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Cycle classes, Lefschetz trace formula and integrality
for p‐adic cohomology

By

Yoichi Mieda *

§1. Introduction

This article is an announcement of my recent work on p‐adic cohomology. Detailed

proofs will appear elsewhere. Let k be a field of characteristic p>0 and X a purely d‐

dimensional scheme which is separated and smooth over k . An algebraic correspondence
on X is a closed subscheme  $\Gamma$ of  X\times X with pure dimension d (here we simply write

X\times X for X\times kX ). We are interested in the trace of the action of  $\Gamma$ on the  p‐adic

cohomology of X (the precise setting will be introduced later).
Although we are interested in p‐adic cohomology, our first motivating problem is

about \ell‐adic cohomology. We will begin by explaining this problem. Here we will

assume that  k is algebraically closed and remove the restriction that the characteristic

of k is positive. Let \ell be a prime number which is different from  p . Denote by  $\gamma$ the

closed immersion  $\Gamma$\leftrightarrow X\times X and put  $\gamma$_{i}=\mathrm{p}\mathrm{r}_{i}\circ $\gamma$ . If  $\gamma$_{1} is proper, then we may define

the homomorphism $\Gamma$^{*}:H_{c}^{i}(X, \mathbb{Q}_{\ell})\rightarrow H_{c}^{i}(X, \mathbb{Q}_{\ell}) as the composite

H_{c}^{i}(X, \mathbb{Q}_{\ell})\rightarrow^{$\gamma$_{1}^{*}}H_{c}^{i}( $\Gamma$, \mathbb{Q}_{\ell})\rightarrow^{$\gamma$_{2_{*}}}H_{c}^{i}(X, \mathbb{Q}_{\ell}) .

Here $\gamma$_{1}^{*} can be defined since $\gamma$_{1} is proper, and $\gamma$_{2_{*}} can be defined since X is smooth over

k . Note that a proper k‐morphism f:X\rightarrow X can be regarded as the correspondence

$\gamma$_{f}=f\times \mathrm{i}\mathrm{d}_{X}:$\Gamma$_{f}=X\rightarrow X\times X and $\Gamma$_{f}^{*} coincides with f^{*}
We are interested in the alternating sum of the traces of $\Gamma$^{*}

Problem 1.1. Under the assumptions above, does the alternating sum of the

traces \displaystyle \sum_{i=0}^{2d}(-1)^{i}\mathrm{T}\mathrm{r}($\Gamma$^{*};H_{c}^{i}(X, \mathbb{Q}_{\ell})) lie in \mathbb{Z} ?
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First we should remark that this problem has actually been solved in [BE] by using
relative motivic cohomology defined by Levine. However the author wanted a more

standard cohomology‐theoretic proof.
If the characteristic of k is 0 ,

then \mathrm{T}\mathrm{r}($\Gamma$^{*};H_{c}^{i}(X, \mathbb{Q}_{\ell})) lies in \mathbb{Z} for each i . This

is because we may assume k=\mathbb{C} and may use compactly supported Betti cohomol‐

ogy H_{c}^{i}(X, \mathbb{Q}) and H_{c}^{i}( $\Gamma$, \mathbb{Q}) in place of \ell‐adic cohomology. We have comparison re‐

sults  H_{c}^{i}(X, \mathbb{Q})\otimes \mathbb{Q}_{\ell}\cong H_{c}^{i}(X, \mathbb{Q}_{\ell}) and H_{c}^{i}( $\Gamma$, \mathbb{Q})\otimes \mathbb{Q}_{\ell}\cong H_{c}^{i}( $\Gamma$, \mathbb{Q}_{\ell}) ,
which lead to

the equality \mathrm{T}\mathrm{r}($\Gamma$^{*};H_{c}^{i}(X, \mathbb{Q}_{\ell}))=\mathrm{T}\mathrm{r}($\Gamma$^{*};H_{c}^{i}(X, \mathbb{Q})) . Since $\Gamma$^{*} preserves the \mathbb{Z}‐lattice

{\rm Im}(H_{c}^{i}(X, \mathbb{Z})\rightarrow H_{c}^{i}(X, \mathbb{Q})) of H_{c}^{i}(X, \mathbb{Q}) ,
the trace \mathrm{T}\mathrm{r}($\Gamma$^{*};H_{c}^{i}(X, \mathbb{Q})) lies in \mathbb{Z}.

