{a}\mathrm{b}},
hence  $\psi$|_{I_{x}} factors through (I_{x}^{p})_{$\Gamma$_{k(x)}} . Finally, since \mathrm{Z}_{p} is torsion‐free,  $\psi$|_{I_{x}} is trivial.

In summary, the image under  $\psi$ of the inertia subgroup at any closed point of  C is

trivial. Thus,  $\psi$ :  $\Gamma$_{K}\rightarrow \mathrm{Z}_{p} (resp.  $\psi$|_{$\Gamma$_{K\overline{k}}} : $\Gamma$_{K\overline{k}}\rightarrow \mathrm{Z}_{p} ) factors through $\Gamma$_{K}\rightarrow$\pi$_{1}(C)
(resp. $\Gamma$_{K\overline{k}}\rightarrow$\pi$_{1}(C\times k\overline{k}) ). In particular,  $\psi$ induces a  $\Gamma$_{k} ‐equivariant homomorphism

$\psi$_{J} : T_{p}(J)\rightarrow \mathrm{Z}_{p} ,
where J is the Jacobian variety of C . Suppose that $\psi$_{J} is nontrivial.

Then, by duality, we get a nontrivial $\Gamma$_{k} ‐equivariant homomorphism \mathrm{Z}_{p}(1)\rightarrow T_{p}(J) .

This is absurd, since $\chi$_{\mathrm{c}\mathrm{y}\mathrm{c}} is assumed to be non‐Tate. Therefore, $\psi$_{J} is trivial, or,

equivalently,  $\psi$($\Gamma$_{K\overline{k}}) is trivial.

Finally, assume that (i) does not hold, or, equivalently, that either $\chi$_{\mathrm{c}\mathrm{y}\mathrm{c}}($\Gamma$_{k})\subset \mathrm{Z}_{p}^{*} is
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not open or $\chi$_{\mathrm{c}\mathrm{y}\mathrm{c}} is not non‐Tate. In the first case, $\chi$_{\mathrm{c}\mathrm{y}\mathrm{c}}($\Gamma$_{k}) is finite, hence there exists

a finite extension k' of k such that $\chi$_{\mathrm{c}\mathrm{y}\mathrm{c}}($\Gamma$_{k'}) is trivial. This means that k' contains all

p‐power roots of unity of \overline{k} . Now, set K^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}k'(t) ,
where t stands for an indeterminate.

By Kummer theory, K(t^{1/p^{\infty}})\displaystyle \mathrm{d}\mathrm{e}\mathrm{f}=\bigcup_{n\geq 0}K(t^{1/p^{n}}) defines a \mathrm{Z}_{p} ‐extension of K
,

and the

corresponding additive character

 $\psi$ :  $\Gamma$_{K}\rightarrow \mathrm{G}\mathrm{a}1(K(t^{1/p^{\infty}})/K)\simeq \mathrm{Z}_{p}

satisfies  $\psi$($\Gamma$_{K\overline{k}})=\mathrm{Z}_{p} ,
which gives a counterexample for (ii�). In the second case, there

exists an abelian variety A over k that admits an injective, $\Gamma$_{k} ‐equivariant homomor‐

phism \mathrm{Z}_{p}(1)\rightarrow T_{p}(A) . By duality, we get a nontrivial, $\Gamma$_{k} ‐equivariant homomorphism

T_{p}(A^{\vee})\rightarrow \mathrm{Z}_{p} ,
where A^{\vee} stands for the dual abelian variety of A . The latter $\Gamma$_{k^{-}}

equivariant homomorphism yields a homomorphism $\pi$_{1}(A^{\vee})\rightarrow \mathrm{Z}_{p} such that the image

of $\pi$_{1}(A\displaystyle \frac{\vee}{k}) is nontrivial. So, K^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}k(A^{\vee}) gives a counterexample for (ii). This completes
the proof. \square 

We say that k is p‐arithmetic, if one (hence all) of the conditions in Lemma 3.2 is

satisfied. Note that, if k is finitely generated over the prime field (of characteristic

q\neq p) ,
then k is p‐arithmetic. Moreover, if k is finitely generated over a p‐arithmetic

field, then k is p‐arithmetic.

Lemma 3.3. Assume that k is p ‐arithmetic. Let T be a normal, integral scheme of
finite type over k and $\chi$_{T} : $\pi$_{1}(T)\rightarrow \mathrm{Z}_{p}^{*} a character. For each (not necessarily closed)
point t\in T ,

denote by $\chi$_{t} : $\Gamma$_{k(t)}\rightarrow \mathrm{Z}_{p}^{*} the character obtained by taking the composite of
$\chi$_{T} and the map $\Gamma$_{k(t)}\rightarrow$\pi$_{1}(T) associated with the natural morphism \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k(t))\rightarrow T
with image t . Then, $\chi$_{t_{0}} is non‐Ta te for some t_{0}\in T if and only if $\chi$_{t} is non‐Tate for
all t\in T.

Proof. Set K^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}k(T) ,
and denote by \tilde{k} the algebraic closure of k in K . Then, we see that

\tilde{k} is again p‐arithmetic (as \tilde{k} is a finite extension of k ), and that the structure morphism

T\rightarrow \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k) factors as the composite of a morphism T\rightarrow \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\tilde{k}) and the natural

morphism \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\tilde{k})\rightarrow \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k) (as T is normal). Moreover, T is geometrically connected

over \tilde{k} by definition. So, replacing k by \tilde{k}
,

we may assume that T is geometrically
connected over k.

Then the natural map $\Gamma$_{K\overline{k}}\rightarrow$\pi$_{1}(T\times k\overline{k}) is surjective. Indeed, by the functoriality
property of $\pi$_{1} ,

we have the following commutative diagram:

$\Gamma$_{K\overline{k}} \rightarrow $\pi$_{1}(T\times k\overline{k})

\downarrow \downarrow

$\Gamma$_{Kk^{\mathrm{s}\mathrm{e}\mathrm{p}}} \rightarrow $\pi$_{1}(T\times kk^{\mathrm{s}\mathrm{e}\mathrm{p}}) ,

in which both vertical arrows are isomorphisms (cf. [GR], Exposé IX, Théorème 6.1).
As T is normal and k^{\mathrm{s}\mathrm{e}\mathrm{p}}/k is separated,  $\tau$\times kk^{\mathrm{s}\mathrm{e}\mathrm{p}} is normal. Thus, the bottom horizontal

arrow is surjective ([GR], Exposé V, Proposition 8.2), hence so is the top horizontal

arrow, as desired.
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Now, since k is p‐arithmetic and K is finitely generated over k
,

we see that

$\chi$_{T}($\pi$_{1}(T\times k\overline{k})) is finite. Thus, there exists a connected finite étale cover T'\rightarrow T such

that $\chi$_{T}($\pi$_{1}(T'\times k'\overline{k})) is trivial (where k' denotes the algebraic closure of k in k(T') ),
or, equivalently, that $\chi$_{T'}\mathrm{d}\mathrm{e}\mathrm{f}=$\chi$_{T}|_{$\pi$_{1}(T')} factors through $\pi$_{1}(T')\rightarrow$\Gamma$_{k'} . Let $\chi$_{k'} denote

the character of $\Gamma$_{k'} induced by $\chi$_{T'}.

Suppose that $\chi$_{t_{0}} is non‐Tate for some t_{0}\in T ,
and take a point t\'{O}\in T' above t_{0}.

Then k�(tÓ) is a finite extension of k(t_{0}) ,
hence  $\chi$ tÓ is non‐Tate. Here,  $\chi$ tÓ is defined to

be the composite of the natural map  $\Gamma$_{k'(t_{0}')}\rightarrow$\pi$_{1}(T') and $\chi$_{T'} : $\pi$_{1}(T')\rightarrow \mathrm{Z}_{p}^{*} ,
hence

coincides with the composite of the natural map $\Gamma$_{k'(t_{0}')}\rightarrow$\Gamma$_{k'} and $\chi$_{k'} : $\Gamma$_{k'}\rightarrow \mathrm{Z}_{p}^{*}.
Now, since k�(tÓ) is finitely generated over k' and  $\chi$ tÓ is non‐Tate, we conclude that  $\chi$_{k'}

is non‐Tate by Lemma 3.1.

Finally, let t\in T be any point and take a point t'\in T' above t . Since $\chi$_{k'} is non‐Tate,
$\chi$_{t'} is non‐Tate, hence $\chi$_{t} is non‐Tate. This completes the proof. \square 

\langle A variant of the Serre‐Tate criterion \rangle
Let  p be a prime. Let R be a discrete valuation ring and K the field of fractions of R.

Assume that the characteristic of the residue field of R is not p . Thus, in particular, the

characteristic of K is not p . Let I be the inertia subgroup (determined up to conjugacy)
for R in $\Gamma$_{K}.

Let A be an abelian variety over K . Then $\Gamma$_{K} acts naturally on the p‐adic Tate

module T(A) of A . The Serre‐Tate criterion for good reduction of abelian varieties

([ST]) tells that A has good reduction over R if and only if I acts trivially on T_{p}(A) .

Now, we shall prove the following variant of this criterion under the assumption that

K is finitely generated over the prime field. We need this extra assumption to resort

to the semisimplicity and the Tate conjecture, which were proved by Tate, Zarhin and

Mori in positive characteristic (cf. [MB], Chapitre XII) and by Faltings in characteristic

0 (cf. [FW], Chapter VI).

Proposition 3.4. Assume moreover that A is nontrivial and K ‐simple and that K is

finitely generated over the prime field. Then A has good reduction over R if and only
if there exists a nontrivial $\Gamma$_{K} ‐submodule T of T(A) on which I acts trivially.

Proof. The(only if� part immediately follows from the(only if� part of the original Serre‐

Tate criterion. (Take, say, T=T_{p}(A). ) To see the �if� part, we resort to the semisim‐

plicity and the Tate conjecture for the $\Gamma$_{K} ‐module V_{p}(A) . As V(A) is a semisimple
$\Gamma$_{K} ‐module, there exist a finite number of simple $\Gamma$_{K} ‐submodules W_{1} ,

. . .

