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On elliptic curves of conductor 11^{2} and

an open question of Ihara

By

Christopher Rasmussen *

Abstract

In previous work, joint with Tamagawa, the author investigated a certain class of elliptic
curves with constrained prime power torsion. If an open question of Ihara has an affirmative

answer, then the prime power torsion of such curves must be rational over the fixed field $\Omega$_{l} of

the canonical outer \mathrm{p}\mathrm{r}\mathrm{o}-\ell Galois representation attached to \mathbb{P}_{01\infty}^{1} . This is indeed the case for

most examples. In the current work, we consider the remaining examples— elliptic curves E/\mathbb{Q}
with good reduction away from \ell=11 which do not have complex multiplication. In these

cases, we demonstrate an explicit computation of subfields of \mathbb{Q}(E[\ell^{2}]) contained in $\Omega$_{l}.

§1. Introduction

§1.1. Tamagawa�s Conjecture

For any n\geq 1 ,
let $\mu$_{n} denote the n‐th roots of unity. Let \ell be a prime number.

For any number field  k
,

let \tilde{k}_{\ell} be the maximal \mathrm{p}\mathrm{r}\mathrm{o}-\ell extension of  k() unramified away

from \ell . Then Tamagawa has conjectured that the set

(1.1) \mathscr{A}(k, g) :=\{([A], \ell) : \dim A=g, \mathbb{Q}(A[\ell^{\infty}])\subseteq\tilde{k}_{\ell}\},
is finite for any fixed choice of k and g . Here, all abelian varieties are assumed to be

defined over k
,

and [A] denotes the k‐isomorphism class of A . In [RT08], the author,

jointly with Tamagawa, proved the conjecture in the case g=1 for k=\mathbb{Q} and for k

almost any quadratic extension of \mathbb{Q} . The unsettled cases among quadratic extensions
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are exactly the quadratic imaginary extensions of class number one.1 Further, the set

\mathscr{A}(\mathbb{Q}, 1) was determined explicitly.

Roughly speaking, the finiteness result follows from the following proposition,

proved in [RT08]:

Proposition 1.1. Let E/\mathbb{Q} be an elliptic curve. Then ([E], \ell)\in \mathscr{A}(\mathbb{Q}, 1) if and

only if E has good reduction away from \ell and  E admits a \mathbb{Q} ‐rational \ell ‐isogeny.

Recall that  Y(N) is the open modular curve which parametrizes pairs (E,  $\psi$) ,

where E is an elliptic curve and  $\psi$ is an isogeny on  E of degree N . The proposition

implies the finiteness of \mathscr{A}(\mathbb{Q}, 1) as follows. We have by the Shafarevich Conjecture
that for a fixed \ell

,
there exist only finitely many pairs ([E], \ell)\in \mathscr{A}(\mathbb{Q}, 1) . In addition,

the existence of a \mathbb{Q}‐rational \ell‐isogeny  $\psi$ on  E implies the existence of a corresponding

point [(E,  $\psi$)]\in Y_{0}(\ell)(\mathbb{Q}) . However, by Mazur [Maz78], Y_{0}(\ell)() is non‐empty for only

finitely many \ell . Hence, \mathscr{A}(\mathbb{Q}, 1) must be finite.

The proof of Proposition 1.1 involves carefully considering the structure of the

action of Galois on the \ell‐torsion of  E for the group Gal (\mathbb{Q}(E[\ell^{\infty}])/\mathbb{Q}($\mu$_{\ell})) . Under the

assumption that ([E], \ell)\in \mathscr{A}(\mathbb{Q}, 1) ,
this is a \mathrm{p}\mathrm{r}\mathrm{o}-\ell group and must in fact stabilize a

nontrivial cyclic subgroup of  E[\ell] ,
whence we conclude the existence of the isogeny. In

fact, one can be more explicit; the Galois representation on \ell‐torsion has the form

(1.2) $\rho$_{1}, E\sim(x_{0}^{i} $\chi$^{1-i}*) ,

where  $\chi$ denotes the \ell‐cyclotomic character modulo \ell . A more general result is available

for the action on the \ell‐torsion of a higher dimensional abelian variety— for details, see

[RT08].

§1.2. Relation to a Question of Ihara

In [AI88], Anderson and Ihara study the canonical outer \mathrm{p}\mathrm{r}\mathrm{o}-\ell Galois representation
attached to the fundamental group of \mathbb{P}_{01\infty}^{1} ,

the projective line with three points deleted.