If X is proper over k
, by the Lefschetz trace formula, we have

\displaystyle \sum_{i=0}^{2d}(-1)^{i} Tr ($\Gamma$^{*};H_{c}^{i}(X, \mathbb{Q}_{\ell}))=( $\Gamma$, \triangle_{X})_{X\times X},

where \triangle x\subset X\times X denotes the diagonal and -)_{X\times X} the intersection number in

X\times X . Since the right hand side is an integer which is independent of \ell(\neq p) ,
so is

the left hand side.

By Fujiwara�s trace formula [Fu], which is in some sense a generalization of the

Lefschetz trace formula used above, we have the following result for X which is not

necessarily proper over k :

Proposition 1.2. The alternating sum \displaystyle \sum_{i=0}^{2d}(-1)^{i}\mathrm{T}\mathrm{r}($\Gamma$^{*};H_{c}^{i}(X, \mathbb{Q}_{\ell})) is a ratio‐

nal number which is independent of \ell(\neq p) .

Proof. This is proved in [Mi, Theorem 2.1.2], but we include its proof for the

reader�s convenience. By the standard specialization argument, we may assume that

k=\mathrm{F}_{q} and that X and  $\Gamma$ come from \mathrm{F}_{q} . Fix a scheme X_{0} over \mathrm{F}_{q} such that X=

X_{0}\otimes_{\mathrm{F}_{q}}\mathrm{F}_{q} and denote by \mathrm{F}\mathrm{r}_{X_{0}}:X_{0}\rightarrow X_{0} the qth power Frobenius morphism of X_{0}.

By the base change from \mathrm{F}_{q} to \mathrm{F}_{q} ,
we obtain the morphism X\rightarrow X

,
which is also

denoted by \mathrm{F}\mathrm{r}_{X_{0}} . By Fujiwara�s trace formula ([Fu, Proposition 5.3.4, 5.4.1]), there

exists an integer N_{\ell} such that for every integer n with n\geq N_{\ell} we have

(*) \displaystyle \sum_{i=0}^{2d}(-1)^{i} Tr ($\Gamma$^{*}\circ(\mathrm{F}\mathrm{r}_{X_{0}}^{*})^{n};H_{c}^{i}(X, \mathbb{Q}_{\ell}))=($\gamma$_{*}^{(n)} $\Gamma$, \triangle_{X})_{X\times X},

where $\gamma$^{(n)}: $\Gamma$\rightarrow X\times X denotes the unique morphism that satisfies \mathrm{p}\mathrm{r}_{1}\circ$\gamma$^{(n)}=
\mathrm{F}\mathrm{r}_{X_{0}}^{n}\circ$\gamma$_{1} and \mathrm{p}\mathrm{r}_{2}\circ$\gamma$^{(n)}=$\gamma$_{2} . In particular, \displaystyle \sum_{i=0}^{2d}(-1)^{i}\mathrm{T}\mathrm{r}($\Gamma$^{*}\circ(\mathrm{F}\mathrm{r}_{X_{0}}^{*})^{n};H_{c}^{i}(X, \mathbb{Q}_{\ell}))
is an integer.

Let $\alpha$_{i,1,\ell} ,
. . .

, $\alpha$_{i,m_{i},\ell} be the eigenvalues of $\Gamma$^{*} on H_{c}^{i}(X, \mathbb{Q}_{\ell}) and $\lambda$_{i,1,\ell} ,
. . .

, $\lambda$_{i,m_{i},\ell}
those of \mathrm{F}\mathrm{r}_{X_{0}}^{*} on H_{c}^{i}(X, \mathbb{Q}_{\ell}) . Since $\Gamma$^{*} and \mathrm{F}\mathrm{r}_{X_{0}}^{*} commutes with each other, the left hand
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side of () is equal to \displaystyle \sum_{i}(-1)^{i}\sum_{j=1}^{m_{i}}$\alpha$_{i,j,\ell}$\lambda$_{i,j,\ell}^{n} with $\lambda$_{i,1,\ell} ,
. . .

, $\lambda$_{i,m_{i},\ell} permuted suitably.

By simplifying this sum, we have an expression of the form \displaystyle \sum_{i}$\alpha$_{i,\ell}'$\lambda$_{i,\ell}^{\prime n} where each $\lambda$_{i,\ell}'
is one of $\lambda$_{i,j,\ell} and $\lambda$_{i,\ell}'\neq$\lambda$_{j,\ell}' for i\neq j . Since $\lambda$_{i,\ell}' is a non‐zero algebraic integer, by the

subsequent lemma, every $\alpha$_{i,\ell}' is an algebraic number and \displaystyle \sum_{i}$\alpha$_{i,\ell}'$\lambda$_{i,\ell}^{\prime n}\in \mathbb{Q} for every n.