, W_{r} of V(A)
which are mutually non‐isomorphic as $\Gamma$_{K} ‐modules and positive integers n_{1} ,

. . .

, n_{r},

such that

V_{p}(A)=V_{1}\oplus\cdots\oplus V_{r}, V_{i}\simeq W_{i}^{\oplus n_{i}}
as $\Gamma$_{K} ‐modules. Then we have

\mathrm{E}\mathrm{n}\mathrm{d}_{$\Gamma$_{K}}(V_{p}(A))\simeq M_{n_{1}}(D_{1})\times\cdots\times M_{n_{r}}(D_{r}) ,

where D_{i}\mathrm{d}\mathrm{e}\mathrm{f}=\mathrm{E}\mathrm{n}\mathrm{d}_{$\Gamma$_{K}} () is a division algebra, as W_{i} is a simple $\Gamma$_{K} ‐module. On the

other hand, as a consequence of the Tate conjecture, we have

\mathrm{E}\mathrm{n}\mathrm{d}_{$\Gamma$_{K}}(V_{p}(A))\simeq D\times \mathrm{Q}\mathrm{Q}_{p},
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where D\mathrm{d}\mathrm{e}\mathrm{f}=\mathrm{E}\mathrm{n}\mathrm{d}_{K}(A)\otimes_{\mathrm{Z}}\mathrm{Q} is a division algebra, as A is a K‐simple abelian variety.
Let F_{i} (resp. F ) denote the center of D_{i} (resp. D ), which is a finite extension field of

\mathrm{Q}_{p} (resp. Q). As

D\times \mathrm{Q}\mathrm{Q}_{p}\simeq M_{n_{1}}(D_{1})\times\cdots\times M_{n_{r}}(D_{r}) ,

we have

F\times \mathrm{Q}\mathrm{Q}_{p}\simeq F_{1}\times\cdots\times F_{r}.

Thus, in particular, giving an F\times \mathrm{Q}\mathrm{Q}_{p} ‐module M with \dim_{\mathrm{Q}_{p}}(M)<\infty is equivalent

to giving an  F_{i} ‐vector space M_{i} with  d_{i}\mathrm{d}\mathrm{e}\mathrm{f}=\dim_{F_{i}}(M_{i})<\infty for each  i\in\{1, . . . , r\} :

M\simeq M_{1}\oplus\cdots\oplus M_{r} . Here, we shall refer to M_{i} as the F_{i} ‐component of M. (For
example, V_{i} is the F_{i} ‐component of V_{p}(A). ) Moreover, observe that M is free as an

F\times \mathrm{Q}\mathrm{Q}_{p}‐module (i.e., M_{1}\oplus\cdots\oplus M_{r} is free as an (F_{1}\times\cdots\times F_{r}) ‐module) if and only
if d_{1}=\cdots=d_{r}.

We note that both V(A) and V_{p}(A)^{I} are known to be free F\times \mathrm{Q}\mathrm{Q}_{p}‐modules (see,
e.g., [T1], Lemmas (2.1) and (2.2)). Thus, the quotient V_{p}(A)/V_{p}(A)^{I} is also a free

F\times \mathrm{Q}\mathrm{Q}_{p}‐module.

Now, suppose that I acts trivially on a nontrivial $\Gamma$_{K} ‐submodule T of T_{p}(A) ,
and set

W=T\otimes \mathrm{z}_{p}\mathrm{Q}_{p}\subset V_{p}(A) . Take any simple $\Gamma$_{K} ‐submodule of W ,
then it is necessarily

isomorphic to W_{i_{0}} for some i_{0}\in\{1, . . . , r\} . Thus, I acts trivially on W_{i_{0}} ,
hence on

V_{i_{0}}\simeq W_{i_{0}}^{\oplus n_{i_{0}}} . Namely, we have V_{i_{0}}\subset V_{p}(A)^{I} , or, equivalently, the dimension of the

F_{i_{0}} ‐component of V_{p}(A)/V_{p}(A)^{I} is 0 . Since V_{p}(A)/V_{p}(A)^{I} is free as an F\times \mathrm{Q}\mathrm{Q}_{p^{-}}
module, this implies that the dimension of the F_{i} ‐component of V_{p}(A)/V_{p}(A)^{I} is 0 for

all i\in\{1, . . . , r\} . Namely, V_{p}(A)/V_{p}(A)^{I} is trivial, or, equivalently, I acts trivially on

V_{p}(A) . Now, by the original Serre‐Tate criterion, A has good reduction, as desired. \square 

\langle A consequence of Mordell�s conjecture over function fields \rangle

We mean by a curve a separated, normal, geometrically integral, 1‐dimensional

scheme over a field, and by a proper curve a curve which is proper over the base field.

(Observe that a curve in this sense is generically smooth over the base field in general,
and smooth if the base field is perfect.) Mordell�s conjecture over function fields, proved
by Manin and Grauert in characteristic  0 and by Samuel in positive characteristic, is

summarized as follows. Here, for an extension k/F of fields and a k‐scheme S ,
we

say that S is F‐trivial, if there exists an F‐scheme S_{F} such that S is k‐isomorphic to

S_{F}\times Fk ,
and say that S is F‐isotrivial, if the \overline{k}‐scheme S\times k\overline{k} is \overline{F}‐trivial.

Theorem 3.5. Let F be an algebraically closed field of characteristic q\geq 0, \mathrm{F} the

prime field of F
,

and k a field finitely generated over F. Let C be a proper curve over

k
,

and assume that the normalization of C\times k\overline{k} is of genus \geq 2 . Then at least one of
the following holds:

(i) C(k) is finite;
(ii) there exists a curve C_{F} over F

,
such that C is k ‐isomorphic to C_{F}\times Fk (i.e., C is

F ‐trivial) and that, under the identication C=C_{F}\times Fk, C(k)\backslash C_{F}(F) is finite;
(iii) q>0 and there exist a finite extension k' of k

,
a finite subeld \mathrm{F}' of F

,
and a

curve C_{\mathrm{F}'} over \mathrm{F}'
,

such that C\times kk' is k' ‐isomorphic to C_{\mathrm{F}'}\times \mathrm{F}'k' . Moreover, given
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such (k', \mathrm{F}', C_{\mathrm{F}'}) and an identication C\times kk'=C_{\mathrm{F}'}\times \mathrm{F}'k' , there exists a finite subset

 $\Xi$\subset C(k') ,
such that

C(k)\subset\{$\phi$_{\mathrm{F}}^{n}, (x)|x\in $\Xi$, n\geq 0\}\cup C_{\mathrm{F}'}(F)\subset C_{\mathrm{F}'}(k')=C(k') ,

where $\phi$_{\mathrm{F}'} : C_{\mathrm{F}'}\rightarrow C_{\mathrm{F}'} denotes the |\mathrm{F}' | ‐th power Frobenius endomorphism.

Proof. For q=0 ,
see [Ma1], [Gra]. (See also [Sa], Théorème in the introduction.) For

q>0 ,
this follows from [Sa]. More specifically, we may assume that C(k) is infinite.

Then, by Théorème 6, loc. cit., C is smooth over k
, and, by Théorème 5, loc. cit., we

see that either (ii) or (iii) holds. (More precisely, for case (iii), Théorème 5, b), loc. cit.,
ensures that the assertion holds if (k', \mathrm{F}', C_{\mathrm{F}'}) is replaced by (k'', \mathrm{F} C_{\mathrm{F}'}\times \mathrm{F}'\mathrm{F} ,

where k''/k is a certain (Galois) subextension of k'/k and \mathrm{F}''/\mathrm{F}' is \mathrm{a} (sufficiently large)
finite subextension of F/\mathrm{F}' . Now, observe that the assertion for (k'', \mathrm{F} C_{\mathrm{F}'}\times \mathrm{F}'\mathrm{F} is

stronger than that for (k', \mathrm{F}', C_{\mathrm{F}'} \square 

In the case of fields finitely generated over prime fields, we have the following stronger
result (due to Faltings for q=0 ):

Theorem 3.6. Let \mathrm{F} be the prime field of characteristic q\geq 0 ,
and k a field finitely

generated over F. Let C be a proper curve over k
,

and assume that the normalization

of C\times k\overline{k} is of genus \geq 2 . Then at least one of the following holds:

(i) C(k) is finite;
(ii) q>0 and there exist a finite extension k' of k

,
a finite subeld \mathrm{F}' of k'

,
and a

curve C_{\mathrm{F}'} over \mathrm{F}'
,

such that C\times kk' is k' ‐isomorphic to C_{\mathrm{F}'}\times \mathrm{F}'k' . Moreover, given
such (k', \mathrm{F}', C_{\mathrm{F}'}) and an identication C\times kk'=C_{\mathrm{F}'}\times \mathrm{F}'k' , there exists a finite subset

 $\Xi$\subset C(k') ,
such that

C(k)\subset\{$\phi$_{\mathrm{F}}^{n}, (x) |x\in $\Xi$, n\geq 0\}\subset C_{\mathrm{F}'}(k')=C(k') ,

where $\phi$_{\mathrm{F}'} : C_{\mathrm{F}'}\rightarrow C_{\mathrm{F}'} denotes the |\mathrm{F}' | ‐th power Frobenius endomorphism.

Proof. For q=0 ,
this is a theorem of Faltings ([FW], Chapter VI, Theorem 3). For q>

0 , suppose that C(k) is infinite. Then C(k\mathrm{F}) is infinite, a fortiori. By applying Theorem

3.5 to the curve C\times kk\mathrm{F} over the field k\overline{\mathrm{F}} finitely generated over the algebraically
closed field \overline{\mathrm{F}}

,
we conclude that we are in the situation of either (ii) or (iii) of Theorem

3.5. In fact, case (ii) cannot occur. Indeed, if case (ii) occurs, then there exists a

curve C_{\overline{\mathrm{F}}} over \overline{\mathrm{F}}
,

such that C\times kk\mathrm{F} is k\mathrm{F}‐isomorphic to C_{\overline{\mathrm{F}}}\times k\mathrm{F}\overline{\mathrm{F}} and that (under
the identification C\times kk\mathrm{F}=C_{\overline{\mathrm{F}}}\times\overline{\mathrm{F}}k\mathrm{F}) C(k\mathrm{F})\backslash C_{\overline{\mathrm{F}}}(\overline{\mathrm{F}}) is finite. Further, the k\overline{\mathrm{F}}-

isomorphism C\times kk\mathrm{F}\simeq C_{\overline{\mathrm{F}}}\times_{\overline{\mathrm{F}}}k\mathrm{F} descends to k\mathrm{F}' for some finite extension \mathrm{F}' of F.

