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Abstract

In this partly survey, partly original paper, we review some recent results and progress

on the anabelian geometry of hyperbolic curves over finite fields. We also give another

proof of a certain prime‐to‐characteristic version of Uchida�s theorem on isomorphisms
between Galois groups of global fields in positive characteristics which is different from

the one given in [ST1].
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We have the following exact sequence of profinite groups:

1\rightarrow$\pi$_{1}(U\times k\overline{k}, *)\rightarrow$\pi$_{1}(U, *)\rightarrow G_{k}\rightarrow 1.

Here, G_{k} is the absolute Galois group \mathrm{G}\mathrm{a}1(\overline{k}/k) ,
* means a suitable geometric point, and

$\pi$_{1} stands for the étale fundamental group. In [G] Grothendieck laid down the founda‐

tion of his anabelian geometry program and philosophy. According to this philosophy
the isomorphy type of U above, as a scheme, should be determined by the isomorphy
type of $\pi$_{1}(U, *) as a profinite group. This was proved to be true by Tamagawa and

Mochizuki (cf. Theorem 1.1). Thus, a deep connection between the geometry of hy‐
perbolic curves over finite fields and profinite group theory has been established. As a

consequence one can embed a suitable category of hyperbolic curves over finite fields

into the category of profinite groups via the fundamental group functor. It is essential

in the anabelian philosophy of Grothendieck, as was formulated in [G], to be able to

determine the image of this functor. Unfortunately this seems to be out of reach for

the moment, the reason being that the structure of $\pi$_{1}(U, *) ,
as a profinite group, is

unknown for any single example of U . This motivates the following question:

Question 0.1. Is it possible to reconstruct the isomorphy type of U solely from the

isomorphy type of any quotients of $\pi$_{1}(U, *) which are better understood?

The first quotients that come into mind are the following. Let Primes be the set of

all prime numbers. Let  $\Sigma$=$\Sigma$_{U}\subset Primes be a set of prime numbers not containing
the characteristic  p . For a profinite group  $\Gamma$, $\Gamma$^{ $\Sigma$} stands for the maximal \mathrm{p}\mathrm{r}\mathrm{o}- $\Sigma$ quotient
of  $\Gamma$ . The structure of  $\pi$_{1}(U\times k\overline{k}, *)^{ $\Sigma$} is well understood: it is isomorphic to the \mathrm{p}\mathrm{r}\mathrm{o}- $\Sigma$
completion of a certain well‐known finitely generated discrete group (i.e., either a free

group or a surface group). Let

 $\Pi$_{U}^{( $\Sigma$)}\mathrm{d}\mathrm{e}\mathrm{f}=$\pi$_{1}(U, *)/\mathrm{K}\mathrm{e}\mathrm{r}($\pi$_{1}(U\times k\overline{k}, *)\rightarrow$\pi$_{1}(U\times k\overline{k}, *)^{ $\Sigma$})

be the corresponding quotient of $\pi$_{1}(U) .

Question 0.2. Is it possible to reconstruct the isomorphy type of U solely from the

isomorphy type of $\Pi$_{U}^{( $\Sigma$)} ,
for a given set of primes  $\Sigma$ not containing  p?

In a recent work we proved that this is indeed possible in the case where  $\Sigma$=

Primesp} (cf. Theorem 1.3). As a consequence one deduces a prime‐to‐characteristic
version of Uchida�s theorem on isomorphisms between absolute Galois groups of global
fields in positive characteristic (cf. Theorem 1.4). In more recent work (not yet written

at the time of writing this paper) we proved that one can reconstruct the isomorphy

type of U solely from the isomorphy type of $\Pi$_{U}^{( $\Sigma$)} (in the case where U is proper) for

a certain type of infinite set of primes  $\Sigma$ (cf. Theorem 1.6, and Theorem 1.5 in the

birational case). One can ultimately ask the following question.

Question 0.3. Is it possible to reconstruct the isomorphy type of  U solely form the

isomorphy type of $\Pi$_{U}^{( $\Sigma$)} in the case where  $\Sigma$=\{l\} consists of a single prime number l

which is different from p?
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At the moment of writing this paper we do not know if Question 0.3 has an affirmative

answer.

In §1 we review the above results concerning the Isom‐form of the Grothendieck

(birational) anabelian conjecture for hyperbolic curves over finite fields. In §2 we state

the \mathrm{H}\mathrm{o}\mathrm{m}‐form of the Grothendieck anabelian (respectively, birational anabelian) con‐

jecture for hyperbolic curves over finite fields. According to these conjectures one can

reconstruct a non‐constant morphism between hyperbolic curves over finite fields from

the corresponding open homomorphism between corresponding fundamental groups (re‐
spectively, Galois groups) (cf. Conjecture 2.1 and Conjecture 2.2). These conjectures
seem to be quite difficult to prove, for the time being, mainly because of the lack of

a suitable �local theory� for continuous homomorphisms between fundamental groups

and Galois groups. In §2 we discuss these difficulties in some detail. Our approach
to the \mathrm{H}\mathrm{o}\mathrm{m}‐form of the Grothendieck (birational) anabelian conjecture for hyperbolic
curves over finite fields is to attempt to prove it after imposing some extra condi‐

tions, which mainly ensure the existence of a suitable local theory. As a result we can

prove the \mathrm{H}\mathrm{o}\mathrm{m}‐form of the Grothendieck birational anabelian conjecture for hyperbolic
curves over finite fields under some suitable �local conditions� (cf. Theorem 2.6). In

Conjecture 2.10 we state a revised (realistic) form of the \mathrm{H}\mathrm{o}\mathrm{m}‐form of the Grothendieck

anabelian conjecture for hyperbolic curves over finite fields which one hopes to be able

to prove. §3 is the most original part of this paper. It contains another proof of the

prime‐to‐characteristic version of Uchida�s theorem on isomorphisms between Galois

groups of global fields in positive characteristics, which is different from the one given
in [ST1], Corollary 3.11. This proof is very much inspired by Uchida�s proof of Theorem

1.2, and uses class field theory.

§1. The Isom‐form of the Grothendieck anabelian conjecture.

Let X be a proper, smooth, and geometrically connected curve over a finite field

k=k_{X} of characteristic p=p_{X}>0 . Write K=K_{X} for the function field of X . Let S

be \mathrm{a} (possibly empty) finite set of closed points of X
,

and set U=U_{S}\mathrm{d}\mathrm{e}\mathrm{f}=X-S . We

assume that U is hyperbolic. Let  $\xi$ be a base point of  X with value in the generic point
of X . Then  $\xi$ determines an algebraic closure \overline{k} of k

,
and a separable closure K^{\mathrm{s}\mathrm{e}\mathrm{p}} of

K . Denote by \overline{U}^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}U\times k\overline{k} the geometric fiber of U , by G_{k}\mathrm{d}\mathrm{e}\mathrm{f}=\mathrm{G}\mathrm{a}1(\overline{k}/k) the absolute

Galois group of k
,

and by $\pi$_{1}(U) the étale fundamental group of U with base point  $\xi$.
Then $\pi$_{1}(U) sits naturally in the following exact sequence:

1\rightarrow$\pi$_{1}(\overline{U})\rightarrow$\pi$_{1}(U)\rightarrow G_{k}\rightarrow 1,

where $\pi$_{1}(\mathrm{U}) is the étale fundamental group of \overline{U} with base point  $\xi$ . Also, denote by

\overline{X}\mathrm{d}\mathrm{e}\mathrm{f}=X\times k\overline{k} the geometric fiber of X
,

and by K_{\overline{X}} the function field of \overline{X} . (Thus,

K_{\overline{X}}=Kk Let G_{K_{X}}\mathrm{d}\mathrm{e}\mathrm{f}=\mathrm{G}\mathrm{a}1(K^{\mathrm{s}\mathrm{e}\mathrm{p}}/K) be the absolute Galois group of K_{X} . Then

G_{K_{X}} sits naturally in the following exact sequence:

1\rightarrow G_{K_{\overline{X}}}\rightarrow G_{K_{X}}\rightarrow G_{k}\rightarrow 1,
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where G_{K_{\overline{X}}}^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\mathrm{G}\mathrm{a}1(K^{\mathrm{s}\mathrm{e}\mathrm{p}}/K_{\overline{X}}) is the absolute Galois group of K_{\overline{X}}.
According to the anabelian (respectively, birational anabelian) philosophy of

Grothendieck (cf. [G]) the isomorphy type of U as a scheme (respectively, K_{X} as

a field) should be determined by the isomorphy type of $\pi$_{1}(U) as a profinite group

(respectively, G_{K_{X}} as a profinite group). The following result is fundamental in the

anabelian geometry of hyperbolic curves over finite fields.

Theorem 1.1 (Tamagawa, Mochizuki). Let U, V be hyperbolic curves over finite
fields k_{U}, k_{V} , respectively. Let

 $\alpha$:$\pi$_{1}(U)\rightarrow\sim$\pi$_{1}(V)

be an isomorphism of pronite groups. Then  $\alpha$ arises fr om a uniquely determined

commutative diagram of schemes:

\ovalbox{\tt\small REJECT}\rightarrow^{\sim}\tilde{V}

\downarrow \downarrow
 U\rightarrow^{\sim}V

in which the horizontal arrows are isomorphisms, and the vertical arrows are the pro‐

nite étale universal coverings corresponding to $\pi$_{1}(U) , $\pi$_{1}(V) , respectively.

Theorem 1.1 implies in particular the following birational version of the Grothendieck

anabelian conjecture for hyperbolic curves over finite fields, which was already proved
by Uchida.

Theorem 1.2 (Uchida). Let X, Y be proper, smooth, and geometrically connected

curves over finite fields k_{X}, k_{Y} , respectively. Let K_{X}, K_{Y} be the function fields of X,
Y

, respectively. Let G_{K_{X}}, G_{K_{Y}} be the absolute Galois groups of K_{X}, K_{Y} , respectively.
Let

 $\alpha$:G_{K_{X}}\rightarrow\sim G_{K_{Y}}

be an isomorphism of pronite groups. Then  $\alpha$ arises fr om a uniquely determined

commutative diagram of field extensions:

\tilde{K}_{X}\rightarrow^{\sim}\tilde{K}_{Y}

\uparrow \uparrow
 K_{X}\rightarrow^{\sim}K_{Y}

in which the horizontal arrows are isomorphisms, and the vertical arrows are the field
extensions corresponding to the Galois groups G_{K_{X}}, G_{K_{Y}} , respectively (i.e., \tilde{K}_{X}=

K_{X}^{\mathrm{s}\mathrm{e}\mathrm{p}}, \tilde{K}_{Y}=K_{Y}^{\mathrm{s}\mathrm{e}\mathrm{p}}) .

Theorem 1.2 was first proved by Uchida (cf. [U]). Theorem 1.1 was proved by Tama‐

gawa (cf. [T], Theorem (4.3)) in the affine case (together with a certain tame version),
and more recently by Mochizuki (cf. [M], Theorem 3.2) in the proper case. It implies in
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particular that one can embed a suitable category of hyperbolic curves over finite fields

into the category of profinite groups via the fundamental group functor. It is essen‐

tial in the anabelian philosophy of Grothendieck, as was formulated in [G], to be able

to determine the image of this functor. Recall that the full structure of the profinite
group $\pi$_{1}(\mathrm{U}) is unknown (for any single example of U which is hyperbolic). Hence, \mathrm{a}

fortiori, the structure of $\pi$_{1}(U) is unknown (the closed subgroup $\pi$_{1}(\mathrm{U}) of $\pi$_{1}(U) can

be reconstructed group‐theoretically from the isomorphy type of $\pi$_{1}(U) (cf. [T], Propo‐
sition (3.3)). (Even if we replace the fundamental groups $\pi$_{1}(\overline{U}) , $\pi$_{1}(U) by the tame

fundamental groups $\pi$_{1}^{\mathrm{t}}(\overline{U}) , $\pi$_{1}^{\mathrm{t}}(U) , respectively, the situation is just the same.) The

full structure of the absolute Galois group G_{K_{X}} is also unknown, though one knows

the structure of the closed subgroup G_{K_{\overline{X}}} of G_{K_{X}} by a result of Pop and Harbater.

(Namely G_{K_{\overline{X}}} is a free profinite group of countable rank, cf. [P], [H].) Thus, the prob‐
lem of determining the image of the above functor seems to be quite difficult, at least

for the moment. Now, it is quite natural to address the following question:

Question 1. Is it possible to prove any result analogous to the above Theorem 1.1

(respectively, 1.2) where $\pi$_{1}(U) (respectively, G_{K_{X}} ) is replaced by some quotient of

$\pi$_{1}(U) (respectively, G_{K_{X}} ) whose structure is better understood?

The first quotients that come into mind are the following. Let Primes be the set of

all prime numbers. Let  $\Sigma$=$\Sigma$_{U}\subset Primes be a set of prime numbers not containing
 p . For a profinite group  $\Gamma$, $\Gamma$^{ $\Sigma$} stands for the maximal \mathrm{p}\mathrm{r}\mathrm{o}- $\Sigma$ quotient of  $\Gamma$ . The

structure of  $\pi$_{1}(\overline{U})^{ $\Sigma$} is well understood: it is isomorphic to the \mathrm{p}\mathrm{r}\mathrm{o}- $\Sigma$ completion of a

certain well‐known finitely generated discrete group (i.e., either a free group or a surface

group). Let  $\Pi$_{U}^{( $\Sigma$)}\mathrm{d}\mathrm{e}\mathrm{f}=$\pi$_{1}(U)/\mathrm{K}\mathrm{e}\mathrm{r}($\pi$_{1}(\overline{U})\rightarrow$\pi$_{1} be the corresponding quotient of

$\pi$_{1}(U) . We shall refer to $\Pi$_{U}^{( $\Sigma$)} as the geometrically \mathrm{p}\mathrm{r}\mathrm{o}- $\Sigma$ étale fundamental group of

 U . In a similar way we can define the maximal \mathrm{p}\mathrm{r}\mathrm{o}- $\Sigma$ quotient  G_{K_{\overline{X}}}^{ $\Sigma$} of G_{K_{\overline{X}}} and the

corresponding quotient G_{Kx}^{( $\Sigma$)} of G_{K_{X}} ,
which we will refer to as the geometrically \mathrm{p}\mathrm{r}\mathrm{o}- $\Sigma$

quotient of the absolute Galois group  G_{K_{X}}.

Question 2. Is it possible to prove any result analogous to the above Theorem 1.1

(respectively, 1.2) where $\pi$_{1}(U) (respectively, G_{K_{X}} ) is replaced by $\Pi$_{U}^{( $\Sigma$)} (respectively,

G_{Kx}^{( $\Sigma$)}) ,
for a given set of prime numbers  $\Sigma$\subset Primes not containing  p?

The first set  $\Sigma$ to consider is the set  $\Sigma$ \mathrm{d}\mathrm{e}\mathrm{f}= Primes \backslash \{p\} . In this case, we set

$\Pi$_{U}\mathrm{d}\mathrm{e}\mathrm{f}=$\Pi$_{U}^{( $\Sigma$)} and G_{K}\mathrm{d}\mathrm{e}\mathrm{f}=G_{K}^{( $\Sigma$)} ,
and we shall refer to them as the geometrically prime‐

to‐characteristic quotients. We have the following results.

Theorem 1.3 (A \mathrm{P}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}-\mathrm{t}\mathrm{o}-p Version of Grothendieck�s Anabelian Conjec‐
ture for Hyperbolic Curves over Finite Fields). Let U, V be hyperbolic curves

over finite fields k_{U}, k_{V} , respectively. Write $\Pi$_{U}, $\Pi$_{V} for the geometrically prime‐to‐
characteristic quotients of $\pi$_{1}(U) , $\pi$_{1}(V) , respectively. Let

 $\alpha$:$\Pi$_{U}\rightarrow\sim$\Pi$_{V}
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be an isomorphism of pronite groups. Then  $\alpha$ arises fr om a uniquely determined

commutative diagram of schemes:

Ũ \rightarrow^{\sim}\tilde{V}

\downarrow \downarrow
 U \rightarrow^{\sim} V

in which the horizontal arrows are isomorphisms and the vertical arrows are the pronite
étale coverings corresponding to $\Pi$_{U}, $\Pi$_{V} , respectively.

Theorem 1.3 was proved by the authors (cf. [ST1], Corollary 3.10). As a consequence

of Theorem 1.3 one can deduce the following prime‐to‐characteristic version of Uchida�s

theorem (cf. [ST1], Corollary 3.11).

Theorem 1.4 (A \mathrm{P}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}-\mathrm{t}\mathrm{o}-p Version of Uchida�s Theorem on Isomorphisms
between Galois Groups of Function Fields). Let X, Y be proper, smooth, and

geometrically connected curves over finite fields k_{X}, k_{Y} , respectively. Let K_{X}, K_{Y} be

the function fields of X, Y
, respectively. Let G_{K_{X}}, G_{K_{Y}} be the absolute Galois groups of

K_{X}, K_{Y} , respectively, and let G_{K_{X}}^{(\prime)}, G_{K_{Y}}^{(\prime)} be their geometrically prime‐to‐characteristic
quotients. Let

 $\alpha$:G_{K_{X}}^{(\prime)}\rightarrow\sim G_{K_{Y}}^{(\prime)}
be an isomorphism of pronite groups. Then  $\alpha$ arises fr om a uniquely determined

commutative diagram of field extensions:

\tilde{K}_{X} \rightarrow^{\sim}\tilde{K}_{Y}

\uparrow \uparrow
 K_{X}\rightarrow^{\sim}K_{Y}

in which the horizontal arrows are isomorphisms, and the vertical arrows are the exten‐

sions corresponding to G_{K_{X}}^{(\prime)}, G_{K_{Y}}^{(\prime)} , respectively.

See §3 for another proof of Theorem 1.4.

In a more recent joint work, the authors proved the following refined version of

Uchida�s theorem which is stronger than Theorem 1.4.

Theorem 1.5 (A Rened Version of Uchida�s Theorem on Isomorphisms
between Galois Groups of Function Fields). Let X, Y be proper, smooth, and

geometrically connected curves over finite fields k_{X}, k_{Y} of characteristics p_{X}, p_{Y} ,
re‐

spectively. Let K_{X}, K_{Y} be the function fields of X, Y
, respectively. Let G_{K_{X}}, G_{K_{Y}}

be the absolute Galois groups of K_{X}, K_{Y} , respectively. Let $\Sigma$_{X}\subset \mathfrak{P}\mathfrak{r}i\mathfrak{m}\mathfrak{e}\mathfrak{s}\backslash \{p_{X}\},
$\Sigma$_{Y}\subset Primes \backslash \{p_{Y}\} be sets of primes, and set $\Sigma$_{X}'\mathrm{d}\mathrm{e}\mathrm{f}= Primes \backslash ($\Sigma$_{X}\cup\{p_{X}\}) ,

 $\Sigma$ Ý \mathrm{d}\mathrm{e}\mathrm{f}= Primes \backslash ($\Sigma$_{Y}\cup\{p_{Y}\}) . Assume that neither the $\Sigma$_{X}' ‐cyclotomic character

x$\Sigma$_{X}' : G_{k_{X}}\displaystyle \rightarrow\prod_{l\in$\Sigma$_{X}}, \mathbb{Z}_{l}^{\times} nor the  $\Sigma$ Ý‐cyclotomic character  $\chi \Sigma$ Ý :  G_{k_{Y}}\displaystyle \rightarrow\prod_{l\in$\Sigma$_{Y}}, \mathbb{Z}_{l}^{\times}
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are injective. Let G_{Kx}^{($\Sigma$_{X})}, G_{K_{Y}}^{($\Sigma$_{Y})} be the geometrically pro-$\Sigma$_{X} quotient of G_{K_{X}} and the

geometrically pro-$\Sigma$_{Y} quotient of G_{K_{Y}} , respectively. Let

 $\alpha$:G_{Kx}^{($\Sigma$_{X})}\rightarrow\sim G_{K_{Y}}^{($\Sigma$_{Y})}
be an isomorphism of pronite groups. Then  $\alpha$ arises fr om a uniquely determined

commutative diagram of field extensions:

\tilde{K}_{X}^{($\Sigma$_{X})}\rightarrow^{\sim}\tilde{K}_{Y}^{($\Sigma$_{Y})}

\uparrow \uparrow
 K_{X} \rightarrow^{\sim} K_{Y}

in which the horizontal arrows are isomorphisms and the vertical arrows are the field
extensions corresponding to G_{Kx}^{($\Sigma$_{X})}, G_{K_{Y}}^{($\Sigma$_{Y})} , respectively.

We also proved the following refined version of Theorem 1.3.

Theorem 1.6 (A Rened Version of Grothendieck�s Anabelian Conjecture for

Hyperbolic Curves over Finite Fields). Let X, Y be proper hyperbolic curves over

finite fields k_{X}, k_{Y} of characteristics p_{X}, p_{Y} , respectively. Let $\Sigma$_{X}\subset \mathfrak{P}\mathfrak{r}i\mathfrak{m}\mathfrak{e}\mathfrak{s}\backslash \{p_{X}\},
$\Sigma$_{Y}\subset \mathfrak{P}\mathfrak{r}i\mathfrak{m}\mathfrak{e}\mathfrak{s}\backslash \{p_{Y}\} be sets of primes, and set $\Sigma$_{X}'\mathrm{d}\mathrm{e}\mathrm{f}=\mathfrak{P}\mathfrak{r}i\mathfrak{m}\mathfrak{e}\mathfrak{s}\backslash ($\Sigma$_{X}\cup  $\Sigma$ Ý \mathrm{d}\mathrm{e}\mathrm{f}=

\mathfrak{P}\mathfrak{r}i\mathfrak{m}\mathfrak{e}\mathfrak{s}\backslash ($\Sigma$_{Y}\cup\{p_{Y}\}) . Assume that neither the $\Sigma$_{X}' ‐adic representation  $\rho \Sigma$_{X}' :  G_{k_{X}}\rightarrow

\displaystyle \prod_{l\in$\Sigma$_{X}}, GL_{2gx} () nor the $\Sigma$_{Y}' ‐adic representation  $\rho \Sigma$ Ý :  G_{k_{Y}}\displaystyle \rightarrow\prod_{l\in$\Sigma$_{Y}}, GL_{2g_{Y}}
which arise from the actions on the Ta te modules of the Jacobian varieties of \overline{X}, \overline{Y},
respectively, are injective (where g_{X}, g_{Y} denote the genus of X, Y

, respectively). Write

$\Pi$_{X}^{($\Sigma$_{X})}, $\Pi$_{Y}^{($\Sigma$_{Y})} for the geometrically pro-$\Sigma$_{X} étale fundamental group of X and the geo‐

metrically pro-$\Sigma$_{Y} étale fundamental group of Y
, respectively. Let

 $\alpha$:$\Pi$_{X}^{($\Sigma$_{X})}\rightarrow\sim$\Pi$_{Y}^{($\Sigma$_{Y})}
be an isomorphism of pronite groups. Then  $\alpha$ arises fr om a uniquely determined

commutative diagram of schemes:

\tilde{X}^{($\Sigma$_{X})}\rightarrow^{\sim}\tilde{Y}^{($\Sigma$_{Y})}

\downarrow \downarrow
 X \rightarrow^{\sim} Y

in which the horizontal arrows are isomorphisms and the vertical arrows are the pronite
étale coverings corresponding to $\Pi$_{X}^{($\Sigma$_{X})}, $\Pi$_{Y}^{($\Sigma$_{Y})} , respectively.

Note that the extra assumptions for $\Sigma$_{X}, $\Sigma$_{Y} in Theorems 1.5 and 1.6 are satisfied if

$\Sigma$_{X}' ,
 $\Sigma$ Ý are finite.

At the moment of writing this paper we do not know if a pro‐l version of the

above theorems holds, namely if the above Theorems 1.5 and 1.6 hold (under certain

Frobenius‐preserving assumptions) in the case where  $\Sigma$=\{l\} consists of a single prime
number l which is different from p . It is very important for the anabelian geometry of

hyperbolic curves over finite fields to know whether such a version holds or not.
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§2. The \mathrm{H}\mathrm{o}\mathrm{m}‐form of the Grothendieck anabelian conjecture.

In this section we use the same notations as in §1, unless we specify otherwise. We

expect that a \mathrm{H}\mathrm{o}\mathrm{m}‐form of the Grothendieck (birational) anabelian conjecture holds

for hyperbolic curves over finite fields. These conjectures can be formulated as follows.

Conjecture 2.1 (The \mathrm{H}\mathrm{o}\mathrm{m}‐Form of the Grothendieck Anabelian Conjec‐
ture). Let U, V be hyperbolic curves over finite fields k_{U}, k_{V} , respectively. Let

 $\alpha$:$\pi$_{1}(U)\rightarrow$\pi$_{1}(V)

be a continuous open homomorphism between pronite groups. Then  $\alpha$ arises fr om a

uniquely determined commutative diagram of schemes:

\ovalbox{\tt\small REJECT}\rightarrow\tilde{V}

\downarrow \downarrow
 U\rightarrow V

in which the horizontal arrows are generically (pro‐)étale morphisms and the vertical

arrows are the pronite étale coverings corresponding to $\pi$_{1}(U) , $\pi$_{1}(V) , respectively.

Conjecture 2.2 (The \mathrm{H}\mathrm{o}\mathrm{m}‐Form of the Grothendieck Birational Anabelian

Conjecture). Let X, Y be proper, smooth, and geometrically connected curves over fi‐
nite fields k_{X}, k_{Y} , respectively. Let K_{X}, K_{Y} be the function fields of X, Y

, respectively.
Let G_{K_{X}}, G_{K_{Y}} be the absolute Galois groups of K_{X}, K_{Y} , respectively. Let

 $\alpha$:G_{K_{X}}\rightarrow G_{K_{Y}}

be a continuous open homomorphism between pronite groups. Then  $\alpha$ arises fr om a

uniquely determined commutative diagram of field extensions:

\tilde{K}_{Y}\rightarrow\tilde{K}_{X}

\uparrow \uparrow
 K_{Y}\rightarrow K_{X}

in which the horizontal arrows are separable embeddings and the vertical arrows are the

extensions corresponding to G_{K_{Y}}, G_{K_{X}} , respectively.

Note that if Conjecture 2.2 is true then every continuous open homomorphism be‐

tween absolute Galois groups  $\alpha$ :  G_{K_{X}}\rightarrow G_{K_{Y}} would be injective since it would arise

from an embedding K_{Y}\rightarrow K_{X} between corresponding fields. Clearly, in order to

prove the above conjectures it suffices to prove them for continuous surjective homo‐

morphisms.
The above conjectures seem to be quite difficult to prove for the moment. One of

the main difficulties in proving these conjectures is the lack of a suitable �local theory�
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for continuous open homomorphisms between absolute Galois groups or fundamental

groups. Consider for instance Conjecture 2.2, and let

 $\alpha$:G_{K_{X}}\rightarrow G_{K_{Y}}

be a continuous open homomorphism between absolute Galois groups. One would like

to show that the image  $\alpha$(D) of a decomposition subgroup D_{x} of G_{K_{X}} associated to

a closed point x\in X is contained and open in a decomposition subgroup D_{y} of G_{K_{Y}}
associated to some closed point y\in Y . As a consequence one would obtain a set‐

theoretic map X^{\mathrm{c}1}\rightarrow Y^{\mathrm{c}1} between the sets of closed points of X and Y
, respectively;

one would hope to prove eventually that this map arises from a geometric map X\rightarrow Y.

The �local theory� is in the heart of the proof of Uchida�s theorem (Theorem 1.2)
and its refined versions (Theorems 1.4 and 1.5). Such a �local theory� seems to be

difficult to establish in the above context for the time being. In a recent joint work,
the authors investigated the possibility of proving the above conjectures under suitable

�local conditions�, mainly assuming that such a �local theory� exists, and we succeeded

in doing so with Conjecture 2.2.

More specifically, in [ST2] we investigated a class of homomorphisms between abso‐

lute Galois groups of function fields of curves over finite fields which we call proper. In

what follows we use the following notations. Let X, Y be proper, smooth, and geomet‐

rically connected curves over finite fields k_{X}, k_{Y} of characteristics px, p_{Y} , respectively.
Let K_{X}, K_{Y} be the function fields of X, Y

, respectively. Write G_{K_{X}}\mathrm{d}\mathrm{e}\mathrm{f}=\mathrm{G}\mathrm{a}1(K_{X}^{\mathrm{s}\mathrm{e}\mathrm{p}}/K_{X}) ,

G_{K_{Y}}\mathrm{d}\mathrm{e}\mathrm{f}=\mathrm{G}\mathrm{a}1(K_{Y}^{\mathrm{s}\mathrm{e}\mathrm{p}}/K_{Y}) for the absolute Galois groups of K_{X}, K_{Y} , respectively. Let

\tilde{X}\rightarrow X, \tilde{Y}\rightarrow Y be the profinite, generically étale covers corresponding to the absolute

Galois groups G_{K_{X}}, G_{K_{Y}} , respectively. From now on, for a scheme S ,
we denote by S^{\mathrm{c}1}

the set of closed points of S.

Denition 2.3 (Well‐Behaved Homomorphisms between Absolute Galois

Groups). A continuous homomorphism

 $\alpha$:G_{K_{X}}\rightarrow G_{K_{Y}}

between profinite groups is well‐behaved if there exists a map

\tilde{ $\psi$}:\tilde{X}^{\mathrm{c}1}\rightarrow\tilde{Y}^{\mathrm{c}1}, \tilde{x} \mapsto ỹ,

such that

 $\alpha$(D_{\tilde{x}})_{\mathrm{o}\mathrm{p}}\subseteqq_{\mathrm{e}\mathrm{n}} Dỹ

for any \tilde{x}\in\tilde{X}^{\mathrm{c}1} ,
where D_{\overline{x}} , Dỹ denote the decomposition subgroups of G_{K_{X}}, G_{K_{Y}} at

\tilde{x}
, ỹ, respectively.

In particular, given a well‐behaved homomorphism  $\alpha$ :  G_{K_{X}}\rightarrow G_{K_{Y}} the map \tilde{ $\psi$} :

x
\sim

cl
\rightarrow Ỹcl, \tilde{}\mapsto ỹ, is  $\alpha$‐equivariant and induces naturally a map

 $\psi$:X^{\mathrm{c}1}\rightarrow Y^{\mathrm{c}1}, x\mapsto y,

where x, y denote the images of \tilde{x}
, ỹ in X^{\mathrm{c}1}, Y^{\mathrm{c}1}

, respectively.
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Denition 2.4 (Proper Homomorphisms between Absolute Galois Groups).
A well‐behaved continuous homomorphism  $\alpha$ :  G_{K_{X}}\rightarrow G_{K_{Y}} between profinite groups

is called proper if the induced map

 $\psi$:X^{\mathrm{c}1}\rightarrow Y^{\mathrm{c}1}, x\mapsto y,

has finite fibers, i.e., for each y\in Y^{\mathrm{c}1} the pre‐image $\psi$^{-1}(y) is either an empty or a

finite set.

Let  $\alpha$ :  G_{K_{X}}\rightarrow G_{K_{Y}} be a well‐behaved homomorphism, and let x be a closed point
of X . Then  $\alpha$ induces naturally an open homomorphism  $\alpha$ :  D_{x}\rightarrow D_{ $\psi$(x)} between

the decomposition groups, an open homomorphism  $\alpha$ :  I_{x}\rightarrow I_{ $\psi$(x)} between the inertia

groups, and an open homomorphism $\alpha$^{\mathrm{t}} : I_{x}^{\mathrm{t}}\rightarrow I^{\mathrm{t}} between the tame inertia groups, $\psi$(x)

at the points x and  $\psi$(x) . (In particular, we have p^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}p_{X}=p_{Y}. ) Then $\alpha$^{\mathrm{t}} induces an

isomorphism I_{x}^{\mathrm{t}}\rightarrow\sim(I_{ $\psi$(x)}^{\mathrm{t}})^{e_{x}} ,
where e_{x}\mathrm{d}\mathrm{e}\mathrm{f}=[I_{ $\psi$(x)} :  $\alpha$(I_{x})] . Taking the composite of this

isomorphism I_{x}^{\mathrm{t}}\rightarrow\sim(I_{ $\psi$(x)}^{\mathrm{t}})^{e_{x}} and the e_{x} ‐multiplication isomorphism (I_{ $\psi$(x)}^{\mathrm{t}})^{e_{x}}\leftarrow\sim I_{ $\psi$(x)}^{\mathrm{t}},
we obtain an isomorphism

$\tau$_{x, $\psi$(x)}:I_{x}^{\mathrm{t}}\rightarrow\sim I_{ $\psi$(x)}^{\mathrm{t}}.
It is well‐known that the tame inertia groups I_{x}^{\mathrm{t}}, I_{ $\psi$(x)}^{\mathrm{t}} are naturally isomorphic

to the global modules of roots of unity M_{X} \mathrm{d}\mathrm{e}\mathrm{f}= \mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{Q}/\mathbb{Z}, (K_{X}^{\mathrm{s}\mathrm{e}\mathrm{p}})^{\times}) , M_{Y} \mathrm{d}\mathrm{e}\mathrm{f}=

\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{Q}/\mathbb{Z}, (K_{Y}^{\mathrm{s}\mathrm{e}\mathrm{p}})^{\times}) , respectively.

Denition 2.5 (Inertia‐Rigid Homomorphisms between Absolute Galois

Groups). A well‐behaved continuous homomorphism  $\alpha$ :  G_{K_{X}}\rightarrow G_{K_{Y}} as above is

called inertia‐rigid if the above isomorphisms $\tau$_{x, $\psi$(x)} ,
where x runs over all closed points

of X
,

are all identical to some (single) isomorphism

 $\tau$:M_{X}\rightarrow\sim M_{Y}

between the global modules of roots of unity.

In [ST2] we proved the following theorem.

Theorem 2.6. Let

 $\alpha$:G_{K_{X}}\rightarrow G_{K_{Y}}

be a continuous open homomorphism between pronite groups, and assume that  $\alpha$ is

proper and inertia‐rigid. Then  $\alpha$ arises from a uniquely determined commutative dia‐

gram of field extensions:

\tilde{K}_{Y}\rightarrow\tilde{K}_{X}

\uparrow \uparrow
 K_{Y}\rightarrow K_{X}

in which the horizontal arrows are separable embeddings and the vertical arrows are the

extensions corresponding to the Galois groups G_{K_{Y}}, G_{K_{X}} , respectively.
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Next, we would like to discuss Conjecture 2.1, assuming for simplicity that the curves

in question are proper. So, let X, Y be proper hyperbolic curves over finite fields k_{X},
k_{Y} of characteristics p_{X}, p_{Y} , respectively. Let

 $\alpha$:$\pi$_{1}(X)\rightarrow$\pi$_{1}(Y)

be a continuous open homomorphism between profinite groups. We would like to show

that  $\alpha$ arises from some morphism of schemes  X\rightarrow Y . The first major obstacle in

proving this is, as in the \mathrm{H}\mathrm{o}\mathrm{m}‐form of the birational conjecture, the lack of a suitable

�local theory� for continuous open homomorphisms between fundamental groups. Let

x be a closed point of X and let D_{x}\subset$\pi$_{1}(X) be a decomposition subgroup of $\pi$_{1}(X)
associated to x . (Observe that D_{x} is isomorphic to \mathbb{Z}. ) One would like to show that the

image  $\alpha$(D) of D_{x} in $\pi$_{1}(Y) is contained and open in a decomposition subgroup D_{y}
of $\pi$_{1}(Y) associated to some closed point y\in Y . As a consequence one would obtain a

set‐theoretic map X^{\mathrm{c}1}\rightarrow Y^{\mathrm{c}1} between the sets of closed points of X and Y
, respectively;

one would hope to prove eventually that this map arises from a geometric map X\rightarrow Y.

The �local theory� is in the heart of the proof of Theorem 1.1 by Tamagawa and

Mochizuki (and also of the authors� proof of Theorems 1.3 and 1.6) and was established

for the Isom‐form by Tamagawa in [T]. Unfortunately, Tamagawa�s arguments fail for

the \mathrm{H}\mathrm{o}\mathrm{m}‐form. Such a �local theory� seems to be difficult to establish in the above

context for the time being.
Another obstacle in proving Conjecture 2.1 is the following problem related

to the global modules of roots of unity. Let M_{X}\mathrm{d}\mathrm{e}\mathrm{f}=\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{Q}/\mathbb{Z}, (K_{X}^{\mathrm{s}\mathrm{e}\mathrm{p}})^{\times}) , M_{Y}\mathrm{d}\mathrm{e}\mathrm{f}=
\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{Q}/\mathbb{Z}, (K_{Y}^{\mathrm{s}\mathrm{e}\mathrm{p}})^{\times}) be the global modules of roots of unity associated to X, Y

,
re‐

spectively. (M_{X}, M_{Y} are isomorphic to the prime‐to‐p, \mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}-\mathrm{t}\mathrm{o}-p_{Y} parts of \mathbb{Z},
respectively.) Then we have natural identifications M_{X}=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathbb{Z}}(H^{2}($\pi$_{1}(\overline{x}), \mathbb{Z}), \mathbb{Z}) ,

M_{Y}=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathbb{Z}}(H^{2}($\pi$_{1}(\overline{Y}), \mathbb{Z}), \mathbb{Z}) . Thus,  $\alpha$ induces naturally a map

 $\tau$:M_{X}\rightarrow M_{Y},

which is Galois‐equivariant with respect to  $\alpha$ . One would like to show that the map  $\tau$

is an open homomorphism (hence, in particular, that  p_{X}=p_{Y} ), which is necessarily
the case if  $\alpha$ arises from a non‐constant morphism of schemes  X\rightarrow Y . At the moment

of writing this paper, we are not even able to prove that the map  $\tau$ is non‐zero.

In order to prove the assertion of Conjecture 2.1 it seems reasonable, for the time

being, to impose some conditions on the homomorphism  $\alpha$ . The following conditions

seem to be quite natural in light of the above discussion.

Denition 2.7 (Proper Homomorphisms between Fundamental Groups).
Let \tilde{X}\rightarrow X (respectively, \tilde{Y}\rightarrow Y ) be the pro‐étale cover corresponding to $\pi$_{1}(X) (re‐
spectively, $\pi$_{1}(Y) ). A continuous homomorphism  $\alpha$ :  $\pi$_{1}(X)\rightarrow$\pi$_{1}(Y) between profinite
groups is called proper, if there exists a map

\tilde{ $\psi$}:\tilde{X}^{\mathrm{c}1}\rightarrow\tilde{Y}^{\mathrm{c}1}, \tilde{x} \mapsto ỹ,

such that

 $\alpha$(D_{\tilde{x}})_{\mathrm{o}\mathrm{p}}\subseteqq_{\mathrm{e}\mathrm{n}} Dỹ
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for any \tilde{x}\in\tilde{X}^{\mathrm{c}1} ,
where D_{\overline{x}} Dỹ denote the decomposition subgroups of $\pi$_{1}(X) , $\pi$_{1}(Y) at

\tilde{x}
, ỹ, respectively, and that the map

 $\psi$:X^{\mathrm{c}1}\rightarrow Y^{\mathrm{c}1}, x\mapsto y,

induced naturally by \tilde{ $\psi$} , has finite fibers.

Denition 2.8 (Non‐Degenerate Homomorphisms between Fundamental

Groups). A continuous homomorphism  $\alpha$ :  $\pi$_{1}(X)\rightarrow$\pi$_{1}(Y) between profinite groups

is called non‐degenerate if the natural map  $\tau$ :  M_{X}\rightarrow M_{Y} ,
induced by  $\alpha$

,
is an open

homomorphism.

Let  $\alpha$ :  $\pi$_{1}(X)\rightarrow$\pi$_{1}(Y) be a continuous open homomorphism between profinite
groups, and assume that  $\alpha$ is proper. Thus, we have a finite‐to‐one map  $\psi$ :  X^{\mathrm{c}1}\rightarrow

 Y^{\mathrm{c}1}, x\mapsto y . One would like to show that  $\psi$ (hence  $\alpha$ ) arises from a non‐constant scheme

morphism  f : X\rightarrow Y . This expected scheme morphism f : X\rightarrow Y may not be étale

in general. One would like to reconstruct, group‐theoretically from the homomorphism
 $\alpha$

,
and the map  $\psi$ ,

what should be the ramification indices at the points of  Y in

the morphism f : X\rightarrow Y . This could be done as follows. Assume further that  $\alpha$

is non‐degenerate, thus giving rise to an open homomorphism  $\tau$ :  M_{X}\rightarrow M_{Y} ,
and

set p\mathrm{d}\mathrm{e}\mathrm{f}=p_{X}=p_{Y} . Then  $\tau$ induces an isomorphism  M_{X}\rightarrow\sim$\delta$_{ $\alpha$}M_{Y} ,
where $\delta$_{ $\alpha$}\mathrm{d}\mathrm{e}\mathrm{f}=

[M_{Y} :  $\tau$(M_{X})] . Taking the composite of this isomorphism M_{X}\rightarrow\sim$\delta$_{ $\alpha$}M_{Y} and the $\delta$_{$\alpha$^{-}}

multiplication isomorphism $\delta$_{ $\alpha$}M_{Y}\leftarrow\sim M_{Y} ,
we obtain an isomorphism \tilde{ $\tau$} : M_{X}\rightarrow\sim M_{Y},

Galois‐equivariant with respect to  $\alpha$ . The maps \tilde{ $\tau$}^{-1} : M_{Y}\rightarrow\sim M_{X} and  $\alpha$ :  $\pi$_{1}(X)\rightarrow
$\pi$_{1}(Y) induce naturally a homomorphism

 $\beta$ :  H^{2}($\pi$_{1}(Y), M_{Y})\rightarrow H^{2}($\pi$_{1}(X), M_{X})

between cohomology groups. Note that H^{2}($\pi$_{1}(X), M_{X}) , H^{2}($\pi$_{1}(Y), M_{Y}) can be nat‐

urally identified with the étale cohomology groups H^{2}(X, M_{X}) , H^{2}(Y, M_{Y}) , respec‐

tively. Now, the ramification indices should appear as follows. Let y be a closed point
of Y . Write $\psi$^{-1}(y)=\{x_{1}, x_{2}, x_{n}\} ,

and let c(y)\in H^{2}($\pi$_{1}(Y), M_{Y}) (respectively,
c(x_{i})\in H^{2}($\pi$_{1}(X), M)) be the Chern class of the line bundle \mathcal{O}_{Y}(y) (respectively,
\mathcal{O}_{X}(x_{i})) . If  $\alpha$ arises from a non‐constant morphism  f : X\rightarrow Y then we should have:

p^{a_{f}} $\beta$(c(y))=\displaystyle \sum_{i=1}^{n}e_{i}c(x_{i}) ,

where p^{a_{f}} is the maximal p‐power dividing \deg(f) (so that \deg(f)=p^{a_{f}}$\delta$_{ $\alpha$} ) and e_{i} is

the ramification index at x_{i} . (In particular, e_{i} is a positive integer.) This motivates the

following definition.

Denition 2.9 (Chern Class Compatible Homomorphisms between Funda‐

mental Groups). Let  $\alpha$ :  $\pi$_{1}(X)\rightarrow$\pi$_{1}(Y) be a continuous open homomorphism
between profinite groups which is proper and non‐degenerate. Thus, we have a natural

map \tilde{ $\psi$} : \tilde{X}^{\mathrm{c}1}\rightarrow\tilde{Y}^{\mathrm{c}1} and a natural isomorphism \tilde{ $\tau$} : M_{X}\rightarrow\sim M_{Y} . The map  $\alpha$ is called
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Chern class compatible if there exists an  a\geq 0 and a function X^{\mathrm{c}1}\rightarrow \mathbb{Z}_{>0}, x\mapsto e_{x},

such that for any finite sub‐coverings X'\rightarrow X, Y'\rightarrow Y of \tilde{X}\rightarrow X, \tilde{Y}\rightarrow Y sat‐

isfying  $\alpha$($\pi$_{1}(X'))\subset$\pi$_{1}(Y') ,
for any y'\in(Y')^{\mathrm{c}1}, ($\psi$')^{-1}(y')=\{x\'{i}, x_{2}', x_{n}'\} (where

$\psi$' : (X')^{\mathrm{c}1}\rightarrow(Y')^{\mathrm{c}1} is the map induced by \tilde{ $\psi$} ), we have:

p^{a}$\beta$'(c(y'))=\displaystyle \sum_{i=1}^{n}e_{x_{i}}c(x_{i}')
where c(y')\in H^{2}($\pi$_{1}(Y'), M_{Y}) (respectively, c(x_{i}')\in H^{2}($\pi$_{1}(X'), M)) denotes the

Chern class of the line bundle \mathcal{O}_{Y'}(y') (respectively, \mathcal{O}_{X'}(x_{i}') ), x_{i} is the image of x_{i}' in X,
and $\beta$' : H^{2}($\pi$_{1}(Y'), M_{Y})\rightarrow H^{2}($\pi$_{1}(X'), M_{X}) is the natural map between cohomology
groups induced by \tilde{ $\tau$}^{-1} : M_{Y}\rightarrow\sim M_{X} and  $\alpha$ :  $\pi$_{1}(X')\rightarrow$\pi$_{1}(Y') .

It is plausible that one could prove the following.

Conjecture 2.10. Let X, Y be proper hyperbolic curves over finite fields k_{X}, k_{Y},
respectively. Let

 $\alpha$:$\pi$_{1}(X)\rightarrow$\pi$_{1}(Y)

be a continuous open homomorphism between pronite groups, and assume that  $\alpha$ is

proper, non‐degenerate, and Chern class compatible. Then  $\alpha$ arises from a uniquely
determined commutative diagram of schemes:

\tilde{X}\rightarrow\ovalbox{\tt\small REJECT}

\downarrow \downarrow
 X\rightarrow Y

in which the horizontal arrows are generically (pro‐)étale morphisms and the vertical

arrows are the pronite étale coverings corresponding to $\pi$_{1}(X) , $\pi$_{1}(Y) , respectively.

§3. Another proof of the prime‐to‐characteristic version of Uchida�s theo‐

rem.

In this section we give a proof of the prime‐to‐characteristic version of Uchida�s the‐

orem on isomorphisms between Galois groups of global fields in positive characteristics

(cf. Theorem 1.4) which is different from the one given in [ST1], Corollary 3.11.

First we start by investigating isomorphisms between tame local Galois groups. For

i=1
, 2, let p_{i}>0 be a prime number. Let L_{i} be a complete discrete valuation field

of equal characteristic p_{i} ,
with finite residue field \ell_{i} . We denote the ring of integers of

L_{i} by \mathcal{O}_{L_{i}} . We choose a separable closure L_{i}^{\mathrm{s}\mathrm{e}\mathrm{p}} of L_{i} ,
and write G_{L_{i}}\mathrm{d}\mathrm{e}\mathrm{f}=\mathrm{G}\mathrm{a}1(L_{i}^{\mathrm{s}\mathrm{e}\mathrm{p}}/L_{i})

for the corresponding absolute Galois group of L_{i} . Thus, by local class field theory
(cf., e.g., [Se]), we have a natural isomorphism (L_{i}^{\times})^{\wedge}\rightarrow\sim G_{L_{i}}^{\mathrm{a}\mathrm{b}} ,

where (L_{i}^{\times})^{\wedge} denotes

the completion of the multiplicative group L_{i}^{\times} ,
and Gab denotes the maximal abelian

quotient of G_{L_{i}} . In particular, G_{L_{i}}^{\mathrm{a}\mathrm{b}} fits into an exact sequence

0\rightarrow \mathcal{O}_{L_{i}}^{\times}\rightarrow G_{L_{i}}^{\mathrm{a}\mathrm{b}}\rightarrow \mathbb{Z}\rightarrow 0
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(arising from a similar exact sequence for (L_{i}^{\times})^{\wedge} ), where \mathcal{O}_{L_{i}}^{\times} is the group of multiplica‐
tive units in \mathcal{O}_{L_{i}} . Moreover, we obtain natural inclusions

\ell_{i}^{\times}\mapsto \mathcal{O}_{L_{i}}^{\times}\subset L_{i}^{\times}\mapsto G_{L_{i}}^{\mathrm{a}\mathrm{b}},
and

\mathbb{Z}\leftarrow\sim L_{i}^{\times}/\mathcal{O}_{L_{i}}^{\times}\mapsto G_{L_{i}}^{\mathrm{a}\mathrm{b}}/{\rm Im}(\mathcal{O}_{L_{i}}^{\times}) ,

where \leftarrow\sim is induced by the valuation and  1\in \mathbb{Z} maps to the Frobenius element in

G_{L_{i}}^{\mathrm{a}\mathrm{b}}/{\rm Im}(\mathcal{O}_{L_{i}}^{\times}) . For i=1
, 2, write D_{i}^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\mathrm{G}\mathrm{a}1(L_{i}^{\mathrm{t}}/L_{i}) for the Galois group of the maximal

tamely ramified sub‐extension L_{i}^{\mathrm{t}}/L_{i} of L_{i}^{\mathrm{s}\mathrm{e}\mathrm{p}}/L_{i} . The above isomorphism (L_{i}^{\times})^{\wedge}\rightarrow\sim G_{L_{i}}^{\mathrm{a}\mathrm{b}}
induces a natural isomorphism (L_{i}^{\times})^{\wedge}/U_{i}^{1}\rightarrow\sim D_{i}^{\mathrm{a}\mathrm{b}} ,

where U_{i}^{1} is the group of principal
units in \mathcal{O}_{L_{i}}^{\times} ,

and D_{i}^{\mathrm{a}\mathrm{b}} is the maximal abelian quotient of D_{i}.

Proposition 3.1 (Invariants of Arbitrary Isomorphisms between Tame De‐

composition Groups). Let

 $\tau$:D_{1}\rightarrow\sim D_{2}

be an isomorphism between pronite groups. Then the followings hold:

(i) The equality p_{1}=p_{2} holds. ( Set p^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}p_{1}=p_{2}.)
(ii) The isomorphism  $\tau$ induces a natural isomorphism \ell_{1}^{\times}\rightarrow\sim\ell_{2}^{\times} between the multiplica‐
tive groups of residue fields. In particular, \ell_{1} and \ell_{2} have the same cardinality.
(iii) We have  $\tau$(I_{1})=I_{2} ,

where I_{i} is the inertia subgroup of D_{i}.

(iv) The natural isomorphism $\tau$^{\mathrm{a}\mathrm{b}} : D_{1}^{\mathrm{a}\mathrm{b}}\rightarrow D_{2}^{\mathrm{a}\mathrm{b}} induced by  $\tau$ preserves the images

{\rm Im}(\ell_{i}^{\times}) , {\rm Im}(L_{i}^{\times}/U_{i}^{1}) , of the natural homomorphisms discussed above. Further, the iso‐

morphism D_{1}^{\mathrm{a}\mathrm{b}}/{\rm Im}(\ell_{1}^{\times})\rightarrow D_{2}^{\mathrm{a}\mathrm{b}}/{\rm Im}(\ell_{2}^{\times}) induced by  $\tau$ preserves the respective Frobenius

elements.

(v)  $\tau$ induces naturally an isomorphism  M_{\ell_{1}}\rightarrow\sim M_{\ell_{2}} ,
which is Galois‐equivariant with

respect to  $\tau$
,

where  M_{\ell_{i}}\mathrm{d}\mathrm{e}\mathrm{f}=\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{Q}/\mathbb{Z}, (\overline{\ell_{i}})^{\times}) is the module of roots of unity. (Here \overline{\ell_{i}}
denotes the algebraic closure of \ell_{i} in L_{i}^{\mathrm{s}\mathrm{e}\mathrm{p}}. ) In particular,  $\tau$ commutes with the cyclo‐
tomic characters  $\chi$_{i} : D_{i}\rightarrow(\mathbb{Z}')^{\times} of D_{i} ,

where \mathbb{Z}' stands for the prime‐to‐p part of
\mathbb{Z}.

Proof. This is (well‐known and) easy to prove. For more details, see, e.g., [ST2]. \square 

Next we will consider isomorphisms between geometrically prime‐to‐characteristic
quotients of absolute Galois groups of function fields of curves over finite fields. We will

use the following notations. For i=1
, 2, let X_{i} be a proper, smooth, and geometrically

connected curve over a finite field k_{i} of characteristic p_{i}>0 . Let K_{i}=K_{X_{i}} be the

function field of X_{i} . Write G_{i}\mathrm{d}\mathrm{e}\mathrm{f}=\mathrm{G}\mathrm{a}1(K_{i}^{\mathrm{s}\mathrm{e}\mathrm{p}}/K_{i}) for the absolute Galois group of K_{i}.

For i=1
, 2, let G_{i} be the geometrically \mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}-\mathrm{t}\mathrm{o}-p_{i} quotient of G_{i} . Let \tilde{X}_{i}\rightarrow X_{i}

be the profinite, generically étale cover corresponding to G_{i} . Our aim is to prove the

following.

Theorem 3.2 (= Theorem 1.4 with different notations). Let

 $\alpha$:G_{1} \rightarrow\sim G_{2}
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be an isomorphism of pronite groups. Then  $\alpha$ arises fr om a uniquely determined

commutative diagram of field extensions:

\tilde{K}_{1}\rightarrow^{\sim}\tilde{K}_{2}

\uparrow \uparrow
 K_{1}\rightarrow^{\sim}K_{2}

in which the horizontal arrows are isomorphisms, and the vertical arrows are the exten‐

sions corresponding to G_{1}, G_{2} , respectively. (Thus, \tilde{K}_{1},\tilde{K}_{2} are the function fields of
\tilde{X}_{1}, \tilde{X}_{2} , respectively.)

Theorem 3.2 was proved in [ST1] as a corollary of Theorem 1.3. In what follows we

will give another proof of Theorem 3.2, which is very much inspired by Uchida�s proof
of Theorem 1.2 and uses class field theory. For the rest of this section we will consider

an isomorphism

 $\alpha$:G_{1} \rightarrow\sim G_{2}

between profinite groups.

Lemma 3.3 (Local Theory). Let \tilde{x}_{1}\in\tilde{X}_{1}^{\mathrm{c}1} . Then  $\alpha$(D_{\overline{x}_{1}})=D_{\overline{x}_{2}} for a unique point

\tilde{x}_{2}\in\tilde{X}_{2}^{\mathrm{c}1} , where D_{\overline{x}_{i}} stands for the decomposition subgroup of G_{i} at the point \tilde{x}_{i} , for
i=1

,
2. Further,  $\alpha$(I_{\overline{x}_{1}})=I_{\overline{x}_{2}} ,

where I_{\overline{x}_{i}} stands for the inertia subgroup of G_{i} at the

point \tilde{x}_{i}, fori=1 ,
2.

Accordingly,  $\alpha$ induces naturally abijection \tilde{ $\psi$} : \tilde{X}_{1}^{\mathrm{c}1}\rightarrow\tilde{X}_{2}^{\mathrm{c}1}, \tilde{x}_{1}\mapsto\tilde{x}_{2} , such that

 $\alpha$(D_{\overline{x}_{1}})=D_{\overline{x}_{2}} . Further, \tilde{ $\psi$} induces naturally a bijection  $\psi$ :  X_{1}^{\mathrm{c}1}\rightarrow X_{2}^{\mathrm{c}1}.

Proof. Similar to the proof of [U], Lemmas 3 and 4. See also [ST1], Remark 3.12. \square 

Lemma 3.4 (Invariance of the Characteristic). The equality p_{1}=p_{2} holds. (Set

p^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}p_{1}=p_{2}.)

Proof. This follows for example by considering the p_{i} ‐torsion in G_{i}^{(\prime),\mathrm{a}\mathrm{b}} . Indeed, for

i=1
, 2, p_{i} can be characterized as the unique prime number p such that, for any open

subgroup H_{i} of G_{i} ,
the p‐torsion in H_{i}^{\mathrm{a}\mathrm{b}} is trivial, as follows easily from class field

theory. \square 

Lemma 3.5. The isomorphism  $\alpha$ commutes with the canonical projections \mathrm{p}\mathrm{r}_{i} : G_{i} \rightarrow

 G_{k_{i}}, i=1
, 2, i.e., we have a commutative diagram:

G_{1} \rightarrow^{ $\alpha$}G_{2}

\mathrm{p}\mathrm{r}_{1\downarrow} \mathrm{p}\mathrm{r}_{2\downarrow}
G_{k_{1}}\rightarrow G_{k_{2}}

where the horizontal arrows are isomorphisms. Further, the following diagram is com‐

mutative:
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G_{1} \rightarrow^{ $\alpha$} G_{2}

\mathrm{p}\mathrm{r}_{1\downarrow} \mathrm{p}\mathrm{r}_{2\downarrow}
(3.1) G_{k_{1}} \rightarrow G_{k_{1}}

$\chi$_{k_{1\downarrow}} $\chi$_{k_{2\downarrow}}
(\mathbb{Z}')^{\times}--(\mathbb{Z}')^{\times}

where $\chi$_{k_{i}} is the cyclotomic character of G_{k_{i}}, i=1
,
2. In particular, \#(k_{1})=\#(k_{2}) ,

and

the natural isomorphism G_{k_{1}}\rightarrow G_{k_{2}} induced by  $\alpha$ maps the \#(k_{1}) ‐th power Frobenius

element $\varphi$_{k_{1}} of G_{k_{1}} to the \#(k_{2}) ‐th power Frobenius element $\varphi$_{k_{2}} of G_{k_{2}}.

Proof. First, observe that G_{k_{i}} is the unique (up to isomorphism) quotient of G_{i} which

is isomorphic to \mathbb{Z}
,

as follows from the structure of G_{i}^{\mathrm{a}\mathrm{b}} given by global class field theory,
i=1

,
2. The first assertion follows from this.

Next, we prove the second assertion. For each \tilde{x}_{1}\in\tilde{X}_{1}^{\mathrm{c}1} ,
with \tilde{x}_{2}=\tilde{ $\psi$}(\tilde{x}_{1}) ,

we have

the following diagram:

D_{\tilde{x}_{1}} \rightarrow D_{\tilde{x}_{2}}

 G_{1'}^{()}\downarrow \rightarrow^{ $\alpha$} G_{2}\downarrow
$\chi$_{1}\downarrow $\chi$_{2}\downarrow
(\mathbb{Z}')^{\times}--(\mathbb{Z}')^{\times}

where the maps D_{\overline{x}_{i}}\rightarrow G_{i} are the inclusions, the upper square is commutative, and

$\chi$_{i}^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}$\chi$_{k_{i}}\circ \mathrm{p}\mathrm{r}_{i} is the cyclotomic character of G_{i}, i=1
,
2. Observe that the restriction of

$\chi$_{i} to D_{\overline{x}_{i}} coincides with the cyclotomic character $\chi$_{\overline{x}_{i}} of D_{\overline{x}_{i}}, i=1
,
2. The isomorphism

D_{\tilde{x}_{1}}\rightarrow\sim D_{\overline{x}_{2}} commutes with the cyclotomic characters $\chi$_{\overline{x}_{i}}, i=1
, 2, by Proposition 3.1

(v). Hence  $\alpha$ :  G_{1} \rightarrow\sim G_{2} commutes with the cyclotomic characters $\chi$_{i}, i=1
, 2, since

G_{1} is topologically generated by the decomposition subgroups D_{\overline{x}_{1}}(\tilde{x}_{1}\in\tilde{X}_{1}^{\mathrm{c}1}) ,
as

follows from Chebotarev�s density theorem. Further, we have a diagram of maps (3.1),
where the exterior and the upper squares are commutative. Thus, the lower square in

diagram (3.1) is also commutative. Further, as is well known, the cyclotomic character

$\chi$_{k_{i}} : G_{k_{i}}\rightarrow(\mathbb{Z}')^{\times} is injective, and the image $\chi$_{k_{i}}(<$\varphi$_{k_{i}}>) of the subgroup generated
by the Frobenius element $\varphi$_{k_{i}} is contained in p^{\mathbb{Z}} . Moreover, the image $\chi$_{k_{i}}($\varphi$_{k_{i}}) of $\varphi$_{k_{i}}

equals \#(k_{i}) . The second assertion follows from this, since G_{k_{i}} is topologically generated
by $\varphi$_{k_{i}}, i=1

,
2. \square 

Lemma 3.6 (Invariance of the Module of Roots of Unity). For i=1
, 2, let

M_{X_{i}}\mathrm{d}\mathrm{e}\mathrm{f}=\mathrm{H}\mathrm{o}\mathrm{m}(\mathbb{Q}/\mathbb{Z}, (K_{i}^{\mathrm{s}\mathrm{e}\mathrm{p}})^{\times}) be the global module of roots of unity associated to X_{i}.
Then  $\alpha$ induces a natural isomorphism  M_{X_{1}}\rightarrow\sim M_{X_{2}} which is Galois‐equivariant with

respect to  $\alpha$.
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Proof. For i=1
, 2, let G_{i}^{(\prime),\mathrm{a}\mathrm{b}} be the maximal abelian quotient of G_{i} . We have the

following commutative diagram:

(3.2)

1\displaystyle \rightarrow k_{1}^{\times}\rightarrow\prod_{x_{1}\in X_{1}^{\mathrm{c}1}}k(x_{1})^{\times}\rightarrow G_{1}^{(\prime),\mathrm{a}\mathrm{b}}\rightarrow$\pi$_{1}(X_{1})^{(\prime),\mathrm{a}\mathrm{b}}\rightarrow 1

1\displaystyle \rightarrow k_{2}^{\times}\downarrow\rightarrow\prod_{x_{2}\in X_{2}^{\mathrm{c}1}}k(x_{2})^{\times}\downarrow\rightarrow G_{2}^{(\prime),\mathrm{a}\mathrm{b}}\downarrow\rightarrow$\pi$_{1}(X_{2}\downarrow_{(\prime),\mathrm{a}\mathrm{b}}\rightarrow 1
where the map \displaystyle \prod_{x_{i}\in X_{i}^{\mathrm{c}1}}k(x_{i})^{\times}\rightarrow G_{i}^{(\prime),\mathrm{a}\mathrm{b}} is naturally induced by Artin�s reciprocity map of

global class field theory. Here $\pi$_{1}(X_{i})^{(\prime),\mathrm{a}\mathrm{b}} denotes the maximal abelian quotient of the

geometrically prime‐to‐p quotient $\pi$_{1}(X_{i})^{(\prime)} of $\pi$_{1}(X_{i}) . In particular, the image of k(x_{i})^{\times}
in G_{i}^{(\prime),\mathrm{a}\mathrm{b}} coincides with the image of the inertia subgroup I_{\overline{x}_{i}} ,

where \tilde{x}_{i}\in\tilde{X}_{i}^{\mathrm{c}1} is any

point above x_{i} ,
via the natural map G_{i} \rightarrow G_{i}^{(\prime),\mathrm{a}\mathrm{b}} . The maps G_{i}^{(\prime),\mathrm{a}\mathrm{b}}\rightarrow$\pi$_{1}(X_{i})^{(\prime),\mathrm{a}\mathrm{b}} are

the natural ones, and the maps  k_{i}^{\times}\rightarrow \displaystyle \prod  k(x_{i})^{\times} are the natural diagonal embeddings,

i=1
,
2. The map \displaystyle \prod_{x_{1}\in X_{1}^{\mathrm{c}1}}k(x_{1})^{\times}\rightarrow\prod_{x_{2}\in X_{2}^{\mathrm{c}1}}^{x_{i}\in X_{i}^{\mathrm{c}1}}k(x_{2})^{\times} maps each component k(x_{1})^{\times} onto

k(x_{2})^{\times} ,
where x_{2}\mathrm{d}\mathrm{e}\mathrm{f}= $\psi$(x_{1}) ,

via the natural isomorphism in Proposition 3.1 (ii), which

is induced by  $\alpha$ . In particular, this map is a bijection since  $\psi$ is a bijection. Thus, the

far left vertical map gives a natural isomorphism  k_{1}^{\times}\rightarrow\sim k_{2}^{\times} . Passing to open subgroups
of G_{i}, i=1

, 2, corresponding to extensions of the constant fields, and passing to the

projective limit via the natural maps, we obtain the desired isomorphism M_{X_{1}}\rightarrow\sim M_{X_{2}},
which is Galois‐equivariant with respect to  $\alpha$ by construction. \square 

Let \tilde{x}_{1}\in\tilde{X}_{1}^{\mathrm{c}1} and set \tilde{x}_{2}\mathrm{d}\mathrm{e}\mathrm{f}=\tilde{ $\psi$}(\tilde{x}_{1})\in\tilde{X}_{2}^{\mathrm{c}1} . Then  $\alpha$ induces naturally an isomorphism

 D_{\tilde{x}_{1}}\rightarrow\sim D_{\overline{x}_{2}} (cf. Lemma 3.3). In particular,  $\alpha$ induces a natural isomorphism  M_{k(x_{1})}\rightarrow\sim
 M_{k(x_{2})} , Galois‐equivariant with respect to the isomorphism D_{\overline{x}_{1}}\rightarrow\sim D_{\overline{x}_{2}} ,

where x_{i} is

the image of \tilde{x}_{i} in X_{i}, i=1
,

2 (cf. Proposition 3.1 (\mathrm{v}) ). The following is a rigidity
statement concerning the various isomorphisms of the local modules of roots of unity.

Lemma 3.7 (Inertia‐Rigidity). The following diagram is commutative:

M_{X_{1}} \rightarrow M_{X_{2}}

\downarrow \downarrow
 M_{k(x_{1})}\rightarrow M_{k(x_{2})}

where the upper horizontal arrow is the isomorphism in Lemma 3.6, the lower hori‐

zontal arrow is the isomorphism in Proposition 3.1 (v), and the vertical maps are the

natural isomorphisms. Further, this diagram is Galois‐equivariant with respect to the

commutative diagram:
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----\rightarrow 
D_{\tilde{x}_{1}}\rightarrow D_{\tilde{x}_{2}}

 G_{1'}^{()}\downarrow\rightarrow^{ $\alpha$}G_{2}\downarrow
where the vertical maps are the inclusions.

Proof. Indeed, the far left square in diagram (3.2) induces a commutative diagram:

 k_{1}^{\times} \rightarrow k_{2}^{\times}

\downarrow \downarrow
 k(x_{1})^{\times}\rightarrow k(x_{2})^{\times}

where the vertical arrows are the natural inclusions. Passing to open subgroups of

G_{i}^{(\prime),\mathrm{a}\mathrm{b}}, i=1
, 2, corresponding to extensions (containing k(X) ) of the constant fields,

and passing to the projective limit via the natural maps, we obtain the desired Galois‐

equivariant diagram. \square 

Lemma 3.8 (Recovering the Multiplicative Group). Let p^{n_{i}} be the exponent

of the p‐primary part $\pi$_{1}(X_{i})^{\mathrm{a}\mathrm{b},\mathrm{t}\mathrm{o}\mathrm{r},p} of the torsion subgroup $\pi$_{1}(X_{i})^{\mathrm{a}\mathrm{b},\mathrm{t}\mathrm{o}\mathrm{r}} of $\pi$_{1}(X_{i})^{\mathrm{a}\mathrm{b}},
i=1

,
2. (Note that $\pi$_{1}(X_{i})^{\mathrm{a}\mathrm{b},\mathrm{t}\mathrm{o}\mathrm{r}} is naturally identied with J_{X_{i}}(k_{i}) ,

where J_{X_{i}} is the

Jacobian variety of X_{i}. ) Then  $\alpha$ induces naturally an injective homomorphism

 $\gamma$:K_{1}^{\times}\rightarrow(K_{2}^{p^{-n_{2}}})^{\times}

between multiplicative groups, where K_{2}^{p^{-n_{2}}} denotes the field of p^{n_{2}} ‐th roots of elements

of K_{2}.

Proof. We have the following commutative diagram:

1 \rightarrow \mathrm{K}\mathrm{e}\mathrm{r}  $\psi$ í \rightarrow I_{K_{1}}'\rightarrow^{$\psi$_{1}'}G_{1}^{(\prime),\mathrm{a}\mathrm{b}}
(3.3) \downarrow \downarrow \downarrow

 1 \rightarrow \mathrm{K}\mathrm{e}\mathrm{r}$\psi$_{2}'\rightarrow I_{K_{2}}'\rightarrow^{$\psi$_{2}'}G_{2}^{(\prime),\mathrm{a}\mathrm{b}}
in which both rows are exact. Here, I_{K_{i}}'\displaystyle \mathrm{d}\mathrm{e}\mathrm{f}=\prod_{x_{i}\in X_{i}^{\mathrm{c}1}}'(K_{i})_{x_{i}}^{\times}/U_{x_{i}}^{1} is a quotient of the idèle

group I_{K_{i}}\displaystyle \mathrm{d}\mathrm{e}\mathrm{f}=\prod_{x_{i}\in X_{i}^{\mathrm{c}1}}'(K_{i})_{x_{i}}^{\times} of K_{i}, (K_{i})_{x_{i}} denotes the x_{i} ‐adic completion of K_{i}, \mathcal{O}_{x_{i}} is

the ring of integers of (K_{i})_{x_{i}} ,
and U_{x_{i}}^{1}\subset \mathcal{O}_{x_{i}}^{\times} is the group of principal units. The map

$\psi$_{i}' : I_{K_{i}}'\rightarrow G_{i}^{(\prime),\mathrm{a}\mathrm{b}} is naturally induced by Artin�s reciprocity map in global class field

theory. The far right vertical map is naturally induced by  $\alpha$
,

and the middle vertical

map  I_{K_{1}}'\rightarrow I_{K_{2}}' maps each component (K_{1})_{x_{1}}^{\times}/U_{x_{1}}^{1} to (K_{2})_{x_{2}}^{\times}/U_{x_{2}}^{1}, x_{2}\mathrm{d}\mathrm{e}\mathrm{f}= $\phi$(x_{1}) ,
via

the natural isomorphism in Proposition 3.1 (iv), which is naturally induced by  $\alpha$ . In

particular, the map  I_{K_{1}}'\rightarrow I_{K_{2}}' is an isomorphism. Thus, the far left vertical map is a

natural isomorphism \mathrm{K}\mathrm{e}\mathrm{r}  $\psi$ í \rightarrow Ker $\psi$_{2}' between kernels of Artin�s maps. We claim:
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Claim 1. For i=1
, 2, \mathrm{K}\mathrm{e}\mathrm{r}$\psi$_{i}' inserts naturally into the following exact sequence:

1\rightarrow K_{i}^{\times}\rightarrow \mathrm{K}\mathrm{e}\mathrm{r}$\psi$_{i}'\rightarrow$\pi$_{1}(X_{i})^{\mathrm{a}\mathrm{b},\mathrm{t}\mathrm{o}\mathrm{r},p}\rightarrow 1.

Assuming this claim, we then have a commutative diagram

1 \rightarrow K_{1}^{\times}\rightarrow \mathrm{K}\mathrm{e}\mathrm{r}  $\psi$ í \rightarrow$\pi$_{1}(X_{1})^{\mathrm{a}\mathrm{b},\mathrm{t}\mathrm{o}\mathrm{r},p}\rightarrow 1

\downarrow
 1 \rightarrow K_{2}^{\times}\rightarrow \mathrm{K}\mathrm{e}\mathrm{r}$\psi$_{2}'\rightarrow$\pi$_{1}(X_{2})^{\mathrm{a}\mathrm{b},\mathrm{t}\mathrm{o}\mathrm{r},p}\rightarrow 1

in which both rows are exact and the vertical arrow is the above isomorphism. This

isomorphism has, a priori, no reason to map K_{1}^{\times} into K_{2}^{\times} . However, since $\pi$_{1}(X_{2})^{\mathrm{a}\mathrm{b},\mathrm{t}\mathrm{o}\mathrm{r},p}
is a finite group of exponent p^{n_{2}} ,

we can conclude that the above isomorphism \mathrm{K}\mathrm{e}\mathrm{r}  $\psi$ í \rightarrow

\mathrm{K}\mathrm{e}\mathrm{r}$\psi$_{2}' maps (K_{1}^{\times})^{p^{n_{2}}}=(K_{1}^{p^{n_{2}}})^{\times} injectively into K_{2}^{\times} . Thus, we obtain a natural

injective map  $\gamma$ :  K_{1}^{\times}\rightarrow(K_{2}^{p^{-n_{2}}})^{\times} . It remains to prove the above claim.

For i=1
, 2, we have the following commutative diagram:

1 1

\uparrow \uparrow
\mathbb{Z}/\mathbb{Z}-- \mathbb{Z}/\mathbb{Z}

1 \rightarrow \mathrm{K}\mathrm{e}\mathrm{r}$\rho$_{i} \rightarrow G_{i}^{\mathrm{a}\mathrm{b}}\uparrow\rightarrow^{$\rho$_{i}}G_{i}^{(\prime),\mathrm{a}\mathrm{b}}\uparrow\rightarrow 1
\uparrow $\psi$_{i}\uparrow $\psi$_{i}'\uparrow

----\rightarrow----\rightarrow----\rightarrow----\rightarrow
1 \displaystyle \rightarrow\prod_{x_{i}\in X_{i}^{\mathrm{c}1}}U_{x_{i}}^{1}\rightarrow

\uparrow
1 \rightarrow

 I_{K_{i}} \rightarrow  I_{K_{i}}' \rightarrow 1

\uparrow \uparrow
 K_{i}^{\times} \rightarrow \mathrm{K}\mathrm{e}\mathrm{r}$\psi$_{i}'

\uparrow \uparrow
1 1

in which the rows and the columns are all exact. Here, the map $\psi$_{i} : I_{K_{i}}\rightarrow G_{i}^{\mathrm{a}\mathrm{b}} is

Artin�s reciprocity map in global class field theory, and the map $\rho$_{i} : G_{i}^{\mathrm{a}\mathrm{b}}\rightarrow G_{i}^{(\prime),\mathrm{a}\mathrm{b}} is the

natural map. Further, I_{K_{i}}\rightarrow I_{K_{i}}' is the natural map which maps each component (K_{i})_{x_{i}}^{\times}
canonically onto (K_{i})_{x_{i}}^{\times}/U_{x_{i}}^{1} . In particular, we deduce that the cokernel of the injective
map \displaystyle \prod_{x_{i}\in X_{i}^{\mathrm{c}1}}U_{x_{i}}^{1}\rightarrow \mathrm{K}\mathrm{e}\mathrm{r}$\rho$_{i} is naturally isomorphic to the cokernel of K_{i}^{\times}\rightarrow \mathrm{K}\mathrm{e}\mathrm{r}$\psi$_{i}'.
Further, we claim:

Claim 2. The cokernel of the above injective homomorphism \displaystyle \prod_{x_{i}\in X_{i}^{\mathrm{c}1}}U_{x_{i}}^{1}\rightarrow \mathrm{K}\mathrm{e}\mathrm{r}$\rho$_{i} is

naturally isomorphic to $\pi$_{1}(X_{i})^{\mathrm{a}\mathrm{b},\mathrm{t}\mathrm{o}\mathrm{r},p}.
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Indeed, we have the following commutative diagram:

1

\downarrow
1  k_{i}^{\times}

\downarrow \downarrow

1

\downarrow
-- k_{i}^{\times}

\downarrow
\times ----\rightarrow----\rightarrow----\rightarrow----\rightarrow

1 \displaystyle \rightarrow\prod_{x_{i}\in X_{i}^{\mathrm{c}1}}U_{x_{i}}^{1}\rightarrow\prod_{x_{i}\in X_{i}^{\mathrm{c}1}}\mathcal{O}_{x_{i}}^{\times}\rightarrow\prod_{x_{i}\in X_{i}^{\mathrm{c}1}}k(x_{i})^{\times}\rightarrow 1

\downarrow \downarrow \downarrow
1 \rightarrow \mathrm{K}\mathrm{e}\mathrm{r}($\rho$_{i}) \rightarrow  G_{i}^{\mathrm{a}\mathrm{b}} \rightarrow^{$\rho$_{i}} G_{i}^{(\prime),\mathrm{a}\mathrm{b}} \rightarrow 1

\downarrow \downarrow \downarrow
1 \rightarrow \mathrm{K}\mathrm{e}\mathrm{r}(v_{i}) \rightarrow $\pi$_{1}(X_{i})^{\mathrm{a}\mathrm{b}} \rightarrow^{$\nu$_{i}} $\pi$_{1}(X_{i})^{(\prime),\mathrm{a}\mathrm{b}} \rightarrow 1

\downarrow \downarrow \downarrow
 1 1 1

in which the rows and the columns are all exact. Here, the maps G_{i}^{\mathrm{a}\mathrm{b}}\rightarrow$\pi$_{1}(X_{i})^{\mathrm{a}\mathrm{b}}
and G_{i}^{(\prime),\mathrm{a}\mathrm{b}}\rightarrow$\pi$_{1}(X_{i})^{(\prime),\mathrm{a}\mathrm{b}} are the natural maps, the map \displaystyle \prod_{x_{i}\in X_{i}^{\mathrm{c}1}}\mathcal{O}_{x_{i}}^{\times}\rightarrow G_{i}^{\mathrm{a}\mathrm{b}} is the

restriction of Artin�s reciprocity map, and the map k_{i}^{\times}\displaystyle \rightarrow\prod_{x_{i}\in X_{i}^{\mathrm{c}1}}\mathcal{O}_{x_{i}}^{\times} is the natural

diagonal embedding which maps into \displaystyle \prod_{x_{i}\in X_{i}^{\mathrm{c}1}}k(x_{i})^{\times} . Further, the kernel \mathrm{K}\mathrm{e}\mathrm{r}(v_{i}) of

the natural map v_{i} : $\pi$_{1}(X_{i})^{\mathrm{a}\mathrm{b}}\rightarrow$\pi$_{1}(X_{i})^{(\prime),\mathrm{a}\mathrm{b}} coincides with the kernel of the natural

map $\pi$_{1}(X_{i})^{\mathrm{a}\mathrm{b},\mathrm{t}\mathrm{o}\mathrm{r}}\rightarrow$\pi$_{1}(X_{i})^{(\prime),\mathrm{a}\mathrm{b},\mathrm{t}\mathrm{o}\mathrm{r}} ,
hence is canonically isomorphic to $\pi$_{1}(X_{i})^{\mathrm{a}\mathrm{b},\mathrm{t}\mathrm{o}\mathrm{r},p}.

Thus, our second claim, hence our first claim, are proved. \square 

Let U_{2} be an open subgroup of G_{2} ,
and let U_{1}\mathrm{d}\mathrm{e}\mathrm{f}=$\alpha$^{-1}(U_{2}) . Let F_{i}/K_{i} be the sub‐

extension of \tilde{K}_{i}/K_{i} corresponding to U_{i} ,
for i=1

,
2. Then  $\alpha$ induces, by restriction to

 U_{1} ,
an isomorphism  $\alpha$ :  U_{1}\rightarrow\sim U_{2} ,

which induces an injective homomorphism

$\gamma$':F_{1}^{\times}\rightarrow(F_{2}^{p^{-n_{2}'}})^{\times}

by Lemma 3.8. Here, p^{n_{\acute{i}}} denotes the exponent of $\pi$_{1}(Y_{i})^{\mathrm{a}\mathrm{b},\mathrm{t}\mathrm{o}\mathrm{r},p} ,
where Y_{i} is the nor‐

malization of X_{i} in F_{i}.

Lemma 3.9. We have n_{i}'\geq n_{i} . Further, the map $\gamma$' : F_{1}^{\times}\rightarrow(F_{2}^{p^{-n_{2}'}})^{\times} is an extension

of the map  $\gamma$ :  K_{1}^{\times}\rightarrow(K_{2}^{p^{-n_{2}}})^{\times}.

Proof. For i=1
, 2, let k_{i}' be the constant field of Y_{i} . Set X_{i}'\mathrm{d}\mathrm{e}\mathrm{f}=X_{i}\times k_{i}k_{i}' and let

K_{i}'=K_{i}k_{i}' be the function field of X_{i}' . Then Y_{i}\rightarrow X_{i} naturally factors as  Y_{i}\rightarrow X_{i}'\rightarrow
 X_{i} . Accordingly, we obtain natural maps J_{X_{i}}(k_{i})[p^{\infty}]\rightarrow J_{X_{i}}(k_{i}')[p^{\infty}]=JX\'{i} (k_{i}')[p^{\infty}]\rightarrow
 J_{Y_{i}} (ki�) [p^{\infty}] ,

where J_{X_{i}} , JXí, J_{Y_{i}} are the Jacobian varieties of X_{i}, X_{i}', Y_{i} , respectively,
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and, for an abelian group M, M[p^{\infty}] stands for the subgroup of p‐primary torsion of

M . Here, the first map is clearly injective. Since the degree of the extension F_{i}/K_{i}' is

prime to p ,
the morphism J_{X_{i}'}\rightarrow J_{Y_{i}} has finite kernel of order prime to p . Thus, the

second map is also injective, and the inequality n_{i}'\geq n_{i} follows.

For i=1
, 2, global class field theory gives a commutative diagram:

1 \rightarrow F_{i}^{\times}\rightarrow I_{F_{i}}\rightarrow^{$\psi$_{i}^{\tilde{}}}H_{i}^{\mathrm{a}\mathrm{b}}

\uparrow \uparrow \mathrm{t}\mathrm{r}\uparrow
 1 \rightarrow K_{i}^{\times}\rightarrow I_{K_{i}}\rightarrow^{$\psi$_{i}}G_{i}^{\mathrm{a}\mathrm{b}}

in which both rows are exact, and $\psi$_{i}, \tilde{ $\psi$}_{i} are Artin�s reciprocity maps. The map

I_{K_{i}}\rightarrow I_{F_{i}} is the natural embedding which maps each component (K_{i})_{x_{i}}^{\times} to \displaystyle \prod_{y_{i,j}}(F_{i})_{y_{i,j}}^{\times}
via the natural diagonal embedding, where y_{i,j} runs over all points of Y_{i} above x_{i} . In

particular, the far left vertical map is the natural embedding K_{i}^{\times}\rightarrow F_{i}^{\times} . The map

tr: G_{i}^{\mathrm{a}\mathrm{b}}\rightarrow H_{i}^{\mathrm{a}\mathrm{b}} ,
where H_{i} denotes the open subgroup of G_{i} corresponding to U_{i} ,

is the

transfer map.

Further, the transfer map tr: G_{i}^{(\prime),\mathrm{a}\mathrm{b}}\rightarrow U_{i}^{\mathrm{a}\mathrm{b}} inserts into the following commutative

diagram:

1 \rightarrow \mathrm{K}\mathrm{e}\mathrm{r}\tilde{ $\psi$}_{i}'\rightarrow I_{F_{i}}'\rightarrow^{$\psi$_{i}^{\tilde{}}\prime} U_{i}^{\mathrm{a}\mathrm{b}}
\uparrow \uparrow \mathrm{t}\mathrm{r}\uparrow

 1 \rightarrow \mathrm{K}\mathrm{e}\mathrm{r}$\psi$_{i}'\rightarrow I_{K_{i}}'\rightarrow^{$\psi$_{i}'}G_{i}^{(\prime),\mathrm{a}\mathrm{b}}
in which the horizontal rows are exact, the middle vertical arrow is the natural em‐

bedding induced by the above map I_{K_{i}}\rightarrow I_{F_{i}} ,
and the maps $\psi$_{i}', \tilde{ $\psi$}_{i}' are induced by

Artin�s reciprocity maps. Thus, the far left vertical arrow is a natural embedding
\mathrm{K}\mathrm{e}\mathrm{r}$\psi$_{i}'\rightarrow \mathrm{K}\mathrm{e}\mathrm{r}\tilde{ $\psi$}_{i}' between kernels of Artin�s maps. Moreover, we have the following
commutative diagrams:

H_{i}^{\mathrm{a}\mathrm{b}}\rightarrow U_{i}^{\mathrm{a}\mathrm{b}}

\mathrm{t}\mathrm{r}\uparrow \mathrm{t}\mathrm{r}\uparrow
 G_{i}^{\mathrm{a}\mathrm{b}}\rightarrow G_{i}^{(\prime),\mathrm{a}\mathrm{b}}

and

I_{F_{i}}\rightarrow I_{F_{i}}'

\uparrow \uparrow
 I_{K_{i}}\rightarrow I_{K_{i}}'

which commute with Artin�s reciprocity maps. Thus, the above natural embedding
\mathrm{K}\mathrm{e}\mathrm{r}$\psi$_{i}'\rightarrow \mathrm{K}\mathrm{e}\mathrm{r}\tilde{ $\psi$}_{i}' inserts into the following commutative diagram:

1 \rightarrow F_{i}^{\times}\rightarrow \mathrm{K}\mathrm{e}\mathrm{r}\tilde{ $\psi$}_{i}'\rightarrow$\pi$_{1}(Y_{i})^{\mathrm{a}\mathrm{b},\mathrm{t}\mathrm{o}\mathrm{r},p}\rightarrow 1

\uparrow \uparrow
 1 \rightarrow K_{i}^{\times}\rightarrow \mathrm{K}\mathrm{e}\mathrm{r}$\psi$_{i}'\rightarrow$\pi$_{1}(X_{i})^{\mathrm{a}\mathrm{b},\mathrm{t}\mathrm{o}\mathrm{r},p}\rightarrow 1
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Further, we have commutative diagrams:

U_{1}^{\mathrm{a}\mathrm{b}} \rightarrow U_{2}^{\mathrm{a}\mathrm{b}}

\mathrm{t}\mathrm{r}\uparrow \mathrm{t}\mathrm{r}\uparrow
 G_{1}

ab

\rightarrow G_{2}^{(\prime)} �ab

and

I_{F_{1}}'\rightarrow I_{F_{2}}'

\uparrow \uparrow
 I_{K_{1}}'\rightarrow I_{K_{2}}'

in which the horizontal arrows are isomorphisms induced by  $\alpha$ (cf. diagram (3.3)).
From this we deduce that the commutative diagram:

\mathrm{K}\mathrm{e}\mathrm{r}  $\psi$\sim í \rightarrow \mathrm{K}\mathrm{e}\mathrm{r}\tilde{ $\psi$}_{2}'

\uparrow \uparrow
\mathrm{K}\mathrm{e}\mathrm{r}  $\psi$ í \rightarrow \mathrm{K}\mathrm{e}\mathrm{r}$\psi$_{2}'

in which the vertical (respectively, horizontal) arrows are the above natural embeddings
(respectively, the isomorphisms induced by  $\alpha$ ), induces a commutative diagram:

(F_{1}^{p^{n_{2}'}})^{\times}\rightarrow F_{2}^{\times}

(K_{1}^{p^{n_{2}'}})^{\times}\uparrow\rightarrow K_{2}^{\times}\uparrow
where the vertical arrows are the natural embeddings. \square 

Let  $\gamma$ :  K_{1}^{\times}\rightarrow(K_{2}^{p^{-n_{2}}})^{\times} be the map obtained in Lemma 3.8. We define  $\gamma$(0)=0.
Then  $\gamma$ gives an injective multiplicative map  K_{1}\rightarrow K_{2}^{p^{-n_{2}}}
Lemma 3.10 (Recovering the Additive Structure). The injective map  $\gamma$ :  K_{1}\rightarrow

 K_{2}^{p^{-n_{2}}} is a radicial field homomorphism, and the image  $\gamma$(K) of K_{1} equals K_{2} . Thus

 $\gamma$ induces a field isomorphism  $\gamma$ :  K_{1}\rightarrow\sim K_{2}.

Proof. (Compare the proof of [ST1], Theorem 3.7.) Take a prime l\neq p . Let k_{i}^{l} be the

(unique) \mathbb{Z}_{l} ‐extension of k_{i} and set K_{i}^{l}\mathrm{d}\mathrm{e}\mathrm{f}=K_{i}k_{i}^{l}, i=1
,
2. Let p^{n_{i}^{l}} denote the exponent of

the p‐primary abelian group J_{X_{i}}(k_{i}^{l})[p^{\infty}] ,
which is finite by [R], Theorem 11.6. Then,

-n^{l}

by Lemma 3.9, we obtain a natural injective map $\gamma$^{l} : K_{1}^{l}\rightarrow(K_{2}^{l})^{p}
2

extending  $\gamma$.

Now, by applying [ST1], Proposition 4.4 (with  E_{X}=E_{Y}=\emptyset ) to $\gamma$^{l} ,
we see that $\gamma$^{l} is a

radicial field homomorphism, from which the first assertion follows. Thus,  $\gamma$ maps  K_{1}

isomorphically onto K_{2}^{p^{m}} for some m\in \mathbb{Z} . Since  $\gamma$(K_{1}^{\times}) and K_{2}^{\times} are commensurate to

each other in (K_{2}^{p^{-n_{2}}})^{\times} (cf. [ST1], Theorem 3.6 (ii)), we have m=0. \square 

By considering various open subgroups of G_{i} as above, i=1
, 2, and using Lemmas

3.9 and 3.10, we obtain a natural field isomorphism \tilde{ $\gamma$} : \tilde{K}_{1}\rightarrow\sim\tilde{K}_{2}.
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Lemma 3.11. The above isomorphism \tilde{ $\gamma$} : \tilde{K}_{1}\rightarrow\sim\tilde{K}_{2} is Galois‐equivariant with respect
to  $\alpha$

,
and is unique with this property.

Proof. Same as in the last part of [U], Section 3. \square 

This finishes the proof of Theorem 3.2. \square 
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