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Torsion of abelian schemes and
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Abstract

In [CT], we proved, in characteristic 0, certain 1-dimensional base versions of the
uniform boundedness conjecture for p-primary torsion of abelian varieties and of Fried’s
modular tower conjecture related to the regular inverse Galois problem. In this paper,
we prove these results in arbitrary characteristics.
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A[N] ¥ Ker([N]: A — A),

where [N] stands for the multiplication-by-N endomorphism (N > 1),

Avors © lim A[N] (i.e., Ayors(T) = lim A[N](T) for each S-scheme T),
N N

Alp™] et lim Alp"] (i.e., A[p™|(T) = lim A[p"|(T') for each S-scheme T),
A" A"~ A" (AR°) S ARY)).

If, moreover, S = Spec(k) for some field k of characteristic # p, we also use the following
notations:

T,(A) et lim A[p"](k) (the p-adic Tate module of A),
 def . T

Tp(A)" = Tp(A) ~ pTp(A) = lim A[p"]" (k)
def

and

where G,, eipl {0, 00} is the multiplicative group scheme.

61. Introduction.

In this §, we shall explain two important problems in arithmetic geometry that have
motivated our study — the uniform boundedness conjecture for torsion of abelian vari-
eties and the regular inverse Galois problem (especially, the modular tower conjecture).

(Uniform boundedness conjecture for torsion of abelian varieties)

Let k be an algebraic number field (i.e., d def [k : Q] < o0) and g an integer > 0.

Uniform Boundedness Conjecture (UB).
There exists a constant N = N(k,g) > 0, such that for any g-dimensional abelian
variety A over k and any v € Ators(k), the order of v is < N.

(UB) is trivially valid for ¢ = 0 and has been proved for g = 1 (by Mazur, Kamienny,
Abramovich for smaller values of d and by Merel [Me]| for d general) via intensive study
of geometry of modular curves. However, it is widely open for g > 1.

We also have the following variant. Let p be a (fixed) prime number.
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p-Uniform Boundedness Conjecture (pUB).
There ezists a constant N = N(k, g,p), such that for any g-dimensional abelian variety
A over k and any v € A[p™](k), the order of v is < N.

(pUB) is trivially valid for ¢ = 0 and has been proved for ¢ = 1 by Manin [Ma2].
Although (pUB) is clearly weaker than (UB), it is still widely open for g > 1.

(Inverse Galois problem)
Let G be a finite group and £ an algebraic number field.

Inverse Galois Problem (IGP).
Does there exist a Galois extension L/k, such that Gal(L/k) ~ G?

The following variant of (IGP) is more closely related to our study in this paper.

Regular Inverse Galois Problem (RIGP).
Does there ezist a Galois extension L/k(T) (T: indeterminate), such that L is reqular
over k (i.e. LNk =k) and that Gal(L/k(T)) ~ G?

It is well-known that (RIGP) implies (IGP) (by Hilbert’s irreducibility theorem).

While (IGP) is purely number-theoretic, (RIGP) is arithmetico-geometric in nature,
as follows. First, we have the following one-to-one correspondences:

a Galois extension L/k(T) with Gal(L/k(T)) ~ G

AL a (branched) connected Galois cover Y — P} with Aut(Y/P}) ~ G

&L 4 surjection (P1 ~ S) - G, considered modulo Inn(G)
(where S runs over the finite sets of closed points of P}).

Here, m; stands for the étale fundamental group of scheme (with a suitable base point).

Moreover, in these one-to-one correspondences, the condition for the first object
L/k(T) that L is regular over k corresponds to the condition for the second object
f:Y — P,lc that Yz is connected (or, equivalently, f is “geometric”), and to the
condition for the third object w1 (P \ S) — G that the induced map m; (P% NSp) = G
is already surjective. Note that m1(Pi \ S) fits into the following exact sequence of
profinite groups:

1— Wl(P% N S7) — m (P N S) — Gal(k/k) — 1,

where 71 (P \ S) and m; (P% \ 5%) are sometimes referred to as the arithmetic and the
geometric fundamental groups, respectively.

It is well-known that (as k is of characteristic 0) the geometric fundamental group
m (P% N\ S%) is a free profinite group of rank r — 1, where r is the cardinality of the
point set Sz. Thus, it is easy to construct a surjection m; (P% N Sz) = G. (Indeed, this
is possible if and only if G is generated by at most (r — 1) elements.) However, it is a
subtle descent problem to extend a surjection 7 (P% N Sp) = G to m (PN 9).

The above geometric interpretation of (RIGP) further leads to a modular interpreta-
tion of (RIGP), as follows. For this, let us introduce moduli spaces of covers of curves,
i.e., Hurwitz spaces. (For details, see, e.g., [BR].)
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Definition. Let G be a finite group and r an integer > 0.

(i) We denote by Hg pr, the moduli stack (over Z[1/|G|]) of pairs (f,t), where f :
Y — P! is a geometric Galois cover equipped with Aut(Y/P!) ~ G, and t C P! is an
étale divisor of degree r that contains the branch locus of f. It is known that Hg p1
is a Deligne-Mumford stack and that the associated coarse space H¢g p1, is a scheme.
(ii) Let g be an integer > 0 with the hyperbolicity condition 2 — 2g — r < 0. Then we
denote by Hq,g,» the moduli stack (over Z[1/|G|]) of pairs (f,t), where f: Y — X is
a geometric Galois cover over a proper, smooth, geometrically connected curve X of
genus g equipped with Aut(Y/X) ~ G, and t C X is an étale divisor of degree r that
contains the branch locus of f. It is known that H¢g 4. is a Deligne-Mumford stack and
that the associated coarse space Hg 4, is a scheme.

By definition, each geometric Galois cover f : Y — Pj over k equipped with
Aut(Y/P}) ~ G, whose branch locus in P} is contained in an étale divisor ¢ of de-
gree r, defines a k-rational point in Hg p1 (k) depending on the pair (f,¢). (When the
branch locus coincides with ¢, this k-rational point depends only on f, since t is then
determined by f.) If, moreover, H¢ p1 . is representable (i.e., Hg p1, = Hg p1,), then
this defines a one-to-one correspondence between the set of isomorphism classes of such
(f,t) and Hg p1 (k). Similarly, for a proper, smooth, geometrically connected curve
X of genus g over k, each geometric Galois cover f : Y — X over k equipped with
Aut(Y/X) ~ G, whose branch locus in X is contained in an étale divisor t of degree
r, defines a k-rational point in Hg 4,-(k) depending on the pair (X, f,t). (When the
branch locus coincides with ¢, this k-rational point depends only on (X, f), since t is
then determined by (X, f).) If, moreover, H¢ 4, is representable (i.e., Hg g = Ha g.r),
then this defines a one-to-one correspondence between the set of isomorphism classes
of such (X, f,t) and Hg 4, (k).

Facts. Here, dim stands for the relative dimension over the base.

(i) dim(Hgpr,) =7, unless Hg p1,, = 0. He pr - is representable if and only if either
Hepr . = 0 or the center of G is trivial.

(ii) dim(Hg,g,r) =39 — 3 + 7, unless Hg 4 = 0. Hea g, is representable if and only if,
for any object f : Y — X classified by H¢ 4,r, the centralizer of G in Aut(Y') is trivial.
(111) HG’pl’T/PGLQ = HG,O,’I’ (fOI‘ r Z 3)

(Fried’s modular tower conjecture )

The modular tower conjecture is a conjecture arising from (RIGP) that was posed
by M. Fried in the early 1990s. Here, we formulate some variants of this conjecture.
For more details, see [F], [FK] and [D].

