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On the K( $\pi$, 1)‐property for rings of integers in the

mixed case

By

Alexander Schmidt *

Abstract

We investigate the Galois group G(p) of the maximal p‐extension unramied outside a

finite set S of primes of a number field in the (mixed) case, when there are primes dividing p

inside and outside S . We show that the cohomology of G(p) is �often� isomorphic to the étale

cohomology of the scheme Spec (\mathcal{O}_{k}\backslash S) ,
in particular, G(p) is of cohomological dimension 2

then. We deduce this from the results in our previous paper [Sch2], which mainly dealt with

the tame case.

§1. Introduction

Let Y be a connected locally noetherian scheme and let p be a prime number. We

denote the étale fundamental group of Y by $\pi$_{1}(Y) and its maximal pro‐p factor group

by $\pi$_{1}(Y)(p) . The Hochschild‐Serre spectral sequence induces natural homomorphisms

$\phi$_{i}:H^{i}($\pi$_{1}^{et}(Y)(p), \mathbb{Z}/p\mathbb{Z})\rightarrow H_{et}^{i}(Y, \mathbb{Z}/p\mathbb{Z}) , i\geq 0,

and we call Y\mathrm{a}(K( $\pi$, 1) for p
� if all $\phi$_{i} are isomorphisms; see [Sch2] Proposition 2.1

for equivalent conditions. See [Wi2] for a purely Galois cohomological approach to the

K( $\pi$, 1) ‐property. Our main result is the following

Theorem 1.1. Let k be a number field and let p be a prime number. Assume

that k does not contain a primitive p‐th root of unity and that the class number of k is

prime to p . Then the following holds:

Let S be a finite set of primes of k and let T be a set of primes of k of Dirichlet

density  $\delta$(T)=1 . Then there exists a finite subset T_{1}\subset T such that Spec (\mathcal{O}_{k})\backslash (S\cup T_{1})
is a K( $\pi$, 1) forp.
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Remarks. 1. If S contains the set S_{p} of primes dividing p ,
then Theorem 1.1 holds

with  T_{1}=\emptyset and even without the condition $\zeta$_{p}\not\in k and Cll(k)(p)=0 ,
see [Sch2],

Proposition 2.3. In the tame case  S\cap S_{p}=\emptyset ,
the statement of Theorem 1.1 is the main

result of [Sch2]. Here we provide the extension to the �mixed� case \emptyset\subsetneq S\cap S_{p}\subsetneq S_{p}.
2. For a given number field k

,
all but finitely many prime numbers p satisfy the con‐

dition of Theorem 1.1. We conjecture that Theorem 1.1 holds without the restricting

assumption on p.

Let S be a finite set of places of a number field k . Let k(p) be the maximal

p‐extension of k unramified outside S and put G_{S}(p)=Gal(k_{S}(p)|k) . If S_{\mathbb{R}} denotes the

set of real places of k
,
then G_{S\cup S_{\mathrm{R}}}(p)\cong$\pi$_{1}(Spec(\mathcal{O}_{k})\backslash S)(p) (we have G_{S}(p)=G_{S\cup S_{\mathrm{R}}}(p)

if p is odd or k is totally imaginary). The following Theorem 1.2 sharpens Theorem 1.1.

Theorem 1.2. The set T_{1}\subset T in Theorem 1.1 may be chosen such that

(i) T_{1} consists of primes \mathfrak{p} of degree 1 with N(\mathfrak{p})\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} p,
(ii) (k_{S\cup T_{1}}(p))_{\mathfrak{p}}=k_{\mathfrak{p}}(p) for all primes \mathfrak{p}\in S\cup T_{1}.

Note that Theorem 1.2 provides nontrivial information even in the case S\supset S_{p} ,
where

assertion (ii) was only known when k contains a primitive p‐th root of unity (Kuz�min�s
theorem, see [Kuz] or [NSW], 10.6.4 or [NSW], 10.8.4, respectively) and for certain CM

fields (by a result of Mukhamedov, see [Muk] or [NSW], X §6 exercise or [NSW], X §8

exercise, respectively).