Moreover, since the right hand side of () is independent of \ell
,

for two primes \ell

and \ell' which are different from p ,
we have \displaystyle \sum_{i}$\alpha$_{i,\ell}'$\lambda$_{i,\ell}^{\prime n}=\sum_{i}$\alpha$_{i,\ell}',$\lambda$_{i,\ell}^{\prime n} , for n\geq N_{\ell}+N_{\ell'}.

Therefore by the van der Mond argument, we have this equality for every n.

Hence we conclude that \displaystyle \sum_{i=0}^{2d}(-1)^{i}\mathrm{T}\mathrm{r}($\Gamma$^{*}\circ(\mathrm{F}\mathrm{r}_{X_{0}}^{*})^{n};H_{c}^{i}(X, \mathbb{Q}_{\ell})) is a rational number

which is independent of \ell for every  n . In particular, \displaystyle \sum_{i=0}^{2d}(-1)^{i}\mathrm{T}\mathrm{r}($\Gamma$^{*};H_{c}^{i}(X, \mathbb{Q}_{\ell})) is a

rational number which is independent of \ell. \square 

Lemma 1.3. Let L be a field of characteristic 0 and $\alpha$_{1} ,
. . .

, $\alpha$_{m}, $\lambda$_{1} ,
. . .

, $\lambda$_{m}
elements of L such that $\lambda$_{i}\neq$\lambda$_{j} fori\neq j, $\lambda$_{i} is algebraic over \mathbb{Q} and $\lambda$_{i}\neq 0 for every

i . Assume that there exists an integer N such that \displaystyle \sum_{i=1}^{m}$\alpha$_{i}$\lambda$_{i}^{n}\in \mathbb{Q} for every n\geq N.

Then $\alpha$_{i} is algebraic over \mathbb{Q} and \displaystyle \sum_{i=1}^{m}$\alpha$_{i}$\lambda$_{i}^{n}\in \mathbb{Q} for every n.

Proof. This is an easy exercise of linear algebra. See [Mi, Lemma 2.1.3] for exam‐

ple. \square 

Remark. In the proof above, we cannot conclude that \displaystyle \sum_{i=0}^{2d}(-1)^{i}\mathrm{T}\mathrm{r}($\Gamma$^{*};H_{c}^{i}(X, \mathbb{Q}_{\ell}))
is an integer, since $\lambda$_{i,j,\ell} is not necessarily a unit of \mathrm{Z}

,
the ring of algebraic integers.

By Proposition 1.2 and its proof, we have the following integrality result:

Corollary 1.4. The alternating sum \displaystyle \sum_{i=0}^{2d}(-1)^{i}\mathrm{T}\mathrm{r}($\Gamma$^{*};H_{c}^{i}(X, \mathbb{Q}_{\ell})) lies in \mathbb{Z}[1/p].

There are (at least) two ways to derive this corollary:

\mathrm{O}1 Use the fact that $\lambda$_{i,j,\ell} in the proof of Proposition 1.2 is the unit of \mathrm{Z}[1/p] ([SGA7‐II,
Exposé XXI, Corollaire 5.5.3]). For a detailed proof, see [Mi, Lemma 2.1.3].

\mathrm{O}2 Use the integral structure of H_{c}^{i}(X, \mathbb{Q}_{\ell}) . Actually  $\Gamma$ induces the action on the

integral \ell‐adic cohomology of  X;$\Gamma$^{*}:H_{c}^{i}(X, \mathbb{Z}_{\ell})\rightarrow H_{c}^{i}(X, \mathbb{Z}_{\ell}) . Therefore $\Gamma$^{*} on

H_{c}^{i}(X, \mathbb{Q}_{\ell}) preserves the \mathbb{Z}_{\ell} ‐lattice {\rm Im}(H_{c}^{i}(X, \mathbb{Z}_{\ell})\rightarrow H_{c}^{i}(X, \mathbb{Q}_{\ell})) and thus we have

\displaystyle \sum_{i=0}^{2d}(-1)^{i}\mathrm{T}\mathrm{r}($\Gamma$^{*};H_{c}^{i}(X, \mathbb{Q}_{\ell}))\in \mathbb{Z}_{\ell}\cap \mathbb{Q}=\mathbb{Z}_{(\ell)} . By the \ell‐independence proved in

Proposition 1.2, we have \displaystyle \sum_{i=0}^{2d}(-1)^{i}\mathrm{T}\mathrm{r}($\Gamma$^{*};H_{c}^{i}(X, \mathbb{Q}_{\ell}))\in\bigcap_{\ell\neq p}\mathbb{Z}_{(\ell)}=\mathbb{Z}[1/p] as

desired.