Let p be a prime number. Let G = {G,,4+1 — Gy, }n>0 be a projective system of
finite groups, such that G def lim G, is p-obstructed in the following sense:

Definition. We say that a profinite group G is p-obstructed, if G contains an open
subgroup that admits a quotient isomorphic to Z,,.

Modular Tower Conjecture (MT).
Let k be an algebraic number field and r an integer > 0.
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(i) There exists a constant N = Ni(p, G,r, k), such that, for any n > N and for any
geometric Galois cover f :Y — PL with group Gy, the degree of the (reduced) branch
divisor of f in Py, is > r.

(i) There exists a constant N = Na(p,G,r, k), such that Hg, p1,(k) = 0 for any
n>N.

(iii) Let g be an integer > 0 with 2 — 29 — r < 0. Then there exists a constant N =
N3(p, G, g,7, k), such that Hg,, 4.,(k) =0 for anyn > N.

Here, the projective systems {Hg, pi,}tn>0 and {Hg, gr}n>0 of Hurwitz spaces
are often referred to as “modular towers”. Note that the following implications are
immediate:

(MT)(iii) for g = 0 = (MT)(ii) = (MT)(i).

Finally, the following (weaker) variant of (MT)(iii) has been already proved in ar-
bitrary characteristics. Here, for a profinite group G, denote by X the set of prime
numbers which divide the order of (some finite quotient of) G.

Theorem 1.1 ([C], Corollary 3.6. See also [BF], [K]). Let k be a field finitely
generated over the prime field of characteristic ¢ € ¢ (hence, in particular, ¢ # p),
and g,r integers > 0 with 2 — 2g — r < 0. Then we have

liLn HGn»g»'r'(k‘.) = @

62. Main results.

The main results of this paper are solutions of certain 1-dimensional versions of (pUB)
and (MT) over fields finitely generated over the prime field of arbitrary characteristic
# p. To state the former in some more generality, we shall introduce the notion of
non-Tate characters as in [CT].

Definition. Let p be a prime number and k a field of characteristic ¢ # p. (Denote by
[’ the absolute Galois group Gal(k*°P/k) of k.) We say that a character x : I'y — Zj
is non-Tate, if it does not appear as a subrepresentation of the p-adic representation
associated with an abelian variety over k. Equivalently, x is non-Tate if and only if, for
any abelian variety A over k,

Alp™®](x) AT € A[p™|(&) | °T = x(o)T for all & € Ty}

is finite.

When £ is finitely generated over the prime field, the trivial character and the p-adic
cyclotomic character are typical examples of non-Tate characters. (See [CT].)

Let d be an integer > 0. Now, we can formulate the d-dimensional version of (pUB),
as follows.
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Conjecture (pUBy). Let p be a prime number. Let k be a field finitely generated over
the prime field of characteristic ¢ # p and x : 'y — Zy a non-Tate character. Let S be
a scheme of finite type over k with dim(S) < d and A an abelian scheme over S. Then
there exists an integer N = N(p, k,x, S, A), such that As[p=](x) C As[p"](k) for any
se S(k).

(pUBg) follows immediately from the definition of non-Tate characters. Now, the
first main result of this paper is:

Theorem A. (pUB;) holds.
Next, we formulate the d-dimensional version of (MT) (in arbitrary characteristics).
Conjecture (MTy). Letp be a prime number and G = {Gn1+1 — Gy }n>0 @ projective

system of finite groups, such that G et lim G,, is p-obstructed. Let g,r be integers
> 0 with 2 —2g —r < 0. Let k be a field finitely generated over the prime field of
characteristic ¢ ¢ Y (hence, in particular, ¢ # p), S a scheme of finite type over k

with dim(S) < d, and £ : S — Hg,,gr a k-morphism. Then there exists an integer

N = N(p,G,g,7,k,S,€), such that S,(k) = 0 for any n > N. Here, we set Sy, def

S XHGO,g,r HGn,g,r-

Observe that (MTy) implies (MT)(iii) for (g,r) with 3¢ —3 +r < d. (MTy) (hence,
(MT)(iii) for (g,r) = (0,3) and (MT)(i)(ii) for r = 3) follows immediately from Theorem
1.1. Now, the second main result of this paper is:

Theorem B. (MT;) holds. (In particular, (MT)(iii) for (g,r7) = (0,4),(1,1) and
(MT)(i)(ii) for r =4 hold.)

Theorem A in characteristic 0 and the deduction Theorem A = Theorem B in
arbitrary characteristics are main results of [CT]. In this paper, we shall give a proof of
Theorem A in arbitrary characteristics, eventually in §4. Before that, we shall collect
some preliminaries in the next §.

§3. Preliminaries.

In this §, we collect various arithmetico-geometric preliminaries for the proof of
Theorem A in the next §. They were not needed in [CT], but are needed here to cover
arbitrary characteristics. Some of them may be of some interest independent of the
proof of Theorem A.

(Non-Tate characters)
Fix a prime p and let k be a field of characteristic ¢ # p. The following was proved
in [CT].

Lemma 3.1. For any finitely generated extension K of k, x : I'y — Z; is non-Tate

if and only if x|r, : T — Zj is non-Tate. Here, we set X|r, et X © |gsep, where

|gseo : T — T'x stands for the restriction from K5P to k5P (with respect to a fized
embedding k5P — KP over k).

Here, we shall prove two more lemmas on non-Tate characters.
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Lemma 3.2. The following are all equivalent:

(i) The p-adic cyclotomic character Xcyc : U — Zj, has open image and is non-Tate.
(ii) For any finitely generated extension K of k and any character x : T'x — Zy, x(T' k%)
is finite.

(ii") For any finitely generated extension K of k and any (additive) character i : T'g —
Z,, V(I xz) is trivial.

Proof. First, as Zy ~ Z, x M with M finite, the equivalence (ii) <= (ii’) is clear.

Next, assume that (i) holds. We shall prove the assertion of (ii’) by induction on the
transcendence degree d of K over k. If d = 0, the assertion is trivial. If d > 0, take a
subextension k' /k of K/k with transcendence degree d—1. Replacing &’ by its algebraic
closure in K, we may assume that &’ is algebraically closed in K, hence the natural
map ['x — Ty is surjective. Now, observe that the conditions of (i) are also satisfied
when k is replaced by k’. Indeed, as the natural map I'y, — I'x has open image, the
first condition is satisfied, and, by Lemma 3.1, the second condition is satisfied. Thus, if
we assume the implication (i) = (ii’) for d = 1 (for k), ¢ : T'x — Z,, factors through
I'x — T4, or, equivalently, induces a character ¢ : Ty — Z,. Applying the assumption
of induction to the finitely generated extension k’/k and the character ¢ : T — Z,,
we are done.

Thus, up to replacing K/k by K/k, it suffices to settle the case where d = 1 and k
is algebraically closed in K. Let kP! denote the perfect closure of k. Then, K kP! is
regarded as the function field of a proper, smooth, geometrically connected curve Cpper
over kP, Further, Cjperr — Spec(kPe™) descends to a proper, smooth, geometrlcally
connected curve Cj, over some finite subextension k of k in kP!, so that Kk is regarded
as the function field of C;. Now, by Lemma 3.1, we may replace K/k by K k / k and
assume that K is the function field of a proper, smooth, geometrically connected curve
C over k.

For each closed point = of C, denote the residue field at = by k(z) and let I'x D
D, D I, be the decomposition and the inertia subgroups (defined up to conjugacy). It
is well-known that the maximal pro-p quotient I2 of I, is isomorphic to Z, (as p # q)
and that the natural action of I'y(,) on IZ ~ Z, (induced by the conjugate action of D,
on I,) is via chch"k(x). Since the p-adic cyclotomic character Xcyc : I'y — Z; has open
image by assumption, so is Xcyc|r,,,, hence (ID)r, ., is finite. (Here, for a (topological)
group G and a (topological) G-module M, M¢ denotes the coinvariant module of M,
i.e., the maximal quotient of M on which G acts trivially.) Now, first, since Z, is pro-p,
V|1, : I, — Z, factors through IP. Next, since Z, is abelian, ¢|p, factors through D2P
hence |, factors through (12 )r‘k( ,- Finally, since Z,, is torsion-free, [z, is trivial.