By Theorem 3.3 below, Theorem 1.2 provides many examples of G(p) being a

duality group. If $\zeta$_{p}\not\in k ,
this is interesting even in the case that S\supset S_{p} ,

where

examples of G(p) being a duality group were previously known only for real abelian

fields and for certain CM‐fields (see [NSW], 10.7.15 and [NSW], 10.9.15, respectively,
and the remark following there).

Previous results in the mixed case had been achieved by K. Wingberg [Wil], Ch.

Maire [Mai] and D. Vogel [Vog]. Though not explicitly visible in this paper, the present

progress in the subject was only possible due to the results on mild pro‐p groups obtained

by J. Labute in [Lab].

I would like to thank K. Wingberg for pointing out that the proof of Proposition 8.1

in my paper [Sch2] did not use the assumption that the sets S and S' are disjoint from

S_{p} . This was the key observation for the present paper. The main part of this text

was written while I was a guest at the Department of Mathematical Sciences of Tokyo

University and of the Research Institute for Mathematical Sciences in Kyoto. I want to

thank these institutions for their kind hospitality.
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§2. Proof of Theorems 1.1 and 1.2

We start with the observation that the proofs of Proposition 8.1 and Corollary 8.2 in

[Sch2] did not use the assumption that the sets S and S' are disjoint from S_{p} . Therefore,
with the same proof (which we repeat for the convenience of the reader) as in loc. cit.,
we obtain

Proposition 2.1. Let k be a number field and let p be a prime number. Assume

k to be totally imaginary if p=2 . Put X=Spec() and let S\subset S' be finite sets of

primes of k . Assume that X\backslash S is a K( $\pi$, 1) forp and that G_{S}(p)\neq 1 . Further assume

that each \mathfrak{p}\in S'\backslash S does not split completely in k_{S}(p) . Then the following hold.

(i) X\backslash S' is a K( $\pi$, 1) forp.

(ii) k_{S'}(p)_{\mathfrak{p}}=k_{\mathfrak{p}}(p) for all \mathfrak{p}\in S'\backslash S.

Furthermore, the arithmetic form of Riemann�s existence theorem holds, i.e., setting

K=k_{S}(p) ,
the natural homomorphism

\mathfrak{p}\in S'\backslash S(K)*T(K_{\mathfrak{p}}(p)|K_{\mathfrak{p}})\rightarrow Gal(k_{S'}(p)K)
is an isomorphism. Here  $\tau$(K(p)K) is the inertia group and* denotes the fr ee pro‐

p ‐product of a bundle of pro‐p‐groups, cf. [NSW], Ch. IV, §3. In particular, the group

Gal(k_{S'}(p)k(p)) is a fr ee pro‐p‐group.

Proof. The K( $\pi$, 1) ‐property implies

H^{i}(G_{S}(p), \mathbb{Z}/p\mathbb{Z})\cong H_{et}^{i}(X\backslash S, \mathbb{Z}/p\mathbb{Z})=0 for i\geq 4,

hence cd G_{S}(p)\leq 3 . Let \mathfrak{p}\in S'\backslash S . Since \mathfrak{p} does not split completely in k(p)
and since cd  G_{S}(p)<\infty ,

the decomposition group of \mathfrak{p} in k(p)k is a non‐trivial

and torsion‐free quotient of \mathbb{Z}_{p}\cong Gal(k_{\mathfrak{p}}^{nr}(p)|k_{\mathfrak{p}}) . Therefore k_{S}(p)_{\mathfrak{p}} is the maximal

unramified p‐extension of k_{\mathfrak{p}} . We denote the normalization of an integral normal

scheme Y in an algebraic extension L of its function field by Y_{L} . Then (X\backslash S)_{ks(p)}
is the universal pro‐p covering of X\backslash S . We consider the étale excision sequence for

the pair ((X\backslash S)_{ks(p)}, (X\backslash S')_{ks(p)}) . By assumption, X\backslash S is a K( $\pi$, 1) for p ,
hence