These proofs are apparently different. The crucial fact in \mathrm{O}1 is that the Frobenius

eigenvalues $\lambda$_{i,j,\ell} are units in \overline{\mathbb{Z}}[1/p] . By the Weil conjecture, this can be deduced

from some properties (integrality of the coefficients, the functional equation) of the

congruence zeta function of X
,

which is inherent in X itself. Therefore, \mathrm{O}1 is the proof
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which is independent of cohomology theory; that is, we may apply this method to

any Weil cohomology (cf. [KM, Corollary 1]). On the other hand, the proof \mathrm{O}2 uses

the existence of a \mathbb{Z}_{\ell} ‐structure of the cohomology group, which is peculiar to \ell‐adic

cohomology.
Now we are at the starting point of the research reported in this article; if we

have an analogue of Fujiwara�s trace formula and a good integral structure for (

(p‐adic

cohomology�,

\bullet by \mathrm{O}1 ,
the alternating sum of the traces \displaystyle \sum_{i}(-1)^{i} Tr should lie in \mathbb{Z}[1/p],

\bullet by \mathrm{O}2, \displaystyle \sum_{i}(-1)^{i} Tr should lie in \mathrm{a}^{((}p‐adic ring� like \mathbb{Z}_{p},

and thus \displaystyle \sum_{i}(-1)^{i} Tr should be an integer. Furthermore, by comparing the \ell‐adic and

 p‐adic traces, we expect to have an analogous result for \ell‐adic cohomology (= Problem

1.1). These are exactly what the author did in this work.

The outline of the remaining part of this article is as follows. In the next section,
after giving a short review of p‐adic cohomology, we will deal with the part corresponding
to \mathrm{O}2 . The essential ingredient is the construction of refined cycle classes in partially

supported integral \log crystalline cohomology. This is needed to define the action of  $\Gamma$ on

integral \log crystalline cohomology. In Section 3, we consider an analogue of Fujiwara�s
trace formula for rigid cohomology by which we can make the same argument as in the

proof of Proposition 1.2. It enables us to carry out the  p‐adic version of the proof \mathrm{O}1,
and to compare the \ell‐adic and  p‐adic traces.

§2. p‐adic cohomology and an integrality result

In the sequel, let k be a perfect (not necessarily algebraically closed) field of char‐

acteristic p>0 . Let W=W(k) be the ring of Witt vectors of k, K_{0} the fraction field

of W ,
and K a finite totally ramified extension of K_{0} . We use the same notation X,  $\Gamma$,

 $\gamma$, $\gamma$_{i} as in the previous section.

In this work, we will use two p‐adic cohomology: rigid cohomology and \log crys‐

talline cohomology. Let us recall them briefly.
For a scheme  Y which is separated of finite type over k

,
we may define the rigid

cohomology H_{\mathrm{r}\mathrm{i}\mathrm{g}}^{i}(Y/K) and the compactly supported rigid cohomology H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(Y/K) of

Y ([Be1]). These are K‐vector spaces. Rigid cohomology is a good cohomology theory
even for schemes which are neither proper nor smooth over k (e.g., the K‐vector spaces

H_{\mathrm{r}\mathrm{i}\mathrm{g}}^{i}(Y/K) and H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(Y/K) are known to be finite‐dimensional). However, (as far as

the author knows) there is no integral structure on rigid cohomology in general.
We can define the action of  $\Gamma$ on  H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(X/K) as follows. First we assume that  $\Gamma$

is integral. Then, by de Jong�s alteration theorem, there exists a scheme  $\Gamma$' which is
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smooth over k and a proper surjective generically finite k‐morphism  $\pi$:$\Gamma$'\rightarrow $\Gamma$ . Put

 $\gamma$_{i}'=$\gamma$_{i}\circ $\pi$ for  i=1
,
2. By the Poincaré duality ([Be2]), $\gamma$_{2^{*}}':H_{\mathrm{r}\mathrm{i}\mathrm{g}}^{i}(X/K)\rightarrow H_{\mathrm{r}\mathrm{i}\mathrm{g}}^{i}($\Gamma$'/K)

induces a K‐linear map H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}($\Gamma$'/K)\rightarrow H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(X/K) . We denote this map by $\gamma$_{2*}' and

define $\Gamma$^{*}=(\deg $\pi$)^{-1}($\gamma$_{2*}'\circ$\gamma$_{1^{*}}') . It is easy to see that this is independent of the

choice of  $\pi$ . For general  $\Gamma$
,

let  $\Gamma$_{1} ,
. . .