In summary, the image under v of the inertia subgroup at any closed point of C' is
trivial. Thus, ¢ : ' — Z, (vesp. ¢|r,_ : I'gz — Zp ) factors through I'x — m1(C)
(resp. Tz = m(C xx k)). In partlcular, 1,[1 induces a I'p-equivariant homomorphism
vy Tp(J) — Zp, where J is the Jacobian variety of C. Suppose that ¢; is nontrivial.
Then, by duality, we get a nontrivial I'y-equivariant homomorphism Z,(1) — T,(J).
This is absurd, since xcyc is assumed to be non-Tate. Therefore, ¢ is trivial, or,
equivalently, (I %) is trivial.

Finally, assume that (i) does not hold, or, equivalently, that either xcy.(I'x) C Z, is
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N0t Open or Yeyc is not non-Tate. In the first case, xcyc(I'x) is finite, hence there exists

a finite extension k' of k such that Xcyc(I'x/) is trivial. This means that &’ contains all

def

p-power roots of unity of k. Now, set K = k'(t), where t stands for an indeterminate.

By Kummer theory, K (t'/77) &of Un>oK (t/7") defines a Z,-extension of K, and the

corresponding additive character
Y :Tx — Gal(K(tY?")/K) ~ Z,

satisfies (I j.z) = Zyp, which gives a counterexample for (ii’). In the second case, there
exists an abelian variety A over k that admits an injective, I'y-equivariant homomor-
phism Z,(1) — T,(A). By duality, we get a nontrivial, I';-equivariant homomorphism
T,(AY) — Z,, where AV stands for the dual abelian variety of A. The latter T'y-

equivariant homomorphism yields a homomorphism 71 (AY) — Z, such that the image

def

of my (A%) is nontrivial. So, K = k(AY) gives a counterexample for (ii’). This completes

the proof. [

We say that k is p-arithmetic, if one (hence all) of the conditions in Lemma 3.2 is
satisfied. Note that, if k is finitely generated over the prime field (of characteristic
q # p), then k is p-arithmetic. Moreover, if k is finitely generated over a p-arithmetic
field, then k is p-arithmetic.

Lemma 3.3. Assume that k is p-arithmetic. Let T be a normal, integral scheme of
finite type over k and xr : m1(T) — Zj, a character. For each (not necessarily closed)
point t €T, denote by xi : 'y — Zy, the character obtained by taking the composite of
xt and the map Ty — m1(T) associated with the natural morphism Spec(k(t)) — T
with image t. Then, xi, s non-Tate for some ty € T if and only if x; is non-Tate for
allt €T

Proof. Set K et k(T), and denote by k the algebraic closure of k in K. Then, we see that
k is again p-arithmetic (as k is a finite extension of k), and that the structure morphism
T — Spec(k) factors as the composite of a morphism 7" — Spec(k) and the natural
morphism Spec(k) — Spec(k) (as T is normal). Moreover, T is geometrically connected
over k by definition. So, replacing k by k, we may assume that T’ is geometrically
connected over k.

Then the natural map I' .z — 71 (T x4, k) is surjective. Indeed, by the functoriality

property of w1, we have the following commutative diagram:

Tz —  m(Txpk)
! !

FKksep — 7T]_(T Xk ksep),

in which both vertical arrows are isomorphisms (cf. [GR], Exposé IX, Théoreme 6.1).
As T is normal and k°°P /k is separated, T' X k*°P is normal. Thus, the bottom horizontal
arrow is surjective ([GR], Exposé V, Proposition 8.2), hence so is the top horizontal
arrow, as desired.
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Now, since k is p-arithmetic and K is finitely generated over k, we see that
x1(m1 (T X k)) is finite. Thus, there exists a connected finite étale cover 7" — T such
that x7 (71 (T" Xy k)) is trivial (where &’ denotes the algebraic closure of k in k(T")),

or, equivalently, that x- et XT|r (1) factors through 7y (T") — T'ws. Let xxs denote
the character of I'ys induced by x7.

Suppose that y¢, is non-Tate for some ¢ty € T, and take a point ¢ € T” above tg.
Then £'(t) is a finite extension of k(t), hence xt, is non-Tate. Here, xy is defined to
be the composite of the natural map I'y/ () — m (T") and x7v : m1(1") — Z;, hence
coincides with the composite of the natural map Py — T and xor : T — 2.
Now, since k'(tp) is finitely generated over k" and x;; is non-Tate, we conclude that x4
is non-Tate by Lemma 3.1.

Finally, let ¢t € T be any point and take a point ¢’ € T” above t. Since - is non-Tate,
X+ is non-Tate, hence x; is non-Tate. This completes the proof. [

(A variant of the Serre-Tate criterion)

Let p be a prime. Let R be a discrete valuation ring and K the field of fractions of R.
Assume that the characteristic of the residue field of R is not p. Thus, in particular, the
characteristic of K is not p. Let I be the inertia subgroup (determined up to conjugacy)
for Rin I'k.

Let A be an abelian variety over K. Then I'x acts naturally on the p-adic Tate
module T},(A) of A. The Serre-Tate criterion for good reduction of abelian varieties
([ST]) tells that A has good reduction over R if and only if I acts trivially on T),(A).

Now, we shall prove the following variant of this criterion under the assumption that
K is finitely generated over the prime field. We need this extra assumption to resort
to the semisimplicity and the Tate conjecture, which were proved by Tate, Zarhin and
Mori in positive characteristic (cf. [MB], Chapitre XII) and by Faltings in characteristic
0 (cf. [FW], Chapter VI).

Proposition 3.4. Assume moreover that A is nontrivial and K -simple and that K is
finitely generated over the prime field. Then A has good reduction over R if and only
if there exists a nontrivial I i -submodule T' of T),(A) on which I acts trivially.

Proof. The ‘only if’ part immediately follows from the ‘only if’ part of the original Serre-
Tate criterion. (Take, say, T' = T,(A).) To see the ‘if’ part, we resort to the semisim-
plicity and the Tate conjecture for the I'x-module V,(A). As V,(A) is a semisimple

I'k-module, there exist a finite number of simple I' x-submodules Wy, . .., W, of V,(A)
which are mutually non-isomorphic as I'x-modules and positive integers ni,...,n,,
such that

VE@?(A) =Vie---aV,., V; ZWiéBni
as I'g-modules. Then we have

Endr, (Vp(4)) = My, (D1) x -+ X My, (D),

where D; &of Endrp, (W;) is a division algebra, as W; is a simple I'x-module. On the
other hand, as a consequence of the Tate conjecture, we have

Endr, (Vp(A)) ~ D XQ Qp:
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where D % End k(A) ®z Q is a division algebra, as A is a K-simple abelian variety.
Let F; (resp. F') denote the center of D; (resp. D), which is a finite extension field of
Qp (resp. Q). As

D xqQp ~M,, (D) x---x M, (D,),

we have
FxqQp,~F x - xF,.

Thus, in particular, giving an F' x @ Qp-module M with dimq, (M) < oo is equivalent

to giving an Fj-vector space M; with d; et dimp, (M;) < oo for each i € {1,...,7}:
M ~ M, @ - - ® M,. Here, we shall refer to M; as the Fj-component of M. (For
example, V; is the Fj-component of V,(A).) Moreover, observe that M is free as an
F xq Qp-module (i.e., My @ --- @& M, is free as an (F} X - - - x Fy.)-module) if and only
ifdy =---=d,.