H_{et}^{i}((X\backslash S)_{ks(p)}, \mathbb{Z}/p\mathbb{Z})=0 for i\geq 1 by [Sch2], Proposition 2.1. Omitting the coeffi‐

cients \mathbb{Z}/p\mathbb{Z} from the notation, this implies isomorphisms

H_{et}^{i}((X\backslash S')_{ks(p)})\rightarrow\sim \oplus' H_{\mathfrak{p}}^{i+1}(((X\backslash S)_{ks(p)})_{\mathfrak{p}})
\mathfrak{p}\in S'\backslash S(ks(p))

for i\geq 1 . Here (and in variants also below) we use the notational convention

\displaystyle \oplus' H_{\mathfrak{p}}^{i+1}(((X\backslash S)_{ks(p)})_{\mathfrak{p}}) := \lim_{\rightarrow} \oplus H_{\mathfrak{p}}^{i+1}(((X\backslash S)_{K})_{\mathfrak{p}}) ,

\mathfrak{p}\in S'\backslash S(ks(p)) K\subset ks(p)\mathfrak{p}\in S'\backslash S(K)
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where K runs through the finite extensions of k inside k_{S}(p) . As k(p) realizes the

maximal unramified p‐extension of k_{\mathfrak{p}} for all \mathfrak{p}\in S'\backslash S ,
the schemes ((X\backslash S)_{ks(p)})_{\mathfrak{p}}, \mathfrak{p}\in

 S'\backslash S(k_{S}(p)) ,
have trivial cohomology with values in \mathbb{Z}/p\mathbb{Z} and we obtain isomorphisms

H^{i}((k_{S}(p))_{\mathfrak{p}})\rightarrow\sim H_{\mathfrak{p}}^{i+1}(((X\backslash S)_{ks(p)})_{\mathfrak{p}})

for i\geq 1 . These groups vanish for i\geq 2 . This implies

H_{et}^{i}((X\backslash S')_{ks(p)})=0

for i\geq 2 . Since the scheme (X\backslash S')_{k_{s}} , (p) is the universal pro‐p covering of (X\backslash S')_{ks(p)},
the Hochschild‐Serre spectral sequence

E_{2}^{ij}=H^{i}(Gal(k_{S'}(p)|k_{S}(p)), H_{et}^{j}((X\backslash S')_{k_{s},(p)}))\Rightarrow H_{et}^{i+j}((X\backslash S')_{ks(p)})

yields an inclusion

H^{2}(Gal(k_{S'}(p)|k_{S}(p)))\mapsto H_{et}^{2}((X\backslash S')_{ks(p)})=0.

Hence Gal(k_{S'}(p)k(p)) is a free pro‐p‐group and

H^{1}(Gal(k_{S'}(p)|k_{S}(p)))\rightarrow\sim H_{et}^{1}((X\backslash S')_{ks(p)})\cong \oplus' H^{1}(k_{S}(p)_{\mathfrak{p}}) .

\mathfrak{p}\in S'\backslash S(ks(p))

We set K=k(p) and consider the natural homomorphism

 $\phi$:*T(K_{\mathfrak{p}}(p)|K_{\mathfrak{p}})\mathfrak{p}\in S'\backslash S(K)\rightarrow Gal(k_{S'}(p)|K) .

By the calculation of the cohomology of a free product ([NSW], 4.3.10 and 4.1.4),  $\phi$ is

a homomorphism between free pro‐p‐groups which induces an isomorphism on \mathrm{m}\mathrm{o}\mathrm{d} p

cohomology. Therefore  $\phi$ is an isomorphism. In particular,  k_{S'}(p)_{\mathfrak{p}}=k(p) for all

\mathfrak{p}\in S'\backslash S . Using that Gal(k_{S'}(p)k(p)) is free, the Hochschild‐Serre spectral sequence

induces an isomorphism

0=H_{et}^{2}((X\backslash S')_{ks(p)})\rightarrow^{\sim}H_{et}^{2}((X\backslash S')_{k_{s'}(p)})^{Gal(k_{s'}(p)|ks(p))}.

Hence H_{et}^{2}((X\backslash S')_{k_{s},(p)})=0 ,
since Gal(k_{S'}(p)k(p)) is a pro‐p‐group. Now [Sch2],

Proposition 2.1 implies that X\backslash S' is a K( $\pi$, 1) for p. \square 

In order to prove Theorem 1.1, we first provide the following lemma. For an

extension field K|k and a set of primes T of k
,

we write T(K) for the set of prolongations
of primes in T to K and $\delta$_{K}(T) for the Dirichlet density of the set of primes T(K) of K.
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Lemma 2.2. Let k be a number field, p a prime number and S a finite set of
nonarchimedean primes of k . Let T be a set of primes of k with $\delta$_{k($\mu$_{p})}(T)=1 . Then

there exists a finite subset T_{0}\subset T such that all primes \mathfrak{p}\in S do not split completely in

the extension k_{T_{0}}(p)|k.