More precisely, there exists a finite extension \mathrm{F}' of \mathrm{F} and a curve C_{\mathrm{F}'} over \mathrm{F}' such that

C_{\overline{\mathrm{F}}} is \mathrm{F}‐isomorphic to C_{\mathrm{F}'}\times \mathrm{F}'\mathrm{F} and that C\times kk\mathrm{F}' is k\mathrm{F}'‐isomorphic to C_{\mathrm{F}'}\times \mathrm{F}'k\mathrm{F}'
Now, (under a suitable identification) we have

C(k)\cap C_{\overline{\mathrm{F}}}(\mathrm{F})\subset C(k\mathrm{F}')\cap C_{\mathrm{F}'}(\mathrm{F})=C_{\mathrm{F}'}(k\mathrm{F}'\mathrm{n}\mathrm{F})=C_{\mathrm{F}'}(\mathrm{F}_{1}') ,

where Fí is the algebraic closure of \mathrm{F} in k\mathrm{F}'
,

which is a finite extension of \mathrm{F}' . Thus,

C(k)=(C(k)\backslash C_{\overline{\mathrm{F}}}(\mathrm{F}))\cup(C(k)\cap C_{\overline{\mathrm{F}}}(\mathrm{F}))\subset(C(k\mathrm{F})\backslash C_{\overline{\mathrm{F}}}(\mathrm{F}))\cup C_{\mathrm{F}'}(\mathrm{F}_{1}')
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is finite, which contradicts the assumption.
Finally, assume that case (iii) of Theorem 3.5 occurs. Then, first, there exist a finite

extension kí of k\mathrm{F}
,

a finite subfield \mathrm{F}' of \overline{\mathrm{F}}
,

and a curve C_{\mathrm{F}'} over \mathrm{F}'
,

such that C\times k kí
is kí‐isomorphic to C_{\mathrm{F}'}\times \mathrm{F}' kí. This isomorphism descends to one over a finite extension

k' of k\mathrm{F}' included in kí, as desired. Second, suppose that we are given k', \mathrm{F}', C_{\mathrm{F}'} and

C\times kk'=C_{\mathrm{F}'}\times \mathrm{F}'k' as in the second assertion of (ii). Then Theorem 3.5 ensures that

there exists a finite subset $\Xi$_{1}\subset C(k'\overline{\mathrm{F}}) ,
such that

C(k\mathrm{F})\subset\{$\phi$_{\mathrm{F}}^{n}, (x)|x\in$\Xi$_{1}, n\geq 0\}\cup C_{\mathrm{F}'}(\mathrm{F})\subset C_{\mathrm{F}'}(k'\mathrm{F})=C(k'\mathrm{F}) .

Let \mathrm{F}'' denote the algebraic closure of \mathrm{F}' in k' . Considering the action of the Galois

group \mathrm{G}\mathrm{a}1(k'\mathrm{F}/k')\simeq \mathrm{G}\mathrm{a}1(\mathrm{F}/\mathrm{F}'') and taking the Galois‐invariant parts, we obtain

C(k)\subset C(k\mathrm{F}'')\subset\{$\phi$_{\mathrm{F}}^{n}, (x) |x\in$\Xi$_{0}, n\geq 0\}\cup C_{\mathrm{F}'}(\mathrm{F}'')\subset C_{\mathrm{F}'}(k')=C(k') ,

where $\Xi$_{0}\mathrm{d}\mathrm{e}\mathrm{f}=$\Xi$_{1}\cap C (
so is $\phi$_{\mathrm{F}}^{n}, (x).) Thus,

where $\Xi$_{0}\mathrm{d}\mathrm{e}\mathrm{f}=$\Xi$_{1}\cap C(_{\ovalbox{\tt\small REJECT}}
so is $\phi$_{\mathrm{F}}^{n}, (x).) Thus,
desired properties. \square 

\mathrm{k}\mathrm{k}\prime) ‐invariant if and only if
�

C_{\mathrm{F}'}(k')=C(k') has the

The following consequence of Theorem 3.6 will be used in next §.

Proposition 3.7. Let \mathrm{F} be the prime field of characteristic q\geq 0 ,
and k a field finitely

generated over F. Let C be a proper curve over k
,

and assume that the normalization

of C\times k\overline{k} is of genus \geq 2 . Let S be a nonempty open subscheme of C (which is a curve

over k). When S(k) is innite, put the extra assumption that S is \mathrm{F} ‐isotrivial. (Note
that C is automatically \mathrm{F} ‐isotrivial by Theorem 3.6.) Then there exists an \mathrm{F} ‐morphism
f : S\rightarrow T between separated, normal, integral schemes of finite type over \mathrm{F}

,
such that

the following hold: (a) the function field \mathrm{F}(T) of T is \mathrm{F} ‐isomorphic to k;(\mathrm{b}) under the

identication \mathrm{F}(T)=k, S is k ‐isomorphic to the generic fiber S_{k} of f ; and (c) under

the identication S=S_{k} ,
we have S(k)=S(T) , i.e., each element of S(k)=S_{k}(k)

uniquely extends to an element of S(T) .

Proof. Since k is a finitely generated extension of \mathrm{F}
,

there exists a separated (or even

affine), normal, integral scheme T of finite type over \mathrm{F}
,

such that k=\mathrm{F}(T) . On the

other hand, fix a finite k‐morphism C\rightarrow \mathrm{P}_{k}^{1} ,
and define C to be the normalization of \mathrm{P}_{T}^{1}

in (the function field of) C . Then, as C is normal and finite over \mathrm{P}_{k}^{1} ,
we have C_{k}=C.

Set D^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}C\backslash S ,
and define \mathcal{D} to be the topological closure of D in C . Set S^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}C\backslash \mathcal{D},

which is separated, normal, integral and of finite type over F. Then it is easy to see

that the \mathrm{F}‐morphism S\rightarrow T thus constructed satisfies (a) and (b). Further, if we

consider the base change from T to a nonempty open subscheme U ,
all the conditions

are preserved. Thus, it suffices to find U such that f_{U} : S_{U}\mathrm{d}\mathrm{e}\mathrm{f}=S\times $\tau$ U\rightarrow U satisfies

(c).
Assume first that S(k) is a finite set \{x_{1}, . . . , x_{r}\} . Each x_{i} : \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k)\rightarrow S=S_{k}

defines a rational map T--\mathrm{K}S , or, more precisely, there exists a nonempty open

subscheme U_{i} of T
,

such that x_{i} (uniquely) extends to a morphism U_{i}\rightarrow S over T.

Now, it is easy to see that U^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}U_{1}\cap\cdots\cap U_{r} has the desired property.
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Next, assume that S(k) is infinite. Then C(k) is infinite, a fortiori, hence, by The‐

orem 3.6, q>0 and there exist a finite extension k' of k
,

a finite subfield \mathrm{F}' of k',
a curve C_{\mathrm{F}'} over \mathrm{F}'

,
such that C\times kk' is k'‐isomorphic to C_{\mathrm{F}'}\times \mathrm{F}'k' . On the other

hand, by our extra assumption, S is also \mathrm{F}‐isotrivial, hence, by replacing k' and \mathrm{F}' by
suitable finite extensions, we may also assume that there exists a curve S_{\mathrm{F}'} over \mathrm{F}',
such that S\times kk' is k'‐isomorphic to S_{\mathrm{F}'}\times \mathrm{F}'k' . Further, define C_{1,\mathrm{F}'} to be the smooth

compactification of S_{\mathrm{F}'} (note that \mathrm{F}' is perfect). Since both C_{\mathrm{F}'}\times \mathrm{F}'\overline{k}=C\times k\overline{k} and

C_{1,\mathrm{F}'}\times \mathrm{F}'\overline{k}\supset S_{\mathrm{F}'}\times \mathrm{F}'\overline{k}=S\times k\overline{k} are smooth compactifications of S\times k\overline{k} , they are

canonically \overline{k}‐isomorphic to each other. This \overline{k}‐isomorphism descends uniquely to an

\mathrm{F}‐isomorphism between C_{\mathrm{F}'}\times \mathrm{F}'\mathrm{F} and C_{1,\mathrm{F}'}\times \mathrm{F}'\overline{\mathrm{F}} . Thus, up to replacing \mathrm{F}' by a finite

extension, we may assume that this \mathrm{F}‐isomorphism descends to an \mathrm{F}' ‐isomorphism be‐

tween C_{\mathrm{F}'} and C_{1,\mathrm{F}'} . In particular, we obtain an open immersion S_{\mathrm{F}'}\mapsto C_{\mathrm{F}'} over \mathrm{F}'

which is compatible (over k' ) with the original open immersion S\mapsto C over k.

Let T' be the normalization of T in k' and denote by  $\pi$ the natural finite morphism
 T'\rightarrow T . Let S' be the normalization of S in the function field of S\times kk' . On the other

hand, set Sí \mathrm{d}\mathrm{e}\mathrm{f}=S_{\mathrm{F}'}\times \mathrm{F}'T' . The generic fibers of the morphisms of finite type S'\rightarrow T'

and Sí \rightarrow T� are  S\times kk' and S_{\mathrm{F}'}\times \mathrm{F}'k' , respectively, which are identified with each

other. Accordingly, there exists a nonempty open subscheme V' of T' over which these

two families coincide with each other.

Now, by Theorem 3.6, there exists a finite subset  $\Xi$\subset C(k') ,
such that, under the

identification C\times kk'=C_{\mathrm{F}'}\times \mathrm{F}'k' ,
we have

C(k)\subset\{$\phi$_{\mathrm{F}}^{n}, (x)|x\in $\Xi$, n\geq 0\}\subset C_{\mathrm{F}'}(k')=C(k') .