We note that both V,(A4) and V,(A4)! are known to be free F' xq Qp-modules (see,
e.g., [T1], Lemmas (2.1) and (2.2)). Thus, the quotient V,(A)/V,(A)! is also a free
F xq Qp-module.

Now, suppose that I acts trivially on a nontrivial I"x-submodule T" of T},(A), and set
W =T ®z, Qp C V,(A). Take any simple I'-submodule of W, then it is necessarily
isomorphic to W;, for some iy € {1,...,7}. Thus, I acts trivially on W;_, hence on
Vig = ijnio. Namely, we have V;, C V,(A)!, or, equivalently, the dimension of the
F;,-component of V,(A)/V,(A)! is 0. Since V,(A)/V,(A)! is free as an F xq Q,-
module, this implies that the dimension of the Fj-component of V,(A)/V,(A)! is 0 for
all i € {1,...,r}. Namely, V,(A4)/V,(A)! is trivial, or, equivalently, I acts trivially on
Vp(A). Now, by the original Serre-Tate criterion, A has good reduction, as desired. [

(A consequence of Mordell’s conjecture over function fields)

We mean by a curve a separated, normal, geometrically integral, 1-dimensional
scheme over a field, and by a proper curve a curve which is proper over the base field.
(Observe that a curve in this sense is generically smooth over the base field in general,
and smooth if the base field is perfect.) Mordell’s conjecture over function fields, proved
by Manin and Grauert in characteristic 0 and by Samuel in positive characteristic, is
summarized as follows. Here, for an extension k/F of fields and a k-scheme S, we
say that S is F-trivial, if there exists an F-scheme Sg such that S is k-isomorphic to
Sr X k, and say that S is F-isotrivial, if the k-scheme S xj k is F-trivial.

Theorem 3.5. Let F be an algebraically closed field of characteristic ¢ > 0, F the
prime field of F, and k a field finitely generated over F. Let C be a proper curve over
k, and assume that the normalization of C Xy k is of genus > 2. Then at least one of
the following holds:

(i) C(k) is finite;

(ii) there exists a curve Cp over F, such that C is k-isomorphic to Cp xp k (i.e., C is
F-trivial) and that, under the identification C = Cp xp k, C(k) ~ Cp(F) is finite;
(iii) ¢ > 0 and there exist a finite extension k' of k, a finite subfield ¥' of F, and a
curve Cgr over ¥/, such that C xy k' is k'-isomorphic to Cg: xg K'. Moreover, given
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such (K',F',Cg:) and an identification C X k' = Cp: X/ k', there exists a finite subset
= C C(K), such that

C(k) C{op(z) |2 €Z, n>0} UCk (F) C Cp (k') = C(K),

where ¢g: : Cpr — Cgr denotes the |F'|-th power Frobenius endomorphism.

Proof. For q = 0, see [Mal], [Gra]. (See also [Sa], Théoréme in the introduction.) For
g > 0, this follows from [Sa]. More specifically, we may assume that C(k) is infinite.
Then, by Théoreme 6, loc. cit., C' is smooth over k, and, by Théoreme 5, loc. cit., we
see that either (ii) or (iii) holds. (More precisely, for case (iii), Théoreme 5, b), loc. cit.,
ensures that the assertion holds if (k',¥’,Cg/) is replaced by (K", F”,Cg xg F"),
where k" /k is a certain (Galois) subextension of £’ /k and F”/F’ is a (sufficiently large)
finite subextension of F'/F’. Now, observe that the assertion for (", F”, Cp xp F") is
stronger than that for (¥, ¥/, Cg/).) O

In the case of fields finitely generated over prime fields, we have the following stronger
result (due to Faltings for ¢ = 0):

Theorem 3.6. Let F be the prime field of characteristic ¢ > 0, and k a field finitely
generated over F. Let C be a proper curve over k, and assume that the normalization
of C x4 k is of genus > 2. Then at least one of the following holds:

(i) C(k) is finite;

(ii)) ¢ > 0 and there exist a finite extension k' of k, a finite subfield ¥ of K/, and a
curve Cgr over ¥/, such that C xy, k' is k'-isomorphic to Cg: xg K'. Moreover, given
such (K',F',Cg:) and an identification C X k' = Cg: X k', there exists a finite subset
= C C(K'), such that

Ck) C {2 (x) |z €2, n >0} C Cp (k') = Ok,

where ¢g: : Cpr — Cgr denotes the |F'|-th power Frobenius endomorphism.

Proof. For g = 0, this is a theorem of Faltings ([FW], Chapter VI, Theorem 3). For ¢ >
0, suppose that C(k) is infinite. Then C(kF) is infinite, a fortiori. By applying Theorem
3.5 to the curve C' xj kF over the field kF finitely generated over the algebraically
closed field F, we conclude that we are in the situation of either (ii) or (iii) of Theorem
3.5. In fact, case (ii) cannot occur. Indeed, if case (ii) occurs, then there exists a
curve CF over F, such that C x; kF is kF-isomorphic to Cy XF EF and that (under
the identification C' xy kF = Cg x5 kF) C(kF) \ Cg(F) is finite. Further, the kF-
isomorphism C x, kF ~ CF X§ kEF descends to kF’ for some finite extension F/ of F.
More precisely, there exists a finite extension F’ of F and a curve Cg: over F’ such that
Cg is F-isomorphic to Cps xg F and that C xj kF’ is kF’-isomorphic to Cp xgs kF'.
Now, (under a suitable identification) we have

C(k‘) N CF(F) C C(kF/) N Cgs (f) = CF/(k'F, N F) = CF/(Fll),
where F/ is the algebraic closure of F in kF’, which is a finite extension of F’. Thus,

C(k) = (C(k) ~ Cg(F)) U (C(k) N C(F)) C (C(KF) \ Cx(F)) U Cp (Fy)
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is finite, which contradicts the assumption.

Finally, assume that case (iii) of Theorem 3.5 occurs. Then, first, there exist a finite
extension k} of kF, a finite subfield F/ of F, and a curve Cgs over F', such that C x, k}
is k}-isomorphic to Cgs X g k}. This isomorphism descends to one over a finite extension
k" of kF’ included in k{, as desired. Second, suppose that we are given k', F/, Cgs and
C X k' = Cp/ xg/ k' as in the second assertion of (ii). Then Theorem 3.5 ensures that
there exists a finite subset Z; C C(k'F), such that

C(kF) C {¢ () | 2 € 21, n > 0} U Cp(F) € Cp (K'F) = C(K'F).

Let F” denote the algebraic closure of F/ in k’. Considering the action of the Galois
group Gal(k'F/k') ~ Gal(F/F”) and taking the Galois-invariant parts, we obtain

C(k) € C(kF") € {¢%(2) | x € Ep, n > 0} UCp (F") C O (K') = C(K),

where 2y &' =, N C(K"). (Observe that z € =; is Gal(k'F/k')-invariant if and only if
so is @@ (x).) Thus, the finite subset = L= U Cp (F") of Cp/(k') = C(k’) has the

desired properties. [
The following consequence of Theorem 3.6 will be used in next §.

Proposition 3.7. Let F be the prime field of characteristic ¢ > 0, and k a field finitely
generated over F. Let C' be a proper curve over k, and assume that the normalization
of C X k is of genus > 2. Let S be a nonempty open subscheme of C (which is a curve
over k). When S(k) is infinite, put the extra assumption that S is F-isotrivial. (Note
that C' is automatically F-isotrivial by Theorem 3.6.) Then there exists an F-morphism
f: 8 — T between separated, normal, integral schemes of finite type over F, such that
the following hold: (a) the function field ¥(T') of T is F-isomorphic to k; (b) under the
identification F(T') = k, S is k-isomorphic to the generic fiber Sy of f; and (c) under
the identification S = Sy, we have S(k) = S(T), i.e., each element of S(k) = Si(k)
uniquely extends to an element of S(T)).