Proof. By [NSW], 9.2.2 (ii) or [NSW], 9.2.3 (ii), respectively, the restriction map

H^{1}(G_{T\cup S\cup S_{p}\cup S_{\mathrm{R}}}(p), \displaystyle \mathbb{Z}/p\mathbb{Z})\rightarrow\prod_{\mathfrak{p}\in S\cup S_{p}\cup S_{\mathrm{R}}}H^{1}(k_{\mathfrak{p}}, \mathbb{Z}/p\mathbb{Z})
is surjective. A class in  $\alpha$\in H^{1}(G_{T\cup S\cup S_{p}\cup S_{\mathrm{R}}}(p), \mathbb{Z}/p\mathbb{Z}) which restricts to an unramified

class $\alpha$_{\mathfrak{p}}\in H_{nr}^{1}(k_{\mathfrak{p}}, \mathbb{Z}/p\mathbb{Z}) for all \mathfrak{p}\in S\cup S_{p}\cup S_{\mathbb{R}} is contained in H^{1}(G_{T}(p), \mathbb{Z}/p\mathbb{Z}) .

Therefore the image of the composite map

H^{1}(G_{T}(p), \displaystyle \mathbb{Z}/p\mathbb{Z})\mapsto H^{1}(G_{T\cup S\cup S_{p}\cup S_{\mathrm{R}}}(p), \mathbb{Z}/p\mathbb{Z})\rightarrow\prod_{\mathfrak{p}\in S}H^{1}(k_{\mathfrak{p}}, \mathbb{Z}/p\mathbb{Z})
contains the subgroup \displaystyle \prod_{\mathfrak{p}\in S}H_{nr}^{1}(k_{\mathfrak{p}}, \mathbb{Z}/p\mathbb{Z}) . As this group is finite, it is already con‐

tained in the image of H^{1}(G_{T_{0}}(p), \mathbb{Z}/p\mathbb{Z}) for some finite subset T_{0}\subset T . We conclude

that no prime in S splits completely in the maximal elementary abelian p‐extension of

k unramified outside T_{0}. \square 

Proof of Theorems 1.1 and 1.2. As p\neq 2 ,
we may ignore archimedean primes.

Furthermore, we may remove the primes in S\cup S_{p} and all primes of degree greater
than 1 from T . In addition, we remove all primes \mathfrak{p} with N(\mathfrak{p})\not\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} p from T . After

these changes, we still have $\delta$_{k($\mu$_{p})}(T)=1.
By Lemma 2.2, we find a finite subset T_{0}\subset T such that no prime in S splits

completely in k_{T_{0}}(p)|k . Put X=Spec(\mathcal{O}_{k}) . By [Sch2], Theorem 6.2, applied to T_{0} and

T\backslash T_{0} ,
we find a finite subset T_{2}\subset T\backslash T_{0} such that X\backslash (T_{0}\cup T_{2}) is a K( $\pi$, 1) for p.

Then Proposition 2.1 applied to T_{0}\cup T_{2}\subset S\cup T_{0}\cup T_{2} ,
shows that also X\backslash (S\cup T_{0}\cup T_{2})

is a K( $\pi$, 1) for p . Now put T_{1}=T_{0}\cup T_{2}\subset T.

It remains to show Theorem 1.2. Assertion (i) holds by construction of T_{1} . Again

by construction, X\backslash T_{1} is a K( $\pi$, 1) for p . By [Sch2], Theorem 3, the field k(p) realizes

k(p) for \mathfrak{p}\in T_{1} , showing (ii) for these primes. Finally, assertion (ii) for \mathfrak{p}\in S follows

from Proposition 2.1. \square 

§3. Duality

We start by investigating the relation between the K( $\pi$, 1) ‐property and the uni‐

versal norms of global units.
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Let us first remove redundant primes from S : If \mathfrak{p}-p is a prime with $\zeta$_{p}\not\in k_{\mathfrak{p}},
then every p‐extension of the local field k_{\mathfrak{p}} is unramified (see [NSW], 7.5.1 or [NSW],
7.5.9, respectively). Therefore primes \mathfrak{p}\not\in S_{p} with N(\mathfrak{p})\not\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} p cannot ramify in a

p‐extension. Removing all these redundant primes from S ,
we obtain a subset S_{\min}\subset S,

which has the property that G_{S}(p)=G_{S_{\min}}(p) . Furthermore, by [Sch2], Lemma 4.1,
X\backslash S is a K( $\pi$, 1) for p if and only if X\backslash S_{\min} is a K( $\pi$, 1) for p.