From this, we obtain

S(k)\subset\{$\phi$_{\mathrm{F}}^{n}, (x)|x\in---s, n\geq 0\}\subset S_{\mathrm{F}'}(k')=S(k') ,

where $\Xi$_{S^{\mathrm{d}}}=^{\mathrm{e}\mathrm{f}} \cap S(k') . (Observe ($\phi$_{\mathrm{F}'})^{-1}(S_{\mathrm{F}'})=S_{\mathrm{F}'}. )
Write $\Xi$_{S}=\{x_{1}, . . . , x_{r}\} . Each x_{i} : \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k')\rightarrow S\times kk'=S_{V}', \times V'k' (where

S_{V}', \mathrm{d}\mathrm{e}\mathrm{f}=S'\times $\tau$\prime V') defines a rational map V'--\mathrm{K}S_{V}', , or, more precisely, there exists

a nonempty open subscheme V_{i}' of V' ,
such that x_{i} (uniquely) extends to a morphism

V_{i}'\rightarrow S_{V}' , over V' . Set Uí \mathrm{d}\mathrm{e}\mathrm{f}=V_{1}'\cap\cdots\cap V_{r}' ,
then x_{i} extends to a morphism U_{1}'\rightarrow S_{V}',

over V' for all i=1
,

. . .

,
r . Moreover, as U\'{i}\subset V' ,

we have S_{V}', =S_{1,V}', \mathrm{d}\mathrm{e}\mathrm{f}=S_{\mathrm{F}'}\times \mathrm{F}'V',
from which we conclude that $\phi$_{\mathrm{F}}^{n}, (x_{i}) extends to a morphism U_{1}'\rightarrow S_{V}' , over V' for all

i=1
,

. . .

,
r and all n\geq 1 . Thus, any element of S(k)\subset S(k') extends (uniquely) to a

morphism U_{1}'\rightarrow S_{V}' , over V' , or, equivalently, a morphism U_{1}'\rightarrow S_{U}'í over Uí.

Finally, set  U^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}T\backslash  $\pi$ (  T'\backslash Uí) and U^{\prime^{\mathrm{d}}}=^{\mathrm{e}\mathrm{f}}$\pi$^{-1}(U) . Now, any element  x\in S(k)\subset
 S(k') extends to a morphism U'\rightarrow S_{U}', \rightarrow S_{U} . By the following Lemma 3.8, this implies
that x extends to a morphism U\rightarrow S_{U} ,

as desired.

Lemma 3.8. Let U be a separated, normal, integral scheme, k the function field of
U, k' an algebraic extension of k

,
and U' the normalization of U in k' . Then, in the
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category of separated schemes, the following diagram is co‐cartesian:

\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k') \rightarrow \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k)

\downarrow \downarrow

 U' \rightarrow U.

Namely, for any separated scheme Y
,

the natural map Y(U)\rightarrow Y(k)\times Y(k')Y(U') is a

bijection.

Proof. Let k'' be the normal closure of k' over k and U'' the normalization of U' in k

In the commutative diagram

\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k'') \rightarrow Spec (  k') \rightarrow \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k)

\downarrow \downarrow \downarrow

 U'' \rightarrow U' \rightarrow U,

if the left square and the big rectangle are co‐cartesian, then the right square is also

co‐cartesian. Thus, replacing k' by k we may assume that k'/k is a normal extension.

Set G\mathrm{d}\mathrm{e}\mathrm{f}=\mathrm{A}\mathrm{u}\mathrm{t}(k'/k) . Then G induces an action on U' over U ,
and the underlying

topological space of U can be regarded as the quotient space of U' by this G‐action.

Indeed, this is well‐known set‐theoretically. As for the topology, note that the natural

morphism  $\pi$ :  U'\rightarrow U is closed.

Let f_{k} : \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k)\rightarrow Y and f_{U'} : U'\rightarrow Y be morphisms whose restrictions to \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k')
coincide with each other. For each  $\sigma$\in G ,

the restriction of  f_{U'}\circ $\sigma$ to \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k') coincides

with that of f_{U'} . Since Y is separated, this implies that f_{U'}\circ $\sigma$=f_{U'} . Thus, by the

preceding argument, there exists a continuous map  $\phi$ :  U\rightarrow Y ,
such that f_{U'}= $\phi$\circ $\pi$.

Now, considering suitable affine open neighborhoods of x\in U and  $\phi$(x)\in Y for each

x\in U ,
we may reduce the problem to the case that U (hence also U' ) and Y are affine.

So, write U=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(A) , U'= Spec (A') and Y=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(R) . In this case, the assertion

is equivalent to saying that the natural map

\mathrm{H}\mathrm{o}\mathrm{m}(R, A)\rightarrow \mathrm{H}\mathrm{o}\mathrm{m}(R, k)\times \mathrm{H}\mathrm{o}\mathrm{m}(R,k'{}_{)}\mathrm{H}\mathrm{o}\mathrm{m}(R, A')

is a bijection. But this is a consequence of the equality A=k\cap A' in k'
,

which follows

from the fact that A' is integral over A and that A is integrally closed. \square 

Thus, the proof of Proposition 3.7 is completed. \square 

Remark 3.9. In Proposition 3.7, the extra assumption that S is \mathrm{F}‐isotrivial, when S(k)
is infinite, cannot be removed. Indeed, take a proper curve T of genus \geq 2 over a finite

extension \mathrm{F}' of \mathrm{F}
,

set C^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}T\times \mathrm{F}'T and  S^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}C\backslash \triangle ,
where \triangle stands for the diagonal.

Moreover, set  k\mathrm{d}\mathrm{e}\mathrm{f}=\mathrm{F}(T)=\mathrm{F}'(T) ,
and define C and S to be the generic fibers of the

natural morphisms C\rightarrow T and S\rightarrow T obtained by the second projection \mathrm{p}\mathrm{r} . Then we
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may identify C() =C(T)=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{F}'}(T, T) and S() =\mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{F}'}(T, T)\backslash \{\mathrm{i}\mathrm{d}_{T}\} . (Here,
the natural identification C(k)=C(T) is ensured essentially by the valuative criterion

for properness.) Under these identifications, consider the subset \{$\phi$^{n}|n>0\}\subset S(k) ,

where  $\phi$=$\phi$_{\mathrm{F}'} : T\rightarrow T is the |\mathrm{F}'| ‐th power Frobenius endomorphism. Let U be an

open subscheme of T . Then $\phi$^{n}\in S(k) extends to an element of S(U) if and only if

U\subset T\backslash \mathrm{p}\mathrm{r}($\Gamma$_{$\phi$^{n}}\cap\triangle) ,
where $\Gamma$_{$\phi$^{n}} stands for the graph of $\phi$^{n} . However, \mathrm{p}\mathrm{r}($\Gamma$_{$\phi$^{n}}\cap\triangle)

coincides with the set of closed points of T that are \mathrm{F}_{n}' ‐rational, where \mathrm{F}_{n}' denotes the

unique degree n extension of \mathrm{F}' . Thus, there does not exist a nonempty open subscheme

U of T such that $\phi$^{n}\in S(k) extends to an element of S(U) for any n\geq 0 . (Such a U

must be contained in the one‐point set consisting of the generic point!)

§4. Proof of Theorem A.

Before starting the proof of Theorem \mathrm{A}
,

we shall recall the main geometric result

of [CT]. Let k be a field of characteristic q\neq p, S a smooth, separated, geometrically
connected curve (necessarily of finite type) over k,  $\eta$ the generic point of  S ,

and K=k( $\eta$)
the function field of S . Let A be an abelian scheme over S such that the generic fiber

A_{ $\eta$} is of dimension d . Since A\rightarrow S is an abelian scheme and q\neq p, A[p^{n}]=\mathrm{K}\mathrm{e}\mathrm{r}([\mathrm{p}] :

A\rightarrow A) is finite étale over S . Thus, the natural action of the absolute Galois group

$\Gamma$_{K} of K on A_{ $\eta$}[p^{n}](\overline{K})(n\geq 0) factors through $\pi$_{1}(S) . This, in turn, defines actions

of $\pi$_{1}(S) on A_{ $\eta$}[p^{\infty}](\mathrm{K}) and on the Tate module T_{p}(A_{ $\eta$}) . We denote by  $\rho$=$\rho$_{A,p} the

corresponding representation $\pi$_{1}(S)\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{Z}_{p}}(T_{p}(A_{ $\eta$})) .

For each v\in A_{ $\eta$}[p^{\infty}](\overline{K}) ,
write $\pi$_{1}(S)_{v}\subset$\pi$_{1}(S) for the stabilizer of v . This is an

open subgroup of $\pi$_{1}(S) , and, by Galois theory, corresponds to a connected finite étale

cover S_{v}\rightarrow S (defined over a finite extension k_{v}/k ). We denote by g_{v} the genus of

the smooth compactification of S_{v}\times k_{v}\overline{k} . Finally, denote by (A_{ $\eta$})_{0} the largest abelian

subvariety of A_{ $\eta$} which is isogenous to a k‐isotrivial abelian variety.