That representation,

(1.3)  $\varphi$ : Gal (\overline{\mathbb{Q}}/\mathbb{Q})\rightarrow \mathrm{O}\mathrm{u}\mathrm{t}($\pi$_{1}^{\ell}(\mathbb{P}_{01\infty}^{1}, x)) ,

has a kernel whose fixed field we denote $\Omega$_{\ell} . Let $\mu$_{\ell\infty}=\displaystyle \bigcup_{n\geq 1}$\mu$_{\ell^{n}} . Then $\Omega$_{\ell} is an infinite

\mathrm{p}\mathrm{r}\mathrm{o}-\ell extension of \mathbb{Q}($\mu$_{\ell\infty}) ,
known to lie inside $\Lambda$_{\ell} ,

the maximal \mathrm{p}\mathrm{r}\mathrm{o}-\ell extension of \mathbb{Q}($\mu$_{\ell})
unramified away from \ell . It is unknown whether the fields $\Omega$_{\ell} and $\Lambda$_{\ell} coincide‐ Ihara first

lIn a forthcoming paper, the author and Tamagawa prove the conjecture in many new cases, in‐

cluding for any quadratic field k when g=1.
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asked this question in the mid 1980 �s [Iha86]. In light of this open problem, it is natural

to consider the following question: Given ([E], \ell)\in \mathscr{A}(\mathbb{Q}, 1) ,
does the containment

(1.4) \mathbb{Q}(E[\ell^{\infty}])\subseteq$\Omega$_{\ell}

hold? As discussed in [RT08], the containment does hold for almost every curve in

\mathscr{A}(\mathbb{Q}, 1) . Each pair ([E], \ell)\in \mathscr{A}(\mathbb{Q}, 1) falls into one of the following cases:

(i) \ell\leq 3.

(ii) E has complex multiplication by \mathbb{Q}(\sqrt{-\ell}) ,
with \ell\equiv 3 (mod4).

(iii) E has conductor N=121 and no complex multiplication.

In case (i), there are geometric arguments demonstrating the containment (1.4). The

case \ell=2 is treated completely in [\mathrm{R}\mathrm{a}\mathrm{s}04\mathrm{b}] . The case \ell=3 is partially treated in the

author�s Ph. D. thesis [\mathrm{R}\mathrm{a}\mathrm{s}04\mathrm{a}] ,
and was completely settled in [PR07].

In case (ii), as \mathbb{Q}(\sqrt{-\ell})\subseteq \mathbb{Q}($\mu$_{\ell}) ,
we see \mathbb{Q}(E[\ell^{\infty}])/\mathbb{Q}($\mu$_{\ell\infty}) is an abelian extension.

Let $\Lambda$_{\ell}^{0} be the maximal abelian \mathrm{p}\mathrm{r}\mathrm{o}-\ell extension of \mathbb{Q}($\mu$_{\ell\infty}) unramified away from \ell
,

and

let  c denote complex conjugation. Then the \mathbb{Z}_{\ell} ‐module G= Gal ($\Lambda$_{\ell}^{0}/\mathbb{Q}($\mu$_{\ell\infty})) decom‐

poses into two eigenspaces relative to the automorphism of G given by conjugation‐by‐c.
In [RT08, §5], it is shown that \mathbb{Q}(E[\ell^{\infty}]) is contained in the fixed field corresponding to

the space with eigenvalue +1 ,
and this field is known to be contained in $\Omega$_{\ell} when the

Vandiver Conjectures holds at \ell [Iha02].

Remark. When \ell=3 ,
both cases (i) and (ii) apply. Further, it may be possible to

extend the argument of case (ii) for E/\mathbb{Q} with \ell=2 when E has complex multiplication.

However, case (i) includes eight isomorphism classes of conductor N=128 ,
none of

which have complex multiplication [BK75, Table 1].

The purpose of the present article is to consider the four \mathbb{Q}‐isomorphism classes in

case (iii). We demonstrate that for these curves, the field \mathbb{Q}(E[11]) always contains

a subfield K
,

of degree 11^{3} over \mathbb{Q}($\mu$_{11}) ,
which is contained inside $\Omega$_{11} . We compute

explicit field generators for the extension K/\mathbb{Q}($\mu$_{11}) .