Theorem 3.1. Let k be a number field and let p be a prime number. Assume

that k is totally imaginary if p=2 . Let S be a finite set of nonarchimedean primes

of k . Then any two of the following conditions (\mathrm{a})-(\mathrm{c}) imply the third.

(a) Spec()S is a K( $\pi$, 1) for p.

(b) \displaystyle \lim_{\leftarrow Kk(p)}\mathcal{O}_{K}^{\times}\otimes \mathbb{Z}_{p}=0.
(c) (k_{S}(p))_{\mathfrak{p}}=k_{\mathfrak{p}}(p) for all primes \mathfrak{p}\in S_{\min}.

The limit in (b) runs through all finite extensions K of k inside k_{S}(p) . If (a)(c) hold,
then also

\displaystyle \lim_{\leftarrow} \mathcal{O}_{K,S_{\min}}^{\times}\otimes \mathbb{Z}_{p}=0.
K\subset ks(p)

Remarks: 1. Assume that $\zeta$_{p}\in k and S\supset S_{p} . Then (a) holds and condition (c) holds

for p>2 if \# S>r_{2}+2 (see [NSW], Remark 2 after 10.9.3). In the case k=\mathbb{Q}($\zeta$_{p}) ,

S=S_{p} ,
condition (c) holds if and only if p is an irregular prime number.

2. Assume that  S\cap S_{p}=\emptyset and  S_{\min}\neq\emptyset . If condition (a) holds, then either  G_{S}(p)=1
(which only happens in very special situations, see [Sch2], Proposition 7.4) or (c) holds

by [Sch2], Theorem 3 (or by Proposition 3.2 below).

Proof of Theorem 3.1. We may assume S=S_{\min} in the proof. Let K run through
the finite extensions of k in k(p) and put X_{K}=Spec(\mathcal{O}_{K}) . Applying the topological

Nakayama‐Lemma ([NSW], 5.2.18) to the compact \mathbb{Z}_{p} ‐module \displaystyle \lim_{\leftarrow}\mathcal{O}_{K}^{\times}\otimes \mathbb{Z}_{p} ,
we see that

condition (b) is equivalent to

(b) \displaystyle \lim_{\leftarrow K\subset ks(p)}\mathcal{O}_{K}^{\times}/p=0.
Furthermore, by [Sch2], Proposition 2.1, condition (a) is equivalent to

(a) \displaystyle \lim_{\rightarrow K\subset ks(p)}H_{et}^{i}((X\backslash S)_{K}, \mathbb{Z}/p\mathbb{Z})=0 for i\geq 1.

Condition (a) always holds for i=1, i\geq 4 ,
and it holds for i=3 provided that G(p) is

infinite or S is nonempty or $\zeta$_{p}\not\in k (see [Sch2], Lemma 3.7). The flat Kummer sequence

0\rightarrow$\mu$_{p}\rightarrow \mathbb{G}_{m}\rightarrow \mathbb{G}_{m}p\rightarrow 0 induces exact sequences

0\rightarrow \mathcal{O}_{K}^{\times}/p\rightarrow H^{1}fl(X_{K}, $\mu$_{p})\rightarrow p^{Pic(X_{K})}\rightarrow 0
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for all K . As the field k(p) does not have nontrivial unramified p‐extensions, class field

theory implies

\displaystyle \lim_{\leftarrow} p^{Pic(X_{K})}\subset \lim_{\leftarrow} Pic(X_{K})\otimes \mathbb{Z}_{p}=0.
K\subset ks(p) K\subset ks(p)

As we assumed k to be totally imaginary if p=2 ,
the flat duality theorem of Artin‐