Proof. Since k is a finitely generated extension of F, there exists a separated (or even
affine), normal, integral scheme T of finite type over F, such that k = F(T'). On the
other hand, fix a finite k-morphism C' — P}, and define C to be the normalization of P,

in (the function field of) C. Then, as C' is normal and finite over P}, we have C, = C.

Set D L0« S, and define D to be the topological closure of D in C. Set S NN D,

which is separated, normal, integral and of finite type over F. Then it is easy to see
that the F-morphism & — T thus constructed satisfies (a) and (b). Further, if we

consider the base change from T to a nonempty open subscheme U, all the conditions

are preserved. Thus, it suffices to find U such that fy : Sy e s xp U — U satisfies

().
Assume first that S(k) is a finite set {z1,...,z,}. Each z; : Spec(k) — S = Sk
defines a rational map 7' --+ S, or, more precisely, there exists a nonempty open

subscheme U; of T, such that x; (uniquely) extends to a morphism U; — S over T.

Now, it is easy to see that U def Ui N---NU, has the desired property.
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Next, assume that S(k) is infinite. Then C(k) is infinite, a fortiori, hence, by The-
orem 3.6, ¢ > 0 and there exist a finite extension k' of k, a finite subfield F’ of k',
a curve Cp/ over F/, such that C' x k' is k’-isomorphic to Cg/ xg/ k’. On the other
hand, by our extra assumption, S is also F-isotrivial, hence, by replacing k' and F’ by
suitable finite extensions, we may also assume that there exists a curve Sg/ over F/,
such that S X k" is k’-isomorphic to Sg/ xg/ k’. Further, define C; g/ to be the smooth
compactification of Sgs (note that F’ is perfect). Since both Cp/ xp/ k = C x, k and
CiF X¥ k D Sp xp k = S X, k are smooth compactifications of S xj, k, they are
canonically k-isomorphic to each other. This k-isomorphism descends uniquely to an
F-isomorphism between Cg xg/ F and C} g g F. Thus, up to replacing F’ by a finite
extension, we may assume that this F-isomorphism descends to an F/-isomorphism be-
tween Cps and Cy g/. In particular, we obtain an open immersion Sgr < Cg+ over F’
which is compatible (over k') with the original open immersion S — C' over k.

Let TV be the normalization of T in k£’ and denote by 7 the natural finite morphism
T" — T. Let 8’ be the normalization of S in the function field of S x; k’. On the other

hand, set S} def Sy xg T'. The generic fibers of the morphisms of finite type " — T’
and 8] — T are S xi k' and Sg xg: K/, respectively, which are identified with each
other. Accordingly, there exists a nonempty open subscheme V' of T” over which these
two families coincide with each other.

Now, by Theorem 3.6, there exists a finite subset & C C(k’), such that, under the
identification C' x k' = Cp xg/ k’, we have

C(k) C {¢p(z) |z €2, n>0} C Cr (k) =C(K).
From this, we obtain
S(k) C {¢p(z) |z €Eg, n >0} C Sp (k') = S(K'),

where =g ¥ =n S(k"). (Observe (¢pp: ) (Sps) = Sgr.)

Write Zg = {x1,...,2,}. Each z; : Spec(k’) — S %, k' = S}, xy/ k' (where

def . . .
S,y = 8" xq V') defines a rational map V' --» Sy{,,, or, more precisely, there exists

a nonempty open subscheme V; of V', such that z; (uniquely) extends to a morphism

V! — Sy over V'. Set Uj &of Vin.--NV/, then z; extends to a morphism U] — Sy,

. def
over V' for all i =1,...,r. Moreover, as U; C V', we have S{,, =S, = Sp xg V/,

from which we conclude that ¢§, (z;) extends to a morphism U] — Sf,, over V' for all
i=1,...,r and all n > 1. Thus, any element of S(k) C S(k’) extends (uniquely) to a
morphism U] — S{,, over V', or, equivalently, a morphism U] — S{J{ over Uj.

Finally, set U LN (T \Ujy) and U’ et 7 Y(U). Now, any element x € S(k) C

S(k") extends to a morphism U’ — S(;, — Sy. By the following Lemma 3.8, this implies
that x extends to a morphism U — Sy, as desired.

Lemma 3.8. Let U be a separated, normal, integral scheme, k the function field of
U, k' an algebraic extension of k, and U’ the normalization of U in k'. Then, in the
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category of separated schemes, the following diagram is co-cartesian:
Spec(k’) — Spec(k)
| |
U’ — U.

Namely, for any separated scheme Y, the natural map Y (U) — Y (k) Xy 4y Y(U') is a
bijection.

Proof. Let k" be the normal closure of k£’ over k and U” the normalization of U’ in k”.
In the commutative diagram

Spec(k”) — Spec(k’) — Spec(k)

! l !
U — U’ — U,

if the left square and the big rectangle are co-cartesian, then the right square is also

co-cartesian. Thus, replacing &k’ by k”, we may assume that k’/k is a normal extension.

Set G % Aut(k’/k). Then G induces an action on U’ over U, and the underlying

topological space of U can be regarded as the quotient space of U’ by this G-action.
Indeed, this is well-known set-theoretically. As for the topology, note that the natural
morphism 7 : U' — U is closed.

Let fi : Spec(k) — Y and fy/ : U’ — Y be morphisms whose restrictions to Spec(k’)
coincide with each other. For each o € G, the restriction of fyr oo to Spec(k’) coincides
with that of fy/. Since Y is separated, this implies that fy7 o 0 = fyr. Thus, by the
preceding argument, there exists a continuous map ¢ : U — Y, such that fi;y = ¢pom.
Now, considering suitable affine open neighborhoods of x € U and ¢(x) € Y for each
x € U, we may reduce the problem to the case that U (hence also U’) and Y are affine.

So, write U = Spec(A), U’ = Spec(A’) and Y = Spec(R). In this case, the assertion
is equivalent to saying that the natural map

Hom(R, A) — Hom(R, k) Xpom(r,x) Hom(R, A")

is a bijection. But this is a consequence of the equality A = kN A" in k/, which follows
from the fact that A’ is integral over A and that A is integrally closed. [

Thus, the proof of Proposition 3.7 is completed. [

Remark 3.9. In Proposition 3.7, the extra assumption that S is F-isotrivial, when S(k)
is infinite, cannot be removed. Indeed, take a proper curve T' of genus > 2 over a finite

extension F/ of F, set C defp xp: T and S AN A, where A stands for the diagonal.

Moreover, set k F(T) = F/(T), and define C and S to be the generic fibers of the
natural morphisms C — T and & — T obtained by the second projection pr. Then we
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may identify C(k) = C(T') = Homp/ (T, T) and S(k) = Homp/(T,T) ~ {idr}. (Here,
the natural identification C(k) = C(T") is ensured essentially by the valuative criterion
for properness.) Under these identifications, consider the subset {¢™ | n > 0} C S(k),
where ¢ = ¢p/ : T — T is the |F’|-th power Frobenius endomorphism. Let U be an
open subscheme of T. Then ¢" € S(k) extends to an element of S(U) if and only if
U C T~ pr(l'gn NA), where I'yn stands for the graph of ¢”. However, pr(I'y» N A)
coincides with the set of closed points of T' that are F/ -rational, where F/ denotes the
unique degree n extension of F/. Thus, there does not exist a nonempty open subscheme
U of T such that ¢" € S(k) extends to an element of S(U) for any n > 0. (Such a U
must be contained in the one-point set consisting of the generic point!)