Theorem 4.1. Assume that k is algebraically closed. Then, for any c\geq 0 ,
there exists

an integer N=N(p, k, S, A, c)\geq 0 such that, for all v\in A_{ $\eta$}[p^{\infty}](\overline{K}) ,
either g_{v}\geq c or

p^{N}v\in(A_{ $\eta$})_{0}.
Theorem 4.1 was proved in [CT] in arbitrary characteristics. There, roughly speak‐

ing, we estimate the genus by observing the Galois representation $\pi$_{1}(S)\rightarrow GL(T(A))
and using the Riemann‐Hurwitz genus formula. Here, the main ingredient to estimate

the ramification terms in the genus formula is the Serre‐Oesterlé theorem ([Se][O]) on

the asymptotic behavior of the number of points on reduction modulo p^{n} of p‐adic

analytic subsets of \mathrm{Z}_{p}^{m} . For more details, see [CT].
In [CT], we deduced Theorem A in characteristic 0 from Theorem 4.1. More specifi‐

cally, we introduce a sequence of (disconnected) finite étale covers \{S_{n, $\chi$}\}_{n\geq 0} of S with

the property that s_{n}\in S(k) lying above s\in S(k) corresponds to an element of order

exactly p^{n} in A_{s}[p^{\infty}]( $\chi$) . It is thus enough to prove that  S_{n, $\chi$}(k)=\emptyset for  n\gg 0 . Accord‐

ing to Theorem 4.1, we may reduce this problem, roughly speaking, to either the case

where A_{ $\eta$} is isotrivial or the case where the genus of each component of S_{n, $\chi$} is \geq 2 for

n\gg 0 . The proof of [CT] for the first case works well in arbitrary characteristics, while
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that for the second case, which resorts to Mordell�s conjecture (Faltings� finiteness the‐

orem) and a compactness argument to produce a projective system of rational points,
fails in positive characteristic as it is, since a curve of genus \geq 2 over a field finitely
generated over the (finite) prime field may admit infinitely many rational points. To

remedy this, we take a model T of the finitely generated base field k
,

consider models of

the base scheme S and the abelian scheme A over T
,

and produce a projective system
of rational points on the fiber at a suitable closed point of T (whose residue field is

finite). Now, to make this argument work, we need various extra arguments resorting
to the results of §3. See below for more details.

Proof of Theorem A . We divide the proof into several steps.

Step 1. First reductions. First, (\mathrm{p}\mathrm{U}\mathrm{B}) follows from the definition of non‐Tate charac‐

ters. (Indeed, if S is of finite type over k and \dim(S)=0, S(k) is a finite set. So, we

may treat only finitely many abelian varieties A_{s}(s\in S(k)). )
Next, to prove (p\mathrm{U}\mathrm{B}_{1}) ,

assume that S is of finite type over k and \dim(S)=1 . By
replacing S by S^{red} ,

we may assume that S is reduced. By (p\mathrm{U}\mathrm{B}_{0}) ,
we may replace S

by an open dense subscheme freely. So, we may assume that S is regular and separated.
Further, treating S componentwise, we may assume that S is connected. We may also

assume that S(k) is nonempty, since otherwise there is nothing to do. Since S is regular
and 1‐dimensional, any point of S(k) is a smooth point, hence the smooth locus of S

is nonempty (and open). Thus, again by replacing S by an open dense subscheme, we

may assume that S is smooth and separated. Finally, since S is smooth, connected

with S(k)\neq\emptyset, S is geometrically connected. Thus, in summary, we may assume that

S is a smooth, separated, geometrically connected curve over k.

For each n\geq 0 ,
set $\chi$_{n}\mathrm{d}\mathrm{e}\mathrm{f}= $\chi$ \mathrm{m}\mathrm{o}\mathrm{d} p^{n} : $\Gamma$_{k}\rightarrow(\mathrm{Z}/p^{n})^{*} . Set i(p)=1 for p\neq 2

and i(2)=2 . Then, up to replacing k by the fixed field of \mathrm{K}\mathrm{e}\mathrm{r}($\chi$_{i(p)}) in k^{\mathrm{s}\mathrm{e}\mathrm{p}}
,

one

may assume that $\chi$_{i(p)} : $\Gamma$_{k}\rightarrow(\mathrm{Z}/p^{i(p)})^{*} is trivial. (Here, we have used the fact that

the restriction of a non‐Tate character to an open subgroup is non‐Tate. See Lemma

3.1.) This technical reduction ensures that {\rm Im}($\chi$_{n})\subset (Z/p)
* is contained in the order

p^{n-i(p)} cyclic subgroup 1+p^{i(p)}\mathrm{Z}/p^{n}\mathrm{Z} of (\mathrm{Z}/p^{n})^{*} ,
when n\geq i(p) .

Step 2. Relation with rational points on various covers. For each v_{n}\in A_{ $\eta$}[p^{n}]^{*}(\mathrm{K})
(n\geq 0) ,

we shall define a connected finite étale cover S_{v_{n}, $\chi$} of S . To do this, write

$\pi$_{1}(S)_{\langle v_{n}\rangle} for the stabilizer of \langle v_{n}\rangle=(\mathrm{Z}/p^{n})\cdot v_{n} under $\pi$_{1}(S) and S_{\langle v_{n}\rangle}\rightarrow S for the

resulting connected finite étale cover (defined over a finite extension k_{\langle v_{n}\rangle}/k ). Consider

the projection morphism \mathrm{p}\mathrm{r}_{\langle v_{n}\rangle} : $\pi$_{1}(S_{\langle v_{n}\rangle})\rightarrow$\Gamma$_{k} (whose image coincides with $\Gamma$_{k_{\langle v_{n}\rangle}} )
and the natural representation $\rho$_{\langle v_{n}\rangle} : $\pi$_{1}(S_{\langle v_{n}\rangle})\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{Z}/p^{n}}(\langle v_{n}\rangle) . These, together with

$\chi$_{n}= $\chi$ \mathrm{m}\mathrm{o}\mathrm{d} p^{n} ,
define a representation

$\rho$_{v_{n}, $\chi$}:$\pi$_{1}(S_{\langle v_{n}\rangle})\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{Z}/p^{n}}(\langle v_{n}\rangle) ,  $\gamma$\mapsto$\chi$_{n}(\mathrm{p}\mathrm{r}_{\langle v_{n}\rangle}( $\gamma$))^{-1}$\rho$_{\langle v_{n}\rangle}( $\gamma$) .

Now, define S_{v_{n}, $\chi$}\rightarrow S_{\langle v_{n}\rangle} to be the connected finite étale Galois cover (defined over a

finite extension k_{v_{n}, $\chi$}/k_{\langle v_{n}\rangle} ) corresponding to the open normal subgroup \mathrm{K}\mathrm{e}\mathrm{r}($\rho$_{v_{n}, $\chi$})\subset
$\pi$_{1}(S_{\langle v_{n}\rangle}) ,

and denote by g_{v_{n}, $\chi$} the genus of the smooth compactification of S_{v_{n}, $\chi$}\times k_{v_{n}, $\chi$}\overline{k}.
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Lemma 4.2. (i) S_{v_{n}, $\chi$}\times k_{v_{n}, $\chi$}\overline{k}=S_{v_{n}}\times k_{v_{n}}\overline{k} as covers of S\times k\overline{k} . In particular,

g_{v_{n}, $\chi$}=g_{v_{n}} is independent of  $\chi$.

(ii) For any k ‐rational point s:\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k)\rightarrow S , consider the specialization isomorphism

\mathrm{s}\mathrm{p}_{s} : A_{ $\eta$}[p^{\infty}](\overline{K})(\leftarrow\sim A[p^{\infty}](\overline{K}))\rightarrow A_{s}[p^{\infty}]\sim(\overline{k}) .

Then sp(v) \in A_{s}[p^{\infty}]( $\chi$) if and only if s : \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k)\rightarrow S liftts to a k ‐rational point

s_{v_{n}, $\chi$}:\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k)\rightarrow S_{v_{n}, $\chi$}.

Proof. For (i), just observe that

$\pi$_{1}(S_{v_{n}, $\chi$}\times k_{v_{n}, $\chi$}\overline{k})=\mathrm{K}\mathrm{e}\mathrm{r}($\rho$_{v_{n}, $\chi$})\cap \mathrm{K}\mathrm{e}\mathrm{r}(\mathrm{P}\mathrm{r})
=\mathrm{K}\mathrm{e}\mathrm{r}($\rho$_{\langle v_{n}\rangle})\cap \mathrm{K}\mathrm{e}\mathrm{r}(\mathrm{p}\mathrm{r}_{\langle v_{n}\rangle})=$\pi$_{1}(S_{v_{n}}\times k_{v_{n}}\overline{k}) .

For (ii), denote again by s the section $\Gamma$_{k}\mapsto$\pi$_{1}(S) of $\pi$_{1}(S)\rightarrow$\Gamma$_{k} induced (up
to conjugacy) by s: Spec ( k)\rightarrow S ,

which identifies $\Gamma$_{k} with the decomposition group

at s . Then the existence of the lift s_{v_{n}, $\chi$} : \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k)\rightarrow S_{v_{n}, $\chi$} of s : \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k)\rightarrow S is

equivalent to the inclusion s($\Gamma$_{k})\subset$\pi$_{1}(S_{v_{n}, $\chi$})(=\mathrm{K}\mathrm{e}\mathrm{r}($\rho$_{v_{n}, $\chi$})) ,
which can be rewritten as

s( $\sigma$)\cdot v_{n}= $\chi$( $\sigma$)v_{n}( $\sigma$\in$\Gamma$_{k}) or, applying the specialization isomorphism, as  $\sigma$ .sp(v) =

 $\chi$( $\sigma$)\mathrm{s}\mathrm{p}_{s}(v_{n}) . \square 

Now, we shall introduce a projective system (S_{n, $\chi$})_{n\geq 0} of (disconnected) finite étale

covers of S . For each n\geq 0 ,
define

S_{n,$\chi$^{\mathrm{d}}}=^{\mathrm{e}\mathrm{f}} \coprod S_{v_{n}, $\chi$}.
v_{n}\in A_{ $\eta$}[p^{n}]^{*}(\overline{K})

Observe that (S_{n, $\chi$})_{n\geq 0} forms a projective system with transition maps induced by the

canonical morphisms S_{v_{n}, $\chi$}\rightarrow S_{pv_{n}, $\chi$} over k . At the level of k‐rational points, we have:

Claim 4.3. (i) \llcorner \mathrm{i}\mathrm{m}S_{n, $\chi$}(k)=\emptyset.
(ii) The assertion of Theorem A is equivalent to saying that  S_{n, $\chi$}(k)=\emptyset for any  n\gg 0.

(iii) Suppose that  S_{n, $\chi$}(k)\neq\emptyset for any  n\geq 0 . Then there exists an element (v_{n})_{n\geq 0}\in
\llcorner \mathrm{i}\mathrm{m}A_{ $\eta$}[p^{n}]^{*}(\overline{K}) , such that  S_{v_{n}, $\chi$}(k)\neq\emptyset for any  n\geq 0.