Mazur ([Mil], III Corollary 3.2) induces natural isomorphisms

H_{et}^{2}(X_{K}, \mathbb{Z}/p\mathbb{Z})=H^{2}fl(X_{K}, \mathbb{Z}/p\mathbb{Z})\cong H^{1}fl(X_{K}, $\mu$_{p})^{\vee}

We conclude that

(*) \displaystyle \lim_{\rightarrow}  H_{et}^{2}(X_{K}, \mathbb{Z}/p\mathbb{Z})\cong (\displaystyle \lim_{\leftarrow} \mathcal{O}_{K}^{\times}/p)^{\vee}
K\subset ks(p) K\subset ks(p)

We first show the equivalence of (a) and (b) in the case  S=\emptyset . If (a) holds, then ()
shows (b) . If (b) holds, then $\zeta$_{\mathfrak{p}}\not\in k or G(p) is infinite. Hence we obtain (a) for i=3.

Furthemore, (b) implies (a) for i=2 by () . This finishes the proof of the case S=\emptyset.

Now we assume that  S\neq\emptyset . For \mathfrak{p}\in S(K) ,
a standard calculation of local coho‐

mology shows that

H_{\mathfrak{p}}^{i}(X_{K}, \mathbb{Z}/p\mathbb{Z})\cong\left\{\begin{array}{l}
0 \mathrm{f}\mathrm{o}\mathrm{r} i\leq 1,\\
H^{1}(K_{\mathfrak{p}}, \mathbb{Z}/p\mathbb{Z})/H_{nr}^{1}(K_{\mathfrak{p}}, \mathbb{Z}/p\mathbb{Z}) \mathrm{f}\mathrm{o}\mathrm{r} i=2,\\
H^{2}(K_{\mathfrak{p}}, \mathbb{Z}/p\mathbb{Z}) \mathrm{f}\mathrm{o}\mathrm{r} i=3.\\
0 \mathrm{f}\mathrm{o}\mathrm{r} i\geq 4.
\end{array}\right.
For \mathfrak{p}\in S=S_{\min} , every proper Galois subextension of k_{\mathfrak{p}}(p)|k_{\mathfrak{p}} admits ramified p‐

extensions. Hence condition (c) is equivalent to

(c) \displaystyle \lim_{\rightarrow K\subset ks(p)}\oplus_{\mathfrak{p}\in S(K)}H_{\mathfrak{p}}^{i}(X_{K}, \mathbb{Z}/p\mathbb{Z})=0 for all i,

and to

(c)
''

\displaystyle \lim_{p\rightarrow K\subset}k_{s}()\oplus_{\mathfrak{p}\in S(K)}H_{\mathfrak{p}}^{2}(X_{K}, \mathbb{Z}/p\mathbb{Z})=0.
Consider the direct limit over all K of the excision sequences

\rightarrow \oplus  H_{\mathfrak{p}}^{i}(X_{K}, \mathbb{Z}/p\mathbb{Z})\rightarrow H_{et}^{i}(X_{K}, \mathbb{Z}/p\mathbb{Z})\rightarrow H_{et}^{i}((X\backslash S)_{K}, \mathbb{Z}/p\mathbb{Z})\rightarrow\cdots
\mathfrak{p}\in S(K)

Assume that (a) holds, i.e. the right hand terms vanish in the limit for i\geq 1 . Then ()
shows that (b) is equivalent to (c)

''

Now assume that (b) and (c) hold. As above, (b) implies the vanishing of the

middle term for i=2 in the limit. Condition (c) then shows (a)
We have proven that any two of the conditions (a)(c) imply the third.
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Finally, assume that (a)(c) hold. Tensoring the exact sequences (cf. [NSW], 10.3.11

or [NSW], 10.3.12, respectively)

0\rightarrow \mathcal{O}_{K}^{\times}\rightarrow \mathcal{O}_{K,S}^{\times}\rightarrow \oplus(K_{\mathfrak{p}}^{\times}/U_{\mathfrak{p}})\rightarrow Pic(X_{K})\rightarrow Pic((X\backslash S)_{K})\rightarrow 0
\mathfrak{p}\in S(K)

by (the flat \mathbb{Z}‐algebra) \mathbb{Z}_{p} ,
we obtain exact sequences of finitely generated, hence com‐

pact, \mathbb{Z}_{p} ‐modules. Passing to the projective limit over the finite extensions K of k inside

k(p) and using \displaystyle \lim_{\leftarrow}Pic(X_{K})\otimes \mathbb{Z}_{p}=0 ,
we obtain the exact sequence