84. Proof of Theorem A.

Before starting the proof of Theorem A, we shall recall the main geometric result
of [CT]. Let k be a field of characteristic ¢ # p, S a smooth, separated, geometrically
connected curve (necessarily of finite type) over k, n the generic point of S, and K = k(n)
the function field of S. Let A be an abelian scheme over S such that the generic fiber
A, is of dimension d. Since A — S is an abelian scheme and ¢ # p, A[p"] = Ker([p"] :
A — A) is finite étale over S. Thus, the natural action of the absolute Galois group
Tk of K on A,[p"](K) (n > 0) factors through 71 (S). This, in turn, defines actions
of m1(S) on A, [p*®](K) and on the Tate module T},(4,). We denote by p = pa, the
corresponding representation 7 (S) — Autz, (1,,(Ay)).

For each v € A,[p™](K), write 71(S), C m1(9) for the stabilizer of v. This is an
open subgroup of 71(.5), and, by Galois theory, corresponds to a connected finite étale
cover S, — S (defined over a finite extension k,/k). We denote by g, the genus of
the smooth compactification of S, xy, k. Finally, denote by (A,)o the largest abelian
subvariety of A, which is isogenous to a k-isotrivial abelian variety.

Theorem 4.1. Assume that k is algebraically closed. Then, for any c > 0, there exists

an integer N = N(p,k, S, A,c) > 0 such that, for all v € A, [p>®°1(K), either g, > c or
N

p v € (Ay)o.

Theorem 4.1 was proved in [CT] in arbitrary characteristics. There, roughly speak-
ing, we estimate the genus by observing the Galois representation 7, (S) — GL(T,(A,))
and using the Riemann-Hurwitz genus formula. Here, the main ingredient to estimate
the ramification terms in the genus formula is the Serre-Oesterlé theorem ([Se][O]) on
the asymptotic behavior of the number of points on reduction modulo p” of p-adic
analytic subsets of Z;". For more details, see [CT].

In [CT], we deduced Theorem A in characteristic 0 from Theorem 4.1. More specifi-
cally, we introduce a sequence of (disconnected) finite étale covers {.S;, y }n>0 of S with
the property that s,, € S, (k) lying above s € S(k) corresponds to an element of order
exactly p" in As[p>](x). It is thus enough to prove that S,, , (k) = 0 for n > 0. Accord-
ing to Theorem 4.1, we may reduce this problem, roughly speaking, to either the case
where A, is isotrivial or the case where the genus of each component of S,, , is > 2 for
n > 0. The proof of [CT] for the first case works well in arbitrary characteristics, while
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that for the second case, which resorts to Mordell’s conjecture (Faltings’ finiteness the-
orem) and a compactness argument to produce a projective system of rational points,
fails in positive characteristic as it is, since a curve of genus > 2 over a field finitely
generated over the (finite) prime field may admit infinitely many rational points. To
remedy this, we take a model T of the finitely generated base field k, consider models of
the base scheme S and the abelian scheme A over T, and produce a projective system
of rational points on the fiber at a suitable closed point of 7' (whose residue field is
finite). Now, to make this argument work, we need various extra arguments resorting
to the results of §3. See below for more details.

Proof of Theorem A. We divide the proof into several steps.

Step 1. First reductions. First, (pUByg) follows from the definition of non-Tate charac-
ters. (Indeed, if S is of finite type over k and dim(S) = 0, S(k) is a finite set. So, we
may treat only finitely many abelian varieties Ag (s € S(k)).)

Next, to prove (pUB;), assume that S is of finite type over k and dim(S) = 1. By
replacing S by S7¢¢, we may assume that S is reduced. By (pUBg), we may replace S
by an open dense subscheme freely. So, we may assume that S is regular and separated.
Further, treating S componentwise, we may assume that S is connected. We may also
assume that S(k) is nonempty, since otherwise there is nothing to do. Since S is regular
and 1-dimensional, any point of S(k) is a smooth point, hence the smooth locus of S
is nonempty (and open). Thus, again by replacing S by an open dense subscheme, we
may assume that S is smooth and separated. Finally, since S is smooth, connected
with S(k) # 0, S is geometrically connected. Thus, in summary, we may assume that

S is a smooth, separated, geometrically connected curve over k.

For each n > 0, set x, &f x mod p" : Ty — (Z/p™)*. Set i(p) = 1 for p # 2

and i(2) = 2. Then, up to replacing k by the fixed field of Ker(x;s)) in £, one
may assume that X;) : Tx — (Z/p'®)* is trivial. (Here, we have used the fact that
the restriction of a non-Tate character to an open subgroup is non-Tate. See Lemma
3.1.) This technical reduction ensures that Im(x,) C (Z/p™)* is contained in the order
p" 4 P) eyelic subgroup 1+ p*PZ/p"Z of (Z/p™)*, when n > i(p).

Step 2. Relation with rational points on various covers. For each v, € A,[p"]*(K)
(n > 0), we shall define a connected finite étale cover S,,, , of S. To do this, write
71(S) v,y for the stabilizer of (v,) = (Z/p") - v, under m1(S) and S,,, — S for the
resulting connected finite étale cover (defined over a finite extension &, y/k). Consider
the projection morphism pr, y : m1(S,)) — I'x (whose image coincides with I'y, )
and the natural representation p,, y : m1(S(y,y) — Autz/pn ({vn)). These, together with
Xn = X mod p", define a representation

Pup,x - T (S('un)) - AUtZ/p"(<Un>)7 s Xn(pr<vn>(’7))_1p<vn>(’7).

Now, define S,y — S(,) to be the connected finite étale Galois cover (defined over a
finite extension Ky, y/k(y,)) corresponding to the open normal subgroup Ker(p,, ) C
71(S(v,)), and denote by g,,, ., the genus of the smooth compactification of S, X kvn,xE'
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Lemma 4.2. (i) Sy, x Xk, . k = Su, Xp, k as covers of S xi, k. In particular,
Gv, x = Gv, 5 independent of x.
(ii) For any k-rational point s : Spec(k) — S, consider the specialization isomorphism

5D, 1 Ay[p™](K) (= Ap™](K)) =As[p™] (k).

Then spy(vn) € As[p™](x) if and only if s : Spec(k) — S lifts to a k-rational point
Su,x 1 Spec(k) — Sy, x-

Proof. For (i), just observe that

T1(Svn x Xk, o k) = Ker(py, ) N Ker(pr(vn>)
= Ker(p(p,y) N Ker(pr<vn>) = m1(Sv, Xk, k).

For (ii), denote again by s the section I'y — m1(S) of m1(S) — Ty induced (up
to conjugacy) by s : Spec(k) — S, which identifies I'y, with the decomposition group
at s. Then the existence of the lift s,,  : Spec(k) — S, of s : Spec(k) — S is
equivalent to the inclusion s(I'y) C m1(Sy, x)(= Ker(py, ~)), which can be rewritten as
s(0)-vn, = x(0)vy, (0 € T'k) or, applying the specialization isomorphism, as -spg(v,,) =
x(0)sp,(vn). O

Now, we shall introduce a projective system (S, y)n>0 of (disconnected) finite étale
covers of S. For each n > 0, define

def
Sn,X = H S'Un yX "

vn €Ay [pn]* (K)

Observe that (Sy,y)n>0 forms a projective system with transition maps induced by the
canonical morphisms S, y — Spy, ,x Over k. At the level of k-rational points, we have:

Claim 4.3. (i) lim S, (k) = 0.

(ii) The assertion of Theorem A is equivalent to saying that Sy (k) =0 for any n > 0.
(iii) Suppose that Sy (k) # 0 for any n > 0. Then there exists an element (vy)n>0 €
lim A, [p"]*(K), such that S,,, (k) # 0 for any n > 0.