Indeed, for (i), suppose that \llcorner \mathrm{i}\mathrm{m}S_{n, $\chi$}(k)\neq\emptyset and take (s_{n})_{n\geq 0}\in\llcorner \mathrm{i}\mathrm{m}S_{n, $\chi$}(k) . Then,
by the definition of S_{n, $\chi$} ,

there exists an element (v_{n})_{n\geq 0}\in\llcorner \mathrm{i}\mathrm{m}A_{ $\eta$}[p^{n}]^{*}(\overline{K}) ,
such that

(s_{n})_{n\geq 0}\in\llcorner \mathrm{i}\mathrm{m}S_{v_{n}, $\chi$}(k) . Set s\mathrm{d}\mathrm{e}\mathrm{f}=s_{0} . Then, by Lemma 4.2(ii), sp(v) \in A_{s}[p^{n}]( $\chi$)
for all n\geq 0 . Thus, $\Gamma$_{k} acts on (\mathrm{s}\mathrm{p}_{s}(v_{n}))_{n\geq 0}\in T_{p}(A_{s})^{*} via  $\chi$ ,

which contradicts

the assumption that  $\chi$ is non‐Tate. For (ii), again by Lemma 4.2(ii), the assertion of

Theorem A is equivalent to saying that there exists an  N\geq 0 such that  S_{v_{n}, $\chi$}(k)\neq
\emptyset\Rightarrow n\leq N ,

hence also to saying that  S_{n, $\chi$}(k)=\emptyset for any  n\gg 0 . (iii) follows from

the fact that A_{ $\eta$}[p^{n}]^{*}(\mathrm{K}) is finite for each n\geq 0.

Step 3. Second reductions. Now, suppose that the assertion of Theorem A fails for

our abelian scheme A\rightarrow S . Then, by Claim 4.3(ii)(iii), there exists an element v=

(v_{n})_{n\geq 0}\in\llcorner \mathrm{i}\mathrm{m}A_{ $\eta$}[p^{n}]^{*}(\overline{K}) ,
such that  S_{v_{n}, $\chi$}(k)\neq\emptyset for any  n\geq 0 . We fix such a
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v=(v_{n})_{n\geq 0} . Let K_{n} be the function field of S_{v_{n}, $\chi$} and \tilde{K}=\tilde{K}_{A,v} the union of K_{n} :

\tilde{K}^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\underline{1}\mathrm{i}\rightarrow K_{n}.
To execute the proof of Theorem A in arbitrary characteristics, we need some more

reductions. First, we may replace A\rightarrow S by A\times sS_{v_{m}, $\chi$}\rightarrow S_{v_{7m}, $\chi$} for any m\geq 0.

Indeed, v_{n} can be regarded as an element of (A\times sS_{v_{m}, $\chi$})[p^{n}]^{*}(\overline{K_{m}}) ,
and we have

(S_{v_{m}, $\chi$})_{v_{n}, $\chi$}=\left\{\begin{array}{ll}
S_{v_{m}, $\chi$}, & n<m,\\
S_{v_{n}, $\chi$}, & n\geq m.
\end{array}\right.
Thus, (S_{v_{m}, $\chi$})_{v_{n}, $\chi$}(k)\neq\emptyset for any  n\geq 0 . In particular, we may assume that

\mathrm{E}\mathrm{n}\mathrm{d}_{K^{-}}(A_{ $\eta$}\times K\tilde{K})=\mathrm{E}\mathrm{n}\mathrm{d}_{K}A_{ $\eta$} , by replacing S by S_{v_{m}, $\chi$} for m\gg 0 . (Indeed, since

\mathrm{E}\mathrm{n}\mathrm{d}_{K^{-}}(A_{ $\eta$}\times K\tilde{K})\subset \mathrm{E}\mathrm{n}\mathrm{d}_{\overline{K}}(A_{ $\eta$}\times K\overline{K}) is a finitely generated (abelian) group, all elements

of \mathrm{E}\mathrm{n}\mathrm{d}_{K^{-}}(A_{ $\eta$}\times K\tilde{K}) are already defined over K_{m} for some m\geq 0. )
Second, the generic fiber A_{ $\eta$} of A\rightarrow S is decomposed up to isogeny into a direct

product of K‐simple abelian varieties. Namely, we have a K‐isogeny  A_{ $\eta$}\rightarrow A_{ $\eta$}^{(1)}\times
. . . \times A_{ $\eta$}^{(r)} ,

where A_{ $\eta$}^{(i)} is a K‐simple abelian variety for i=1
,

. . .

,
r . We have more:

as a consequence of the above first reduction step, A_{ $\eta$}^{(i)}\times K\tilde{K} is \tilde{K}‐simple. Let v^{(i)}=

(v_{n}^{(i)})_{n>0} be the image of v in T_{p}(A_{ $\eta$}^{(i)})=\llcorner \mathrm{i}\mathrm{m}A_{ $\eta$}^{(i)}[p^{n}](\overline{K}) . As the natural map  T_{p}(A_{ $\eta$})\rightarrow
 T_{p}(A_{ $\eta$}^{(1\overline{)}})\times\cdots\times T_{p}(A_{ $\eta$}^{(r)}) is injective, there exists an i_{0}=1 ,

. . .

,
r such that v^{(i_{0})}\neq 0.

Since the natural map A_{ $\eta$}[p^{\infty}](\overline{K})\rightarrow A_{ $\eta$}^{(i_{0})}[p^{\infty}](\mathrm{K}) is surjective, the action of $\Gamma$_{K} on

A_{ $\eta$}^{(i_{0})}[p^{\infty}](\mathrm{K}) factors through $\pi$_{1}(S) ,
hence A_{ $\eta$}^{(i_{0})} has good reduction everywhere on S

by the (original) Serre‐Tate criterion (cf. §3), or, equivalently, can be regarded as the

generic fiber of \mathrm{a} (unique) abelian scheme A^{(i_{0})} over S . Now, since the natural map

A_{ $\eta$}[p^{\infty}](\overline{K})\rightarrow A_{ $\eta$}^{(i_{0})}[p^{\infty}](\mathrm{K}) is $\pi$_{1}(\mathrm{S}) ‐equivariant, we obtain a k‐morphism S_{v_{n}, $\chi$} \rightarrow

 S_{v_{n}^{(i_{0})}, $\chi$} naturally. This implies that  S_{v_{n}^{(i_{0})}, $\chi$}(k)\neq\emptyset for any  n\geq 0 and that \tilde{K}_{A^{(i_{0})},v^{(i_{0})}}\subset
\tilde{K}_{A,v} . Now, replacing (A, v) by (A^{(i_{0})},p^{-a}v^{(i_{0})}) ,

where a\geq 0 is defined to satisfy

v^{(i_{0})}\in p^{a}(T_{p}(A_{ $\eta$}^{(i_{0})})^{*}) ,
we may assume that A_{ $\eta$} is \tilde{K}‐simple, and, a fortiori, K‐simple.

Then, in particular, either (A_{ $\eta$})_{0}=A_{ $\eta$} (Case 1) or (A_{ $\eta$})_{0}=0 (Case 2).

Step 4. Case 1: (A_{ $\eta$})_{0}=A_{ $\eta$} . For each n\geq 0 ,
there exists a k‐rational point  s_{n}\in

 S_{v_{n}, $\chi$}(k) ,
which yields a splitting s_{n} : $\Gamma$_{k}\mapsto$\pi$_{1}(S_{v_{n}, $\chi$})\subset$\pi$_{1}(S) of the restriction

epimorphism $\pi$_{1}(S)\rightarrow$\Gamma$_{k} . Let \triangle,  $\Gamma$ and  $\Sigma$_{s_{n}} denote the images in \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{T}(\mathrm{A})) of

$\pi$_{1}(S\times k\overline{k}) , $\pi$_{1}(S) and s_{n}($\Gamma$_{k}) , respectively, under  $\rho$ . Since  $\pi$_{1}(S)=s_{n}($\Gamma$_{k})\cdot$\pi$_{1}(S\times k\overline{k}) ,

we have  $\Gamma$=$\Sigma$_{s_{n}}\cdot\triangle.
As A_{ $\eta$}=(A_{ $\eta$})_{0} is isogenous to an isotrivial abelian variety, \triangle is finite. Now,  $\Gamma$\subset

\mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{Z}_{p}}(T_{p}(A_{ $\eta$}))\simeq \mathrm{G}\mathrm{L}_{2d}(\mathrm{Z}_{p})(d^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\dim(\mathrm{A})) is a compact p‐adic Lie group, hence, in

particular, it is finitely generated. Since a finitely generated profinite group admits only
finitely many open subgroups of given bounded index and since [ $\Gamma$ : $\Sigma$_{s_{n}}]\leq|\triangle|<\infty,
there are only finitely many possibilities for the $\Sigma$_{s_{n}}\subset $\Gamma$, n\geq 0 . Thus, there exists

s\in S(k) such that $\Sigma$_{s_{n}}=$\Sigma$_{s} for infinitely many n\geq 0 . Write |\triangle|=p^{a}m with p\parallel m.
Then we have:

Claim 4.4. Let s, t\in S(k) with $\Sigma$_{s}=$\Sigma$_{t} . If sp(v) \in A_{t}[p^{n}]( $\chi$) ,
then \mathrm{s}\mathrm{p}_{s}(p^{a}v_{n})\in

 A_{s}[p^{n}]( $\chi$) .
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Indeed, the statement is trivial for n\leq a ,
so assume that n>a and write  $\delta$( $\sigma$)\mathrm{d}\mathrm{e}\mathrm{f}=

 $\rho$(s( $\sigma$)t( $\sigma$)^{-1})\in\triangle . Also, since  $\rho$(s( $\sigma$))\in$\Sigma$_{s}=$\Sigma$_{t} ,
there exists  $\tau$=$\tau$_{ $\sigma$}\in$\Gamma$_{k} such that

 $\rho$(s( $\sigma$))= $\rho$(t( $\tau$)) . As a result, one obtains  $\delta$( $\sigma$)v_{n}=$\chi$_{n}( $\tau$)$\chi$_{n}($\sigma$^{-1})v_{n} . In particular, the

order of $\chi$_{n}( $\tau$)$\chi$_{n}($\sigma$^{-1})\in(\mathrm{Z}/p^{n})^{*} divides the order of  $\delta$( $\sigma$)\in\triangle ,
hence divides the order

 p^{a}m of \triangle . On the other hand, by the assumption on  $\chi$ put in Step 1,  $\chi$_{n}( $\tau$)$\chi$_{n}($\sigma$^{-1}) lies

in the order p^{n-i(p)} cyclic subgroup 1+p^{i(p)}\mathrm{Z}/p^{n}\mathrm{Z} of (\mathrm{Z}/p^{n})^{*} ,
when n\geq i(p) . Now, it

follows that $\chi$_{n}( $\tau$)$\chi$_{n}($\sigma$^{-1})\in 1+p^{n-a}\mathrm{Z}/p^{n} . Thus, we have

 $\rho$(s( $\sigma$))p^{a}v_{n}=$\chi$_{n}( $\tau$)p^{a}v_{n}=$\chi$_{n}( $\sigma$)p^{a}v_{n},

which completes the proof of Claim 4.4.