, $\Gamma$_{n} be the irreducible components of  $\Gamma$ and put

 m_{i}= length \mathcal{O}_{ $\Gamma,\eta$_{i}} where $\eta$_{i} denotes the generic point of $\Gamma$_{i} . We define $\Gamma$^{*} as \displaystyle \sum_{i=1}^{n}m_{i}$\Gamma$_{i}^{*}.
Next we recall log crystalline cohomology. Let Y be a scheme which is proper

smooth over k
,

and D a strict normal crossing divisor on Y . Then we can define the

\log crystalline cohomology  H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((Y, D)/W) and the �compactly supported� (or �with

minus \log pole�) \log crystalline cohomology  H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((Y, -D)/W) . These are W‐modules.

If we put U=Y\backslash D ,
then we have the following comparison result due to Shiho [Sh]:

H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((Y, D)/W)\otimes_{W}K\cong H_{\mathrm{r}\mathrm{i}\mathrm{g}}^{i}(U/K) .

Moreover, combining this with the Poincaré duality for \log crystalline cohomology ([Ts])
and rigid cohomology ([Be2]), we also have the comparison result for compactly sup‐

ported cohomology (see [Na, Remark 5.4]):

 H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((Y, -D)/W)\otimes_{W}K\cong H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(U/K) .

In other words, if a smooth scheme U has a compactification U\leftrightarrow Y such that

the boundary is a strict normal crossing divisor, then the \log crystalline cohomology

 H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((Y, D)/W) (resp. H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((Y, -D)/W) ) gives an integral structure of the rigid co‐

homology H_{\mathrm{r}\mathrm{i}\mathrm{g}}^{i}(U/K) (resp. H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(U/K) ).
Now we state our integrality result.

Theorem 2.1. The trace \mathrm{T}\mathrm{r}($\Gamma$^{*};H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(X/K)) lies in \mathcal{O}_{K} , the ring of integers

of K.

First, by de Jong�s alteration theorem, we may assume that X has a compactifi‐
cation X\leftrightarrow\overline{X} such that D=\overline{X}\backslash X is a strict normal crossing divisor on \overline{X} . This

reduction might not seem immediate, since after taking an alteration  $\pi$:X'\rightarrow X
,

the

trace of the correspondence is multiplied by \deg $\pi$ . If we have the desired result for  X',
we can only have Tr $\Gamma$^{*}\in(\deg $\pi$)^{-1}\mathcal{O}_{K} . However, since \deg $\pi$ depends only on  X and is

independent of  $\Gamma$
,

we may replace  $\Gamma$ by its composite and have \mathrm{T}\mathrm{r}($\Gamma$^{*})^{n}\in(\deg $\pi$)^{-1}\mathcal{O}_{K}
for every n\geq 1 . By this, we may conclude \mathrm{T}\mathrm{r}$\Gamma$^{*}\in \mathcal{O}_{K} . For a detailed proof, see [Sa,
p. 629] for example.

In this case, it suffices to show the following proposition:

Proposition 2.2. We can dene a W ‐homomorphism

$\Gamma$^{*}: H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((\overline{X}, -D)/W)\rightarrow H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((\overline{X}, -D)/W)
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which makes the following diagram commutative:

H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((\overline{X}, -D)/W)\otimes_{W}K-\underline{\simeq}H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(X/K)

\downarrow$\Gamma$^{*}\otimes \mathrm{i}\mathrm{d}_{K} \downarrow$\Gamma$^{*}
H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((\overline{X}, -D)/W)\otimes_{W}K-\underline{\simeq}H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(X/K) .

In order to define $\Gamma$^{*}
,

we introduce partially supported \log crystalline cohomology.
Let  Y be a scheme which is proper smooth over k and D_{1}+D_{2} a strict normal crossing
divisor on Y such that D_{1} and D_{2} have no common irreducible component. Then we

can define the partially supported \log crystalline cohomology  H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((Y, D_{1}-D_{2})/W) .