Indeed, for (i), suppose that lim S,, , (k) # 0 and take (sp)p>0 € lim S, (k). Then,

by the definition of S, , there exists an element (vy)n>0 € lim A, [p"]*(K), such that

(8n)n>0 € lim S, (k). Set s L 5. Then, by Lemma 4.2(ii), sp,(v,) € As[p"](x)
for all n > 0. Thus, I'y acts on (spy(vn))n>0 € Tp(As)* via x, which contradicts
the assumption that x is non-Tate. For (ii), again by Lemma 4.2(ii), the assertion of
Theorem A is equivalent to saying that there exists an N > 0 such that S, (k) #
) = n < N, hence also to saying that S, (k) = 0 for any n > 0. (iii) follows from
the fact that A, [p"]*(K) is finite for each n > 0.

Step 8. Second reductions. Now, suppose that the assertion of Theorem A fails for
our abelian scheme A — S. Then, by Claim 4.3(ii)(iii), there exists an element v =
(Un)n>0 € lim A, [p"]*(K), such that S, (k) # 0 for any n > 0. We fix such a
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v = (Up)n>0. Let K, be the function field of S,, , and K = K’A’U the union of K,,:

K “ling K,

To execute the proof of Theorem A in arbitrary characteristics, we need some more
reductions. First, we may replace A — S by A xg S, — Sy, for any m > 0.
Indeed, v, can be regarded as an element of (A X g Sy, ) [P"]" (K:), and we have

n <m,

Som s
(Svm,x)vn,x = { X

S, xs N> m.

Thus, (Su,, x)v..x(k) # @ for any n > 0. In particular, we may assume that
Endz (A4, Xk K) = Endg Ay, by replacing S by S,  for m > 0. (Indeed, since
End;(Ay xx K) C Endg (4, x g K) is a finitely generated (abelian) group, all elements
of End; (A, xk K) are already defined over K, for some m > 0.)

Second, the generic fiber A, of A — § is decomposed up to isogeny into a direct
product of K-simple abelian varieties. Namely, we have a K-isogeny A, — A,(71) X
cee X A%T), where A%i) is a K-simple abelian variety for ¢ = 1,...,r. We have more:
as a consequence of the above first reduction step, A,(f) X K is K-simple. Let v =
(vg))nzo be the image of v in T}, (A%i)) = lim A%i) [p"](K). As the natural map Tp(A,) —
Tp(A,(71)) X e X Tp(A,(f)) is injective, there exists an 49 = 1,...,r such that v(%) # 0.
Since the natural map A,[p™](K) — A,(fO)[pOO](F) is surjective, the action of 'y on
A%iO)[pOO](F) factors through 7(S), hence A%ic’) has good reduction everywhere on S
by the (original) Serre-Tate criterion (cf. §3), or, equivalently, can be regarded as the
generic fiber of a (unique) abelian scheme Alio) over S. Now, since the natural map
Ay[p>|(K) — A%iO)[poo](F) is m1(S)-equivariant, we obtain a k-morphism S, , —
Svglic,)’x naturally. This implies that Svflio)’x(k) # () for any n > 0 and that K 4¢o) ,60) C
f(A,U. Now, replacing (A,v) by (A0 p=e()) where a > 0 is defined to satisfy
vlio) ¢ pa(Tp(A%iO))*), we may assume that A, is K-simple, and, a fortiori, K-simple.
Then, in particular, either (A,)q = A, (Case 1) or (A,)o =0 (Case 2).

Step 4. Case 1: (Ay)o = A,. For each n > 0, there exists a k-rational point s, €
Su.x(k), which yields a splitting s, : I'x — m1(Sy, ) C m(S) of the restriction
epimorphism 71 (S) — T'x. Let A, T and X, denote the images in Autz, (7,(A,)) of
71(S X k), m1(S) and s, (Tx), respectively, under p. Since 71 (S) = s, (Tx) - w1 (S x1 k),
we have I' = 3 - A.

As A, = (A))o is isogenous to an isotrivial abelian variety, A is finite. Now, I' C

Autz, (T,(Ay)) ~ GLog(Z,) (d &t dim(A,)) is a compact p-adic Lie group, hence, in

particular, it is finitely generated. Since a finitely generated profinite group admits only
finitely many open subgroups of given bounded index and since [I" : X ] < |A| < oo,
there are only finitely many possibilities for the ¥ C I', n > 0. Thus, there exists
s € S(k) such that ¥, = X for infinitely many n > 0. Write |A| = p®m with p fm.
Then we have:

Claim 4.4. Let s, t € S(k) with X5 = X;. If sp,(vn) € Ai[p"](x), then spy(p®v,) €
Aslp"1(x)-
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Indeed, the statement is trivial for n < a, so assume that n > a and write §(0o) et
p(s(o)t(c)™t) € A. Also, since p(s(c)) € X5 = Xy, there exists 7 = 7, € T such that
p(s(a)) = p(t(7)). Asaresult, one obtains 6(c)v, = Xn(7)Xn (0 "1)v,. In particular, the
order of Xy, (7)Xxn(0™1) € (Z/p™)* divides the order of §(c) € A, hence divides the order
p®m of A. On the other hand, by the assumption on y put in Step 1, Xy (7)xn (0 1) lies
in the order p"~*P) cyclic subgroup 1+ p*PZ /p"Z of (Z/p™)*, when n > i(p). Now, it
follows that x,,(7)xn(c™1) € 1 4+ p"%Z/p". Thus, we have

p(s(0))p v = Xn(T)p vy = Xn(0)p"vn,
which completes the proof of Claim 4.4.

It follows from Claim 4.4 that, up to replacing v,, by p®v,14, oOne may assume that
s : Spec(k) — S lifts to a k-rational point s, : Spec(k) — S, for infinitely many
n > 0, hence lim Sy, (k) # 0. This contradicts Claim 4.3(i).

Step 5. Case 2: (Ay)o = 0 — reductions. In this case, by Theorem 4.1 and Lemma
4.2(i), there exists an integer N > 0, such that g,, , > 2 for n > N. Replacing A — S
by A X5 Suni1x = Suxii,x> We may assume that the genus g of the smooth compact-

ification of S x, k is > 2. Indeed, as we have already seen, K Av = Kaxgs SO

YN 10U
that after this reduction A,, is still K-simple (hence, in particular, K-simple). Now, we
may make one more reduction. Let C be the normal compactification of S and A¢ the
Néron model of A, over C. Note that A is naturally identified with Ac x¢ S. Now,
define S™ to be the subset of points of C' at which the fiber of A — C is an abelian
variety. Thus, S C S~ C C, and we may regard S~ as an open subscheme of C'. Then
we have Sy, C (S™)u, .y for each n > 0. So, replacing A — S by Ac x¢ S~ — 87,
we may assume that S coincides with the set of points of C' at which A, has good
reduction.

If Sy, (k) # 0 is finite for n > 0, we have lim S, (k) # 0, which contradicts
Claim 4.3(i). (In particular, this, together with Faltings’ theorem (cf. Theorem 3.6),
already completes the proof in characteristic 0, as in [CT].) So, we may assume that
S, .x (k) # 0 is infinite for all n > 0.

Step 6. Case 2: (Ay)o = 0 — isotriviality of S. Our strategy is to apply Proposition
3.7, to extend all the objects in question over k to ones over a suitable model T of &
over the prime field F, to consider the fibers at a (fixed) closed point of T', and apply
the above projective limit argument to the finite base field case. To do this, however,
we have to check the extra assumption in Proposition 3.7 that (not only C but also) S
is F-isotrivial.