It follows from Claim 4.4 that, up to replacing v_{n} by p^{a}v_{n+a} ,
one may assume that

s : Spec ( k)\rightarrow S lifts to a k‐rational point s_{v_{n}} : Spec ( k)\rightarrow S_{v_{n}, $\chi$} for infinitely many

n\geq 0 ,
hence \llcorner \mathrm{i}\mathrm{m}S_{v_{n}, $\chi$}(k)\neq\emptyset . This contradicts Claim 4.3(i).

Step 5. Case 2: (A_{ $\eta$})_{0}=0 —reductions. In this case, by Theorem 4.1 and Lemma

4.2(i), there exists an integer N\geq 0 ,
such that g_{v_{n}, $\chi$}\geq 2 for n>N . Replacing A\rightarrow S

by A\times sS_{v_{N+1}, $\chi$}\rightarrow S_{v_{N+1}, $\chi$} ,
we may assume that the genus g of the smooth compact‐

ification of S\times k\overline{k} is \geq 2 . Indeed, as we have already seen, \tilde{K}_{A,v}=\tilde{K}_{A\times sS_{v_{N+1,x}},v} ,
so

that after this reduction A_{ $\eta$} is still \tilde{K}‐simple (hence, in particular, K‐simple). Now, we

may make one more reduction. Let C be the normal compactification of S and A_{C} the

Néron model of A_{ $\eta$} over C . Note that A is naturally identified with A_{C}\times cS . Now,
define  s\sim to be the subset of points of  C at which the fiber of A_{C}\rightarrow C is an abelian

variety. Thus, S\subset s\sim\subset C ,
and we may regard  s\sim as an open subscheme of  C . Then

we have S_{v_{n}, $\chi$}\subset(S^{\sim})_{v_{n}, $\chi$} for each n\geq 0 . So, replacing A\rightarrow S by A_{C}\times cS^{\sim}\rightarrow s\sim,
we may assume that S coincides with the set of points of C at which A_{ $\eta$} has good
reduction.

If  S_{v_{n}, $\chi$}(k)\neq\emptyset is finite for  n\gg 0 ,
we have \llcorner \mathrm{i}\mathrm{m}S_{v_{n}, $\chi$}(k)\neq\emptyset ,

which contradicts

Claim 4.3(i). (In particular, this, together with Faltings� theorem (cf. Theorem 3.6),
already completes the proof in characteristic  0 ,

as in [CT].) So, we may assume that

 S_{v_{n}, $\chi$}(k)\neq\emptyset is infinite for all  n\geq 0.

Step 6. Case 2: (A_{ $\eta$})_{0}=0 — isotriviality of S . Our strategy is to apply Proposition
3.7, to extend all the objects in question over k to ones over a suitable model T of k

over the prime field \mathrm{F}
,

to consider the fibers at \mathrm{a} (fixed) closed point of T
,

and apply
the above projective limit argument to the finite base field case. To do this, however,
we have to check the extra assumption in Proposition 3.7 that (not only C but also) S

is \mathrm{F}‐isotrivial.

Let C_{n} denote the normal compactification of S_{v_{n}, $\chi$} (so, C_{0}=C ), which is a proper

curve over k . Then \{C_{n}\}_{n\geq 0} naturally forms a projective system. By Theorem 3.6, C_{n}
is \mathrm{F}‐isotrivial, or, more explicitly, there exists a curve C_{n,\overline{\mathrm{F}}} over \overline{\mathrm{F}} such that C_{n}\times k\overline{k}
is \overline{k}‐isomorphic to C_{n,\overline{\mathrm{F}}}\times\overline{k}\overline{\mathrm{F}} . Moreover, under the identification C_{n}\times k\overline{k}=C_{n,\overline{\mathrm{F}}}\times\overline{k}\overline{\mathrm{F}},
the finite \overline{k}‐morphism C_{n+1}\times k\overline{k}\rightarrow C_{n}\times k\overline{k} uniquely descends to a finite \mathrm{F}‐morphism

C_{n+1,\overline{\mathrm{F}}}\rightarrow C_{n,\overline{\mathrm{F}}} . (See [T2], Lemma (1.32).) We define S_{n,\overline{\mathrm{F}}} to be the image of S_{v_{n}, $\chi$}\times k\overline{k}
in C_{n,\overline{\mathrm{F}}}.
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Claim 4.5. For each n\geq 0, S_{n,\overline{\mathrm{F}}} is open in C_{n,\overline{\mathrm{F}}} , hence is regarded as an open

subscheme of C_{n,\overline{\mathrm{F}}} . Moreover, the finite \mathrm{F} ‐morphism C_{n+1,\overline{\mathrm{F}}}\rightarrow C_{n,\overline{\mathrm{F}}} restricts to a

finite, étale \mathrm{F} ‐morphism S_{n+1,\overline{\mathrm{F}}}\rightarrow S_{n,\overline{\mathrm{F}}}.

Indeed, first, as the projection $\varpi$_{n} : C_{n}\times k\overline{k}=C_{n,\overline{\mathrm{F}}}\times_{\overline{\mathrm{F}}}\overline{k}\rightarrow C_{n,\overline{\mathrm{F}}} is an open

map ([Gro], Corollaire (2.4.10)), S_{n,\overline{\mathrm{F}}} is open. Next, consider the following cartesian

diagram:

C_{n+1}\times k\overline{k} $\varpi$_{n+1 ,\rightarrow} C_{n+1,\overline{\mathrm{F}}}

f_{\overline{k}}\downarrow \downarrow f_{\overline{\mathrm{F}}}

C_{n}\times k\overline{k} $\varpi$_{n}\rightarrow C_{n,\overline{\mathrm{F}}}
From this, we first see that

f_{\overline{\mathrm{F}}}(S_{n+1,\overline{\mathrm{F}}})=f_{\overline{\mathrm{F}}}($\varpi$_{n+1}(S_{v_{n+1}, $\chi$}\times k\overline{k}))
=$\varpi$_{n}(f_{\overline{k}}(S_{v_{n+1}, $\chi$}\times k\overline{k}))

=$\varpi$_{n}(S_{v_{n}, $\chi$}\times k\overline{k})=S_{n,\overline{\mathrm{F}}}.

Namely, f_{\overline{\mathrm{F}}} : C_{n+1,\overline{\mathrm{F}}}\rightarrow C_{n,\overline{\mathrm{F}}} restricts to a surjective \mathrm{F}‐morphism S_{n+1,\overline{\mathrm{F}}}\rightarrow S_{n,\overline{\mathrm{F}}}.
Moreover, as

f_{\overline{k}}^{-1}(S_{v_{n}, $\chi$}\times k\overline{k})=S_{v_{n+1}, $\chi$}\times k\overline{k}
\subset(S_{v_{n}, $\chi$}\times k\overline{k})\times s_{n,\overline{\mathrm{F}}}S_{n+1,\overline{\mathrm{F}}}
\subset f_{\overline{k}}^{-1}(S_{v_{n}, $\chi$}\times k\overline{k}) ,

we must have S_{v_{n+1}, $\chi$}\times k\overline{k}=(S_{v_{n}, $\chi$}\times k\overline{k})\times s_{n,\overline{\mathrm{F}}}S_{n+1,\overline{\mathrm{F}}} . Namely, the diagram

S_{v_{n+1}, $\chi$}\times k\overline{k} $\varpi$_{n+1 ,\rightarrow} S_{n+1,\overline{\mathrm{F}}}

f_{\overline{k}}\downarrow \downarrow f_{\overline{\mathrm{F}}}

S_{v_{n}, $\chi$}\times k\overline{k} $\varpi$_{n}\rightarrow S_{n,\overline{\mathrm{F}}}

is cartesian. As $\varpi$_{n} : C_{n}\times k\overline{k}\rightarrow C_{n,\overline{\mathrm{F}}} is regarded as a base change of the mor‐

phism \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\overline{k})\rightarrow Spec ( \mathrm{F}) ,
it is affine (hence quasi‐compact) and flat. Since the open

immersion S_{v_{n}, $\chi$}\times k\overline{k}\mapsto C_{n}\times k\overline{k} is also quasi‐compact and flat, we conclude that

$\varpi$_{n}:S_{v_{n}, $\chi$}\times k\overline{k}\rightarrow S_{n,\overline{\mathrm{F}}} is quasi‐compact and flat. Moreover, it is surjective by def‐

inition. In summary, it is �fpqc�, hence, by descent theory, the finite‐étaleness of

f_{\overline{k}} : S_{v_{n+1, $\chi$}}\times k\overline{k}\rightarrow S_{v_{n, $\chi$}}\times k\overline{k} implies that of f_{\overline{\mathrm{F}}} : S_{n+1,\overline{\mathrm{F}}}\rightarrow S_{n,\overline{\mathrm{F}}} . Thus, the proof of

Claim 4.5 is completed.

A reformulation of Claim 4.5 in terms of fundamental groups is as follows: for each

n\geq 0 ,
there exists a subgroup H_{n}\subset$\pi$_{1}(S_{\overline{\mathrm{F}}}) (where S_{\overline{\mathrm{F}}}^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}S_{0,\overline{\mathrm{F}}} ) such that the stabilizer
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subgroup $\pi$_{1}(S\times k\overline{k})_{v_{n}} at v_{n} is the inverse image of H_{n} under $\pi$_{1}($\varpi$_{0}) : $\pi$_{1}(S\times k\overline{k})\rightarrow
$\pi$_{1}(S_{\overline{\mathrm{F}}}) . Moreover, for each g\in$\pi$_{1}(S\times k\overline{k}) ,

we have

$\pi$_{1}(S\times k\overline{k})_{gv_{n}}=g$\pi$_{1}(S\times k\overline{k})_{v_{n}}g^{-1}=g$\pi$_{1}($\varpi$_{0})^{-1}(H_{n})g^{-1}=$\pi$_{1}($\varpi$_{0})^{-1}(\overline{g}H_{n}\overline{g}^{-1}) ,

where \overline{g}^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}$\pi$_{1}($\varpi$_{0})(g) . From this, we conclude that the action of $\pi$_{1}(Sk) on the subset

$\pi$_{1}(S\times k\overline{k})v_{n}\subset A[p](K) factors through $\pi$_{1}(S\times k\overline{k})\rightarrow$\pi$_{1}(S_{\overline{\mathrm{F}}}) . This further implies
that the actions of $\pi$_{1}(S\times k\overline{k}) on the submodules \langle$\pi$_{1}(S\times k\overline{k})v_{n}\rangle\subset A[p](K) and

T^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\langle$\pi$_{1}(S\times k\overline{k})v\rangle\subset T(A) also factor through $\pi$_{1}(S\times k\overline{k})\rightarrow$\pi$_{1}(S_{\overline{\mathrm{F}}}) . In particular,
these actions factor through $\pi$_{1}(S\times k\overline{k})\rightarrow$\pi$_{1}(S_{\overline{\mathrm{F}}}\times\overline{\mathrm{F}}\overline{k}) . Namely, for each point x of

S_{\overline{\mathrm{F}}}\times\overline{k}\overline{\mathrm{F}} , the inertia subgroup I=I_{x} acts trivially on T . Now, by Proposition 3.4,

A_{ $\eta$} has good reduction at any such x . Recall that, in Step 5, we put the assumption
that S coincides with the set of points of C at which A_{ $\eta$} has good reduction. Thus, we

conclude S\times k\overline{k}=S_{\overline{\mathrm{F}}}\times_{\overline{\mathrm{F}}}\overline{k} . In particular, S is \mathrm{F}‐isotrivial, as desired.

Step 7 Case 2: (A_{ $\eta$})_{0}=0 — application of Proposition 3.7 and end of proof. Now,
we may apply Proposition 3.7 to obtain an \mathrm{F}‐morphism f:S\rightarrow T between separated,
normal, integral schemes of finite type over \mathrm{F}

,
such that the following hold: (a) the

function field \mathrm{F}(T) of T is \mathrm{F}‐isomorphic to k;(\mathrm{b}) under the identification \mathrm{F}(T)=k, S

is k‐isomorphic to the generic fiber S_{k} of f ; and (c) under the identification S=S_{k} ,
we

have S(k)=S(T) , i.e., each element of S(k)=S_{k}(k) uniquely extends to an element

of S(T) . Moreover, the abelian scheme A over S=S_{k} extends to one over an open

subscheme of S . More precisely, there exists an open subscheme \mathcal{U} of S containing
S=S_{k} and an abelian scheme A_{\mathcal{U}} over \mathcal{U} , such that A_{\mathcal{U}}\times {}_{\mathcal{U}}S is S‐isomorphic to A (as
abelian schemes). By definition, f(S\backslash \mathcal{U}) does not contain the generic point  $\eta$ of  T . As

f(S\backslash \mathcal{U}) is constructible by Chevalley�s theorem, the topological closure Z^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\overline{f(S\backslash \mathcal{U})}
does not contain  $\eta$ . Now, replacing  T by T\backslash Z and S by S\times $\tau$(T\backslash Z) ,

and considering
A_{\mathcal{U}}\times \mathcal{U}(S\times $\tau$(T\backslash Z)) ,

we may assume (keeping the validity of (\mathrm{a})-(\mathrm{c}) ) that there exists

an abelian scheme A_{\mathcal{S}} over S ,
such that A_{\mathcal{S}}\times sS is S‐isomorphic to A (as abelian

schemes). In particular, the action of $\pi$_{1}(S) on A_{ $\eta$}[p^{\infty}](\mathrm{K}) factors through the natural

surjection $\pi$_{1}(S)\rightarrow$\pi$_{1}() .

As T is normal, the natural map $\Gamma$_{k}\rightarrow$\pi$_{1}(T) is surjective ([GR], Exposé V, Proposi‐
tion 8.2). By Lemma 3.2, (\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{i}') , together with the assumption (put at the begin‐
ning of the proof of Theorem A) that the image of  $\chi$ is contained in  1+p^{i(p)}\mathrm{Z}_{p}\simeq \mathrm{Z}_{p},
 $\chi$ :  $\Gamma$_{k}\rightarrow \mathrm{Z}_{p}^{*} factors through $\Gamma$_{k}\rightarrow$\Gamma$_{\mathrm{F}'} ,

where \mathrm{F}' denotes the algebraic closure of \mathrm{F} in

k
, hence, in particular, factors as $\Gamma$_{k}\rightarrow$\pi$_{1}(T) $\chi \tau$\rightarrow \mathrm{Z}_{p}^{*}.

As in Step 2, we obtain a connected finite étale cover S_{v_{n}, $\chi \tau$} of S for each n\geq 0,
such that S_{v_{n}, $\chi \tau$}\times sS=S_{v_{n}, $\chi$} . More precisely, write $\pi$_{1}(S)_{\langle v_{n}\rangle} for the stabilizer of

\langle v_{n}\rangle under $\pi$_{1}() and S_{\langle v_{n}\rangle}\rightarrow S for the resulting connected finite étale cover. Consider

the projection morphism \mathrm{p}\mathrm{r}_{\langle v_{n}\rangle} : $\pi$_{1}(S_{\langle v_{n}\rangle})\rightarrow$\pi$_{1}(T) and the natural representation

$\rho$_{\langle v_{n}\rangle} : $\pi$_{1}(S_{\langle v_{n}\rangle})\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{Z}/p^{n}}(\langle v_{n}\rangle) . These, together with $\chi$_{T,n}=$\chi$_{T}\mathrm{m}\mathrm{o}\mathrm{d} p^{n} ,
define a

representation

$\rho$_{v_{n},$\chi$_{T}}:$\pi$_{1}(S_{\langle v_{n}\rangle})\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{Z}/p^{n}}(\langle v_{n}\rangle) ,  $\gamma$\mapsto$\chi$_{T,n}(\mathrm{p}\mathrm{r}_{\langle v_{n}\rangle}( $\gamma$))^{-1}$\rho$_{\langle v_{n}\rangle}( $\gamma$) .
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Now, define S_{v_{n}, $\chi$}\rightarrow S_{\langle v_{n}\rangle} to be the connected finite étale Galois cover corresponding to

the open normal subgroup \mathrm{K}\mathrm{e}\mathrm{r}($\rho$_{v_{n}, $\chi \tau$})\subset$\pi$_{1}() . Observe that S_{v_{n}, $\chi$}(k)=S_{v_{n}, $\chi \tau$}(T)
for each n\geq 0 . Indeed, this follows from condition (c) (i.e., S(k)=S(T) ), together
with the fact that T is normal.

Finally, fix a closed point t of T . Note that the residue field k(t) at t is a finite

field. Consider the fiber  A_{\mathcal{S}_{t}}\rightarrow S_{t}\rightarrow Spec of  A_{\mathcal{S}}\rightarrow S\rightarrow T at t\in T and

the specialization isomorphism \mathrm{s}\mathrm{p}_{t} : A_{ $\eta$}[p^{\infty}](\overline{K})\rightarrow A_{\mathcal{S}_{t}}\sim[p^{\infty}](\overline{K_{t}}) ,
where K_{t} denote the

function field of S_{t} . Then it is easy to see that S_{v_{n}, $\chi \tau$}\times $\tau$ \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k(t))\simeq(S_{t})_{\mathrm{s}\mathrm{p}_{t}(v_{n}),$\chi$_{t}} over

k(t) . Here, \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k(t))\rightarrow T is the natural morphism with image t
,

and $\chi$_{t}:$\Gamma$_{k(t)}\rightarrow \mathrm{Z}_{p}^{*}
denotes the character obtained by taking the composite of $\chi$_{T} : $\pi$_{1}(T)\rightarrow \mathrm{Z}_{p}^{*} and the

natural map $\Gamma$_{k(t)}\rightarrow$\pi$_{1}(T) associated with \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k(t))\rightarrow T . By Lemma 3.3, $\chi$_{t} is

non‐Tate. As S_{v_{n}, $\chi \tau$}(T)=S(k) is nonempty for any n\geq 0 ,
so is S_{v_{n}, $\chi \tau$}(k(t))=

(S_{t})_{\mathrm{s}\mathrm{p}_{t}(v_{n}),$\chi$_{t}}(k(t)) . Now, as k(t) is a finite field, (S_{t})_{\mathrm{s}\mathrm{p}_{t}(v_{n}),$\chi$_{t}}(\mathrm{k}(\mathrm{t})) is finite for any

n\geq 0 ,
hence we conclude \llcorner \mathrm{i}\mathrm{m}(S_{t})_{\mathrm{s}\mathrm{p}_{t}(v_{n}),$\chi$_{t}}(k(t))\neq\emptyset ,

which contradicts Claim 4.3(i).
Thus, the proof of Theorem A is completed. \square 
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