This containment is in fact already established, because the extension K/\mathbb{Q}($\mu$_{11})
is abelian and 11 is a regular prime (see [Iha02, pg. 248], for a detailed explanation).
However, the explicit generators for the extension have not previously been computed.
In principle, the arguments presented here can be used to compute larger abelian ex‐

tensions of \mathbb{Q}($\mu$_{11}) inside \mathbb{Q}(E[11^{\infty}]) . It is unknown, for example, how the degree of the

maximal abelian extension of \mathbb{Q}($\mu$_{11}) inside \mathbb{Q}(E[11]) grows with n
,

and this could be

investigated with the techniques of this article.
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§1.3. Notation

For the remainder of the article, let \ell=11 . Over \mathbb{Q} , there are four elliptic curves

E up to \mathbb{Q}‐isomorphism which have the following properties:

(i) E has conductor N=\ell^{2}=121,

(ii) E has a \mathbb{Q}‐rational \ell‐isogeny,

(iii)  E does not have complex multiplication.

Of course, the first two conditions imply ([E], \ell)\in \mathscr{A}(\mathbb{Q}, 1) . The curves reside in two

isogeny classes, 121\mathrm{a} and 121\mathrm{c} of Cremona�s tables [Cre08], and they have the following
minimal Weierstrass equations:

Table 1. Non‐CM curves with N=121 admitting an 11‐isogeny
121\mathrm{a}1
121\mathrm{a}2

121\mathrm{c}1
121\mathrm{c}2

\mathrm{y} + xy +\mathrm{y} = \mathrm{x} +\mathrm{x} 30\mathrm{x} 76

\mathrm{y} + xy +\mathrm{y} = \mathrm{x} +\mathrm{x} 305\mathrm{x}+ 7888

\mathrm{y} + xy

= \mathrm{x} +\mathrm{x} 3632\mathrm{x}+82757\mathrm{y} + xy

Between the two curves in each pair, there is an \ell‐isogeny defined over \mathbb{Q} , and the

kernel of this isogeny is generated by a point of order \ell which is rational over \mathbb{Q}($\mu$_{\ell}) .

Further, over the field \mathbb{Q}(\sqrt{-\ell}) ,
there are isomorphisms 121\mathrm{a}1\cong 121\mathrm{c}2, 121\mathrm{a}2\cong 121\mathrm{c}1

(quadratic twists by \sqrt{-\ell}). Hence, the fields generated by \ell‐power torsion are the same

for  121\mathrm{a}1, 121\mathrm{c}2 or 121\mathrm{a}2, 121\mathrm{c}1.

In the following, we let E denote an elliptic curve, assumed to be one of the four

curves above. We let E' denote the elliptic curve which is \ell‐isogenous to  E over \mathbb{Q},
and let P_{1} be a \mathbb{Q}($\mu$_{\ell}) ‐rational point generating the kernel of the \ell‐isogeny  E\rightarrow E'

We further choose points P_{n}, Q_{n}\in E[\ell^{n}] so that for every n\geq 1, [\ell]P_{n+1}=P_{n},
[\ell]Q_{n+1}=Q_{n} ,

and \{P_{n}, Q_{n}\} is a basis for E[\ell^{n}].
For any n\geq 1 ,

de (\mathrm{n}\mathrm{e}G_{n}:=\mathrm{G}\mathrm{a}1(\mathbb{Q}(E[\ell^{n}])/\mathbb{Q}($\mu$_{\ell})) ,
and define

(1.5) \tilde{G}_{n} :=\{\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right)\in GL_{2}(\mathbb{Z}/\ell^{n}\mathbb{Z}) : a, d\equiv 1, c\equiv 0 (mod \ell ) \}
We also define G_{\infty}:=\mathrm{G}\mathrm{a}1(\mathbb{Q}(E[\ell^{\infty}])/\mathbb{Q}($\mu$_{\ell})) ,

and

(1.6) \tilde{G}_{\infty} :=\{\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right)\in GL_{2}() : a, d\equiv 1, c\equiv 0 (mod \ell ) \}
The natural Galois action on torsion points of E gives representations $\rho$_{n,E}:G_{\mathbb{Q}}\rightarrow\tilde{G}_{n}
and $\rho$_{E}:G_{\mathbb{Q}}\rightarrow\tilde{G}_{\infty} ,

which are inclusions when restricted to G_{n} and G_{\infty} , respectively.
We will always write these representations with respect to the bases \{P_{n}, Q_{n}\}.
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For any integers n>m\geq 1 ,
the following diagram commutes by definition:

(1.7) G_{n}\rightarrow^{(\mathrm{m}\mathrm{o}\mathrm{d} \ell^{m})}G_{m}

$\rho$_{n,E\downarrow} \downarrow$\rho$_{7m,E}
\tilde{G}_{n}\rightarrow\tilde{G}_{m}(\mathrm{m}\mathrm{o}\mathrm{d} \ell^{m})

Of course, we also have $\rho$_{n,E}\equiv$\rho$_{E}(\mathrm{m}\mathrm{o}\mathrm{d} \ell^{n}) .

§2. Kummer extensions

§2.1. Kummer extensions from torsion

We consider the \ell torsion of  E . As G_{1}\cong \mathbb{Z}/\ell \mathbb{Z} ,
the field \mathbb{Q}(E[\ell]) is a Kummer ex‐

tension of \mathbb{Q}($\mu$_{\ell}) . Of course, finding a primitive element for the extension \mathbb{Q}(E[\ell])/\mathbb{Q}($\mu$_{\ell})
is quite simple. Let  $\Phi$(x) denote the \ell‐division polynomial for  E . We need only choose

a root  $\beta$ of  $\Phi$(x) such that  $\Phi$(x) splits completely over \mathbb{Q}($\mu$_{\ell},  $\beta$) . Unfortunately,  $\beta$ is

not a Kummer element— that is,  $\beta$^{\ell}\not\in \mathbb{Q}($\mu$_{\ell}) . In this section, we construct a Kummer

element for this extension.

For ease of exposition, we now let E be the curve 121\mathrm{c}1 specifically, but we work

with the Weierstrass model

(2.1) y^{2}=x^{3}-3267x-280962.

The computations are no different in the other case. Let  $\zeta$:=\exp(2 $\pi$ i/\ell)\in$\mu$_{\ell} . Over

\mathbb{Q},  $\Phi$(x)=I(x)J(x) ,
where I(x) is a degree 5 polynomial which splits completely

over \mathbb{Q}($\mu$_{\ell}) . The roots of I(x) correspond to the x‐coordinates of points inside \langle P_{1}\rangle.
Explicitly, we have:

I(x)=x^{5}+429x^{4}+10890x^{3}-2829222x^{2}-56169531x+1480352841,

Given I(x) and the Weierstrass equation for E
,

we compute the coordinates for a gen‐

erator of \langle P_{1}\rangle :

 x(P_{1})=-21+36($\zeta$^{2}+2$\zeta$^{3}+2$\zeta$^{4}+4$\zeta$^{5}+4$\zeta$^{6}+2$\zeta$^{7}+2$\zeta$^{8}+$\zeta$^{9}) ,

y(P_{1})=-108(5+10 $\zeta$+15$\zeta$^{2}+20$\zeta$^{3}+14$\zeta$^{4}+8$\zeta$^{5}+2$\zeta$^{6}-4$\zeta$^{7}-10$\zeta$^{8}-5$\zeta$^{9}) .

Of course, we can easily compute the coordinates of [k]P_{1} for  0\leq k<\ell by use of the

formulas for the group law on  E . Let Q_{1}\in E[\ell] be such that  x(Q_{1})= $\beta$ . Over \mathbb{Q}($\mu$_{\ell}) ,

J(x) splits into five factors of degree 11, J_{1}(x) ,
. . .

, J_{5}(x) . Then  $\beta$ is a root of one of

these polynomials, say  J_{1}(x) .
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We have already seen that with respect to the basis \{P_{1}, Q_{1}\}, G_{1} is isomorphic to

the group of unit upper triangular matrices. Hence, there exists a generator  $\sigma$ of  G_{1}
such that

(2.2) $\rho$_{1,E}( $\sigma$)=\left(\begin{array}{ll}
1 & 1\\
0 & 1
\end{array}\right)
So $\sigma$^{k} fixes P_{1} and Q_{1}^{$\sigma$^{k}}=[k]P_{1}+Q_{1} . The conjugates of  $\beta$ are

 $\beta$^{$\sigma$^{k}}=(x(Q_{1}))^{$\sigma$^{k}}=x(Q_{1}^{$\sigma$^{k}})=x([k]P_{1}+Q_{1}) , 0\leq k\leq 10.

Knowing this, we construct a Kummer element for \mathbb{Q}(E[\ell])/\mathbb{Q}($\mu$_{\ell}) in the classic way.

Let

(2.3)  $\kappa$ :=\displaystyle \sum_{k=0}^{\ell-1}$\zeta$^{-(k+1)}$\beta$^{$\sigma$^{k}}
Then

(2.4) $\kappa$^{ $\sigma$}=\displaystyle \sum_{k=0}^{\ell-1}$\zeta$^{-(k+1)}$\beta$^{$\sigma$^{k+1}}= $\zeta \kappa$,
and so either  $\kappa$ generates \mathbb{Q}(E[\ell]) and gives a Kummer element, or  $\kappa$=0 . We can

manage the computation (2.3) quite nicely in Maple, and determine  $\kappa$ in terms of  $\beta$.
More importantly, we can recover  $\kappa$ independent of  $\beta$ . We compute  $\kappa$^{\ell} and use the

relation for $\beta$^{\ell} coming from J_{1}(x) ,
the minimal polynomial of  $\beta$ ,

to eliminate large

powers of  $\beta$ . Since  $\kappa$^{\ell}\in \mathbb{Q}($\mu$_{\ell}) ,
this expresses $\kappa$^{\ell} independent of  $\beta$ . Carrying out this

computation, we find

 $\kappa$^{\ell}=C_{1}^{\ell}(-1022575+1877112($\zeta$^{2}+$\zeta$^{9})+2417629($\zeta$^{3}+$\zeta$^{8})
(2.5)

+983639($\zeta$^{4}+$\zeta$^{7})- 750141($\zeta$^{5}+$\zeta$^{6})) ,

where C_{1}\in \mathbb{Q} . Repeating this computation when E is 121\mathrm{a}1 or 121\mathrm{c}2 gives a Kummer

element

$\kappa$^{\ell}=C_{2}^{\ell}(24904476854+7713235886($\zeta$^{2}+$\zeta$^{9})+22514944732($\zeta$^{3}+$\zeta$^{8})
(2.6)

-4585163186($\zeta$^{4}+$\zeta$^{7})+16106026167($\zeta$^{5}+$\zeta$^{6})) ,

where again C_{2}\in \mathbb{Q}.

§2.2. Some Kummer extensions inside $\Omega$_{\ell}

We would like to demonstrate that \mathbb{Q}( $\zeta$,  $\kappa$)\subseteq$\Omega$_{\ell} . Given two Kummer elements

 $\kappa$,  $\eta$ over the same ground field, recall that they generate the same Kummer extension
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if and only if the quotient  $\kappa$^{\ell s}/$\eta$^{\ell} gives an \ell‐th power inside the ground field for some

 s,  0<s<\ell . Unfortunately, there are a very large number of Kummer extensions of

\mathbb{Q}($\mu$_{\ell}) inside $\Omega$_{\ell} . As explained in [Iha02], $\Omega$_{\ell} contains all elements of the form

(2.7) (1-$\zeta$^{1/\ell^{m}})^{1/\ell^{n}}, m, n\geq 1.

Hence, $\Omega$_{\ell} contains the following large class of elements

(2.8)  $\eta$=($\zeta$^{b}\displaystyle \cdot\prod_{i=1}^{5}(1-$\zeta$^{i})^{a_{i}})^{1/\ell}, 0\leq b\leq\ell-1, 0\leq a_{i}<\ell-1,
and each of these  $\eta$\in$\Omega$_{\ell} generates a Kummer extension of \mathbb{Q}($\mu$_{\ell}) . Clearly, an exhaustive

search comparing  $\kappa$ to each of these  $\eta$ is rather impractical! Fortunately, we can reduce

greatly the number of candidates with the following observation: \mathbb{Q}(E[\ell]) is Galois not

just over \mathbb{Q}($\mu$_{\ell}) ,
but also over \mathbb{Q} . Very few of the above  $\eta$ have the property that the

extension \mathbb{Q}( $\zeta$,  $\eta$)/\mathbb{Q} is Galois.

Indeed, set L=\mathbb{Q}( $\zeta$,  $\eta$) . Let \triangle= Gal (\mathbb{Q}($\mu$_{\ell})/\mathbb{Q}) ,
and let  $\delta$\in\triangle be the generator

for which $\zeta$^{ $\delta$}=$\zeta$^{2} . Choose  $\gamma$\in Gal (L/\mathbb{Q}) such that  $\gamma$|_{\mathbb{Q}($\mu$_{p})}= $\delta$ . Since  L/\mathbb{Q} is Galois,
we know $\eta$^{ $\gamma$}\in L . By Kummer theory, there must exist some s,  0<s<\ell ,

such that

(2.9) \displaystyle \frac{($\eta$^{ $\gamma$})^{\ell}}{$\eta$^{\ell s}}
is an \ell‐th power in \mathbb{Q}($\mu$_{\ell}) . Of course,

($\eta$^{ $\gamma$})^{\ell}= $\gamma$($\eta$^{\ell})= $\delta$($\eta$^{\ell})=$\zeta$^{2b}\displaystyle \cdot\prod_{i=