Let C,, denote the normal compactification of S,, , (so, Cy = C'), which is a proper
curve over k. Then {C,, },,>¢ naturally forms a projective system. By Theorem 3.6, C,,

is F-isotrivial, or, more explicitly, there exists a curve Cn,F over F such that C,, xj k
is k-isomorphic to Cn,F XF k. Moreover, under the identification C, X3 k = Cn,F XF k,
the finite k-morphism Chnt1 Xk k — C,, X k uniquely descends to a finite F—morphisrg
Coi1F — C, 57 (See[T2], Lemma (1.32).) We define S,  to be the image of Sy, Xk k
in Cn,F'
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Claim 4.5. For each n > 0, S, is open in C, &, hence is regarded as an open
subscheme of C, . Moreover, the finite F-morphism C, 1 F — C,F restricts to a
finite, étale F-morphism Spi1F 7 SuF-

Indeed, first, as the projection w, : C, X k = Cn,F XFE — Cn,ﬁ is an open
map ([Gro], Corollaire (2.4.10)), S

.7 is open. Next, consider the following cartesian

diagram: B
Cpi1 xi k237 CoilF
i) L IF
Cn Xk E &l Cn,F

From this, we first see that

fF(Sn+1,F) = fE(@nt1(Sv, 41 x Xk k)
= wn(fE(SvnH,x Xk E))

= wn(SUmX Xk E) = Sn,ﬁ'

Namely, fF : C, LIF Cn,F restricts to a surjective F-morphism S TF Sn,F-
Moreover, as

fg_l(Svn,x xkE) = Svn+1,x XkE
C (Sv,x Xk k) XS, F Sn+1,F
C fg_l(Svn,X XkE)a

we must have Sy, .,y Xz k= (Svnx Xk k) Xs - Sn+1,F' Namely, the diagram

I Wn+1
Svnpix Xk k= S, F

I L fF
Svmx Xk E Zy Sn,F

is cartesian. As w, : Cp, xp k — C, ¥ is regarded as a base change of the mor-

phism Spec(k) — Spec(F), it is affine (hence quasi-compact) and flat. Since the open
immersion S, Xk k — C, xj k is also quasi-compact and flat, we conclude that
@n ¢ Sv,x Xk k— S, F 18 quasi-compact and flat. Moreover, it is surjective by def-
inition. In summary, it is “fpqc”, hence, by descent theory, the finite-étaleness of
J5 5 Sopin e Xk k — Sonr Xk k implies that of fF: Sn+1,F — Sn,F~ Thus, the proof of
Claim 4.5 is completed.

A reformulation of Claim 4.5 in terms of fundamental groups is as follows: for each
n > 0, there exists a subgroup H,, C m1(SF) (where Sg &of So.F) such that the stabilizer



TORSION OF ABELIAN SCHEMES AND RATIONAL POINTS ON MODULI SPACES 27

subgroup (S xy k)., at v, is the inverse image of H,, under 7 (wg) : m1(S xp k) —»
71(SF). Moreover, for each g € 71(S X, k), we have

71(S Xk k) go, = gm1(S Xk K)o, g~ ' = gmi(wo) H(Hy)g™ ' = mi(wo) (GH.G ),

where g e (w0)(g). From this, we conclude that the action of 71 (S x k) on the subset
71 (S Xy k)v, C A,[p"](K) factors through m (S X k) — m1(Sg). This further implies

that the actions of (S xj k) on the submodules (r1(S xj k)v,) C A,[p"](K) and

T (m1(S X k)v) C Tp(A,) also factor through 71 (S xj k) — m1(Sg). In particular,

these actions factor through 71 (S xj k) — m1(Sg x5 k). Namely, for each point x of
SF XF k, the inertia subgroup I = I, acts trivially on 7. Now, by Proposition 3.4,
A, has good reduction at any such z. Recall that, in Step 5, we put the assumption
that S coincides with the set of points of C' at which A, has good reduction. Thus, we
conclude S xj k = SF XF k. In particular, S is F-isotrivial, as desired.

Step 7. Case 2: (Ay,)o = 0 — application of Proposition 3.7 and end of proof. Now,
we may apply Proposition 3.7 to obtain an F-morphism f : S — T between separated,
normal, integral schemes of finite type over F, such that the following hold: (a) the
function field F(7") of T' is F-isomorphic to k; (b) under the identification F(T') = k, S
is k-isomorphic to the generic fiber S, of f; and (c¢) under the identification S = S, we
have S(k) = S(T), i.e., each element of S(k) = Si(k) uniquely extends to an element
of S(T'). Moreover, the abelian scheme A over S = S extends to one over an open
subscheme of §. More precisely, there exists an open subscheme U of & containing
S = & and an abelian scheme A over U, such that Ay Xy S is S-isomorphic to A (as
abelian schemes). By definition, f(S\U) does not contain the generic point 1 of T'. As

f(S~\U) is constructible by Chevalley’s theorem, the topological closure Z et f(S\U)
does not contain 1. Now, replacing 7' by '\ Z and S by S xp (T \ Z), and considering
Ay Xy (S xp (T'\ Z)), we may assume (keeping the validity of (a)-(c)) that there exists
an abelian scheme Ag over S, such that As xg S is S-isomorphic to A (as abelian
schemes). In particular, the action of 71(S) on A, [p™](K) factors through the natural
surjection m(S) — 71 (S).

As T is normal, the natural map 'y, — m1(7T) is surjective (|[GR], Exposé V, Proposi-
tion 8.2). By Lemma 3.2, (i) = (ii’), together with the assumption (put at the begin-
ning of the proof of Theorem A) that the image of x is contained in 1 + p*() Z,~17,,
X : I'y — Zj, factors through I'y — T'gs, where F’ denotes the algebraic closure of F in
k, hence, in particular, factors as I'y — m(T") Xz z,.

As in Step 2, we obtain a connected finite étale cover S, y, of S for each n > 0,
such that Sy, v, Xs S = Sy, . More precisely, write m1(S)(,,) for the stabilizer of
(vn) under 71(S) and S,y — S for the resulting connected finite étale cover. Consider
the projection morphism Priyy & M1 (Stv,y) — mi(T) and the natural representation
Py T1(Sw,y) — Autz/pn ({vn)). These, together with x7.,, = xr mod p”, define a
representation

Pun,xT - ﬂ—l(S(’Un)) - AUtZ/p"(<Un>)7 s XT,n(pr(vn)(’Y))_lp(vn)(’7)'
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Now, define S,,, y — S(u,,) to be the connected finite étale Galois cover corresponding to
the open normal subgroup Ker(py,, ) C 71(S(y,)). Observe that Sy, (k) = Sy, r (T)
for each n > 0. Indeed, this follows from condition (c) (i.e., S(k) = S(T')), together
with the fact that 7" is normal.

Finally, fix a closed point ¢ of T. Note that the residue field k(¢) at ¢ is a finite
field. Consider the fiber As, — S — Spec(k(t)) of As - § — T at t € T and
the specialization isomorphism sp, : A, [p>](K)=>A4s, [p™](K;), where K; denote the
function field of S;. Then it is easy to see that S, v, X7 Spec(k(t)) =~ (St)sp, (vn)x: OVEr
k(t). Here, Spec(k(t)) — T is the natural morphism with image ¢, and x; : Ty — 2,
denotes the character obtained by taking the composite of x7 : 71(T) — Z; and the
natural map I'y) — m1(T) associated with Spec(k(t)) — 7. By Lemma 3.3, x; is
non-Tate. As S, . (T) = Sy, (k) is nonempty for any n > 0, so is Sy, v, (k(t)) =
(St)sp, (vn).x: (k(t)). Now, as k(t) is a finite field, (S¢)sp,(vn),x, (K(t)) is finite for any
n > 0, hence we conclude im(S;)sp, (v,),x, (k(t)) # 0, which contradicts Claim 4.3(i).

Thus, the proof of Theorem A is completed. [
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