This is a crystalline analogue of H^{i}(Y\backslash D_{1}, j_{!}\mathbb{Z}_{\ell}) ,
where j denotes the open immersion

Y\backslash (D_{1}\cup D_{2})\leftrightarrow Y\backslash D_{1} . The definition of H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((Y, D_{1}-D_{2})/W) using the de Rham‐

Witt complex is essentially given in [Hy] (roughly speaking, replace $\Omega$_{Y/k}
� in the theory

of usual de Rham‐Witt complexes by $\Omega$_{Y/k} ( D_{1}, D_{2} appearing in [DI, (4.2.1.2)]). We

may also give the definition within the framework of \log crystalline site.

Put  Z=\overline{X}\times\overline{X}, D_{1}=D\times\overline{X} and D_{2}=\overline{X}\times D . Then we have the natural

W‐homomorphisms

\mathrm{p}\mathrm{r}_{1}^{*}:H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((\overline{X}, -D)/W)\rightarrow H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((Z, -D_{1}+D_{2})/W) ,

\mathrm{p}\mathrm{r}_{2*}:H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i+2d}((Z, -D_{1}-D_{2})/W)\rightarrow H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((\overline{X}, -D)/W) .

Let \overline{ $\Gamma$} be the closure of  $\Gamma$ in  Z . Since $\gamma$_{1} is assumed to be proper, we have \overline{ $\Gamma$}\cap D_{2}\subset\overline{ $\Gamma$}\cap D_{1}.
Therefore, by Theorem 2.3 stated below, we have the cycle class \mathrm{c}1( $\Gamma$) in the partially

supported \log crystalline cohomology  H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{2d}((Z, D_{1}-D_{2})/W) . Hence we may define

$\Gamma$^{*}:H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((\overline{X}, -D)/W)\rightarrow H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((\overline{X}, -D)/W) as the composite

H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}((\overline{X}, -D)/W)\rightarrow H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}\mathrm{p}\mathrm{r}_{1}^{*}((Z, -D_{1}+D_{2})/W)\rightarrow-\cup \mathrm{c}1(\overline{ $\Gamma$})H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i+2d}((Z, -D_{1}-D_{2})/W)
\rightarrow H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{i}\mathrm{p}\mathrm{r}_{2*}((\overline{X}, -D)/W) .

It can be shown that this $\Gamma$^{*} satisfies the commutativity in Proposition 2.2.

Here is our theorem on cycle classes in the partially supported \log crystalline co‐

homology.

Theorem 2.3. Let  X be a purely d‐dimensional scheme which is proper smooth

over k, D=D_{1}+D_{2} a strict normal crossing divisor on X such that D_{1} and D_{2}

have no common irreducible component. Let Y be a closed subscheme of X with pure

codimension c such that Y\backslash D is dense in Y. If Y\cap D_{2}\subset Y\cap D_{1} ,
then we can dene the

cycle class \mathrm{c}1(Y)\in H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{2c}((X, D_{1}-D_{2})/W) which satises various functorialities (e.g.,
the image of \mathrm{c}1(Y) under the natural map H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{2c}((X, D_{1}-D_{2})/W)\rightarrow H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{2c}((X\backslash D)/W)
coincides with the cycle class of Y\backslash D dened in [Gr]).
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We will explain the outline of the proof. As in [Gr], we construct the cycle class

\mathrm{c}1_{\mathrm{H}\mathrm{W}}(Y) in the local Hodge‐Witt cohomology H_{Y}^{c}(X, W$\Omega$_{X}^{c}(\log(D_{1}-D_{2} . If Y does

not intersect D
,

then we have H_{Y}^{c}(X, W$\Omega$_{X}^{c}(\log(D_{1}-D_{2} \cong H_{Y}^{c}(X, W$\Omega$_{X}^{c}) . Thus we

may define \mathrm{c}1_{\mathrm{H}\mathrm{W}}(Y) as Gros� cycle class of Y . In the general case, we want to remove

the intersection Y\cap D . Consider the natur)) map

H_{Y}^{c}(X, W$\Omega$_{X}^{c}(\log(D_{1}-D_{2})))\rightarrow H_{Y\backslash D}^{c}(X\backslash D, W$\Omega$_{X}^{c}) .

This is not an isomorphism in general, but induces an isomorphism on their Frobenius

fixed parts:

Theorem 2.4. Under the setting of Theorem 2.3, the natural map

H_{Y}^{c}(X, W$\Omega$_{X}^{c}(\log(D_{1}-D_{2})))^{F=1}\rightarrow H_{Y\backslash D}^{c}(X\backslash D, W$\Omega$_{X}^{c})^{F=1}
is an isomorphism (F denotes the Frobenius map on Hodge‐Wi tt cohomology).

The proof of this theorem is the hardest part of this work. Note that Y\cap D is

contained in D_{1} by the assumption that Y\cap D_{2}\subset Y\cap D_{1} ,
and that the codimension

of Y\cap D in X is greater than c since Y\backslash D is dense in Y . Therefore it suffices to show

the following vanishing results of local cohomology sheaves: for every closed subscheme

Z of D_{1} ,
we have

\mathrm{H}_{Z}^{i}(X, W$\Omega$_{X}^{c}(\log(D_{1}-D_{2})))=0 for i<\mathrm{c}\mathrm{o}\dim_{X}Z,

\underline{H}_{Z}^{i}(X, W$\Omega$_{X}^{c}(\log(D_{1}-D_{2})))^{F=1}=0 for i=\mathrm{c}\mathrm{o}\dim_{X}Z.

The former is easy. For the latter, the crucial case is where Z is smooth and contained

in all irreducible components of D=D_{1}+D_{2} . The proof of this case involves direct

local calculation as in the proof of [Gr, II, Théorème 3.5.8].
In fact, the former is true for every closed subscheme Z of X . However, if we drop

the assumption that Z is contained in D_{1} and only assume that Z is contained in D
,
the

latter becomes false. In other words, the assumption Y\cap D_{2}\subset Y\cap D_{1} in Theorem 2.3

is essential. To see this, let us consider the case where D_{1}=\emptyset, D_{2} is a smooth divisor

and Z\subset D_{2} is smooth of pure codimension c+1 in X . Then we have the following
exact sequence:

. . . \rightarrow\underline{H}_{Z}^{c}(X, W$\Omega$_{X}^{c})\rightarrow\underline{H}_{Z}^{c}(D_{2}, W$\Omega$_{D_{2}}^{C})\rightarrow\underline{H}_{Z}^{c+1}(X, W$\Omega$_{X}^{c}(\log(-D_{2})))\rightarrow\cdots

Since  c<\mathrm{c}\mathrm{o}\dim_{Z}X ,
the sheaf \underline{H}_{Z}^{c}(X, W$\Omega$_{X}^{c}) is zero. Hence we have an injection

\underline{H}_{Z}^{c}(D_{2}, W$\Omega$_{D_{2}}^{C})^{F=1}\leftrightarrow\underline{H}_{Z}^{c+1}(X, W$\Omega$_{X}^{c}(\log(-D_{2})))^{F=1} . On the other hand, by Gros�

purity result ([Gr, II, Théorème 3.5.8]), we have \underline{H}_{Z}^{c}(D_{2}, W$\Omega$_{D_{2}}^{C})^{F=1}\cong W$\Omega$_{Z,\log}^{0}\neq 0.
Therefore we conclude that \underline{H}_{Z}^{c+1}(X, W$\Omega$_{X}^{c}(\log(-D_{2})))^{F=1}\neq 0.



64 Yoichi Mieda

By Theorem 2.4, we may define \mathrm{c}1_{\mathrm{H}\mathrm{W}}(Y) as the unique element that is mapped to

Gros� cycle class of Y\backslash D under the isomorphism there. Various functorialities of \mathrm{c}1_{\mathrm{H}\mathrm{W}}
are immediately derived from the corresponding results for Gros� cycle classes.

Once we have \mathrm{c}1_{\mathrm{H}\mathrm{W}}(Y) ,
we can define \mathrm{c}1(Y) as the image of \mathrm{c}1_{\mathrm{H}\mathrm{W}}(Y) under the

following natural maps

H_{Y}^{c}(X, W$\Omega$_{X}^{c}(\log(D_{1}-D_{2})))\rightarrow H_{Y}^{2c}(X, W$\Omega$_{X}(\log(D_{1}-D_{2})))
\rightarrow H^{2c}(X, W$\Omega$_{X}(\log(D_{1}-D_{2})))\cong H_{\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}}^{2c}((X, D_{1}-D_{2})/W) .

The existence of the first homomorphism above is a consequence of the vanishing of the

local cohomology sheaf \underline{H}_{Y}^{i}(W$\Omega$_{X}^{r}(\log(D_{1}-D for i<c . The functorialities of \mathrm{c}1(Y)
follow from those of \mathrm{c}1_{\mathrm{H}\mathrm{W}}(Y) .

Remark. The \ell‐adic version of Theorem 2.3 is immediate. See [Mi, 4.1.13].

§3. Lefschetz trace formula and its consequences

We again use the notation introduced in the beginning of Section 2. Assume that

 k=\mathrm{F}_{q} where q is a power of p . The statement of our Lefschetz trace formula is as

follows:

Theorem 3.1 (an analogue of Fujiwara�s trace formula). There exists an inte‐

ger N such that for every n with n\geq N we have

\displaystyle \sum_{i=0}^{2d}(-1)^{i} Tr ($\Gamma$^{*}\circ(\mathrm{F}\mathrm{r}_{X}^{*})^{n};H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(X/K))=($\gamma$_{*}^{(n)} $\Gamma$, \triangle_{X})_{X\times X}.

(The notation is the same as in the proof of Proposition 1.2.)

This theorem can be proved by a method similar to that used in [KS]. We can

establish a \log crystalline version of [KS, Theorem 2.3.4] and deduce Theorem 3.1 from

it as in [KS, Proposition 2.3.6].
This theorem gives an integrality result as \mathrm{O}1 in Section 1.

Corollary 3.2. The alternating sum \displaystyle \sum_{i=0}^{2d}(-1)^{i}\mathrm{T}\mathrm{r}($\Gamma$^{*};H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(X/K)) is an in‐

teger.

Proof. By [KM], the Frobenius eigenvalues of H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(X/K) are units of \mathrm{Z}[1/p].
Therefore, we can prove that \displaystyle \sum_{i=0}^{2d}(-1)^{i}\mathrm{T}\mathrm{r}($\Gamma$^{*};H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(X/K)) lies in \mathbb{Z}[1/p] by the same

way as \mathrm{O}1 in Section 1. On the other hand, by Theorem 2.1, it lies in \mathcal{O}_{K} . Thus we

have \displaystyle \sum_{i=0}^{2d}(-1)^{i}\mathrm{T}\mathrm{r}($\Gamma$^{*};H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(X/K))\in \mathbb{Z}[1/p]\cap \mathcal{O}_{K}=\mathbb{Z}. \square 

Theorem 3.1 also enables us to compare the \ell‐adic and  p‐adic traces.
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Corollary 3.3. We have the following equality:

\displaystyle \sum_{i=0}^{2d}(-1)^{i} Tr ($\Gamma$^{*};H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(X/K))=\displaystyle \sum_{i=0}^{2d}(-1)^{i} Tr ($\Gamma$^{*};H_{c}^{i}(X_{\overline{k}}, \mathbb{Q}_{\ell})) .

Proof. By Fujiwara�s trace formula and Theorem 3.1, there exists an integer N

such that for every n with n\geq N we have

(*) \displaystyle \sum_{i=0}^{2d}(-1)^{i} Tr ($\Gamma$^{*}\displaystyle \mathrm{o}(\mathrm{F}\mathrm{r}_{X}^{*})^{n};H_{\mathrm{r}\mathrm{i}\mathrm{g},c}^{i}(X/K))=\sum_{i=0}^{2d}(-1)^{i} Tr ($\Gamma$^{*}\mathrm{o}(\mathrm{F}\mathrm{r}_{X}^{*})^{n};H_{c}^{i}(X_{\overline{k}}, \mathbb{Q}_{\ell})) .

Moreover, as in the proof of Proposition 1.2, each side is of the form \displaystyle \sum_{i}$\alpha$_{i}$\lambda$_{i}^{n} where

$\alpha$_{i}, $\lambda$_{i}\in\overline{\mathbb{Q}} (we use the commutativity of $\Gamma$^{*} and \mathrm{F}\mathrm{r}_{X}^{*} on both cohomology). Therefore,

by the van der Mond argument, we have the equality () for every n\geq 0 . In particular,

setting n=0 ,
we have the desired equality. \square 

These corollaries give a positive answer to Problem 1.1:

Corollary 3.4. Here let k be an arbitrary field. Then, the alternating sum of
traces \displaystyle \sum_{i=0}^{2d}(-1)^{i}\mathrm{T}\mathrm{r}($\Gamma$^{*};H_{c}^{i}(X_{\overline{k}}, \mathbb{Q}_{\ell})) is an integer.

Proof. By the standard specialization argument, we may assume k=\mathrm{F}_{q} . In this

case, the corollary is clear from Corollary 3.2 and Corollary 3.3. \square 
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