0\displaystyle \rightarrow\lim_{\leftarrow}\mathcal{O}_{K}^{\times}\otimes \mathbb{Z}_{p}\rightarrow\lim_{\leftarrow}\mathcal{O}_{K,S}^{\times}\otimes \mathbb{Z}_{p}\rightarrow\lim_{\leftarrow} \oplus(K_{\mathfrak{p}}^{\times}/U_{\mathfrak{p}})\otimes \mathbb{Z}_{p}\rightarrow 0.
K\subset ks(p) K\subset ks(p) K\subset ks(p)\mathfrak{p}\in S(K)

Condition (c) and local class field theory imply the vanishing of the right hand limit.

Therefore (b) implies the vanishing of the projective limit in the middle. \square 

If G_{S}(p)\neq 1 and condition (a) of Theorem 1.1 holds, then the failure in condition

(c) can only come from primes dividing p . This follows from the next

Proposition 3.2. Let k be a number field and let p be a prime number. Assume

that k is totally imaginary if p=2 . Let S be a finite set of nonarchimedean primes

of k . If Spec()S is a K( $\pi$, 1) forp and G_{S}(p)\neq 1 ,
then every prime \mathfrak{p}\in S with

$\zeta$_{p}\in k_{\mathfrak{p}} has an innite inertia group in G_{S}(p) . Moreover, we have

k_{S}(p)_{\mathfrak{p}}=k_{\mathfrak{p}}(p)

for all \mathfrak{p}\in S_{\min}\backslash S_{p}.

Proof. We may assume S=S_{\min} . Suppose \mathfrak{p}\in S with $\zeta$_{p}\in k_{\mathfrak{p}} does not ramify in

k_{S}(p)|k . Setting S'=S\backslash \{\mathfrak{p}\} ,
we have k_{S'}(p)=k_{S}(p) ,

in particular,

H_{et}^{1}(X\backslash S', \mathbb{Z}/p\mathbb{Z})\rightarrow^{\sim}H_{et}^{1}(X\backslash S, \mathbb{Z}/p\mathbb{Z}) .

In the following, we omit the coefficients \mathbb{Z}/p\mathbb{Z} from the notation. Using the vanishing
of H_{et}^{3}(X\backslash S) ,

the étale excision sequence yields a commutative exact diagram

H^{2}(G_{S'}(p))\rightarrow^{\sim}H^{2}(G(p))

\uparrow \downarrow $\iota$
 H_{\mathfrak{p}}^{2}(X)\leftarrow H_{et}^{2}(X\backslash S')\rightarrow^{ $\alpha$}H_{et}^{2}(X\backslash S)\rightarrow H_{\mathfrak{p}}^{3}(X)\rightarrow H_{et}^{3}(X\backslash S') .

Hence  $\alpha$ is split‐surjective and \mathbb{Z}/p\mathbb{Z}\cong H_{\mathfrak{p}}^{3}(X)\rightarrow\sim H_{et}^{3}(X\backslash S') . This implies S'=\emptyset,
hence S=\{\mathfrak{p}\} ,

and $\zeta$_{p}\in k . The same applies to every finite extension of k in k_{S}(p) ,

hence \mathfrak{p} is inert in k_{S}(p)=k_{\emptyset}(p) . This implies that the natural homomorphism

Gal(k_{\mathfrak{p}}^{nr}(p)|k_{\mathfrak{p}})\rightarrow G_{\emptyset}(k)(p)
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is surjective. Therefore G_{S}(p)=G_{\emptyset}(p) is abelian, hence finite by class field theory.
Since this group has finite cohomological dimension by the K( $\pi$, 1) ‐property, it is trivial,
in contradiction to our assumptions.

This shows that all \mathfrak{p}\in S with $\zeta$_{p}\in k_{\mathfrak{p}} ramify in k_{S}(p) . As this applies to every

finite extension of k inside k_{S}(p) ,
the inertia groups must be infinite. For \mathfrak{p}\in S_{\min}\backslash S_{p}

this implies k_{S}(p)_{\mathfrak{p}}=k_{\mathfrak{p}}(p) . \square 

Theorem 3.3. Let k be a number field and let p be a prime number. Assume

that k is totally imaginary if p=2 . Let S be a finite nonempty set of nonarchimedean

primes of k . Assume that conditions (a)(c) of Theorem 3.1 hold and that $\zeta$_{p}\in k_{\mathfrak{p}} for
all \mathfrak{p}\in S . Then G(p) is a pro‐p duality group of dimension 2.

Proof. Condition (a) implies H^{3}(G_{S}(p), \mathbb{Z}/p\mathbb{Z})\rightarrow\sim H_{et}^{3}(X\backslash S, \mathbb{Z}/p\mathbb{Z})=0 . Hence

cd G_{S}(p)\leq 2 . On the other hand, by (c), the group G(p) contains Gal(k(p)k) as

a subgroup for all \mathfrak{p}\in S . As $\zeta$_{p}\in k_{\mathfrak{p}} for \mathfrak{p}\in S ,
these local groups have cohomological

dimension 2, hence so does G_{S}(p) .

In order to show that G(p) is a duality group, we have to show that

D_{i}(G_{S}(p), \displaystyle \mathbb{Z}/p\mathbb{Z}) := \lim_{\rightarrow} H^{i}(U, \mathbb{Z}/p\mathbb{Z})^{\vee}
U\subset Gs(p)cor^{\vee}

vanish for i=0 , 1, where U runs through the open subgroups of G(p) and the transition

maps are the duals of the corestriction homomorphisms; see [NSW], 3.4.6. The vanishing
of D_{0} is obvious, as G(p) is infinite. We therefore have to show that

\displaystyle \lim_{\rightarrow} H^{1}((X\backslash S)_{K}, \mathbb{Z}/p\mathbb{Z})^{\vee}=0.
K\subset ks(p)

We put X=Spec() and denote the embedding by j : (X\backslash S)_{K}\rightarrow X_{K} . By the flat

duality theorem of Artin‐Mazur, we have natural isomorphisms

H^{1}((X\backslash S)_{K}, \mathbb{Z}/p\mathbb{Z})^{\vee}\cong H^{2}fl,c((X\backslash S)_{K}, $\mu$_{p})=H^{2}fl(X_{K}, j_{!}$\mu$_{p}) .

The excision sequence together with a straightforward calculation of local cohomology

groups shows an exact sequence

(*) \oplus  K_{\mathfrak{p}}^{\times}/K_{\mathfrak{p}}^{\times p}\rightarrow H^{2}fl(X_{K}, j_{!}$\mu$_{p})\rightarrow H^{2}fl((X\backslash S)_{K}, $\mu$_{p}) .

\mathfrak{p}\in S(K)

As $\zeta$_{p}\in k_{\mathfrak{p}} and k_{S}(p)_{\mathfrak{p}}=k(p) for \mathfrak{p}\in S by assumption, the left hand term of ()
vanishes when passing to the limit over all K . We use the Kummer sequence to obtain

an exact sequence

(**) Pic((X\backslash S)_{K})/p\rightarrow H^{2}fl((X\backslash S)_{K}, $\mu$_{p})\rightarrow p^{Br((X\backslash S)_{K})}.
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The left hand term of () vanishes in the limit by the principal ideal theorem. The

Hasse principle for the Brauer group induces an injection

p^{Br((X\backslash S)_{K})}\mapsto \oplus p^{Br(K_{\mathfrak{p}})}.
\mathfrak{p}\in S(K)

As k(p) realizes the maximal unramified p‐extension of k_{\mathfrak{p}} for \mathfrak{p}\in S ,
the limit of the

middle term in () ,
and hence also the limit of the middle term in () vanishes. This

shows that G(p) is a duality group of dimension 2. \square 

Remark: The dualizing module can be calculated to

D\cong \mathrm{t}\mathrm{o}\mathrm{r}_{p}(C_{S}(k_{S}(p)) ,

i.e. D is isomorphic to the p‐torsion subgroup in the S‐idèle class group of k_{S}(p) . The

proof is the same as in ([Schl], Proof of Thm. 5.2), where we dealt with the tame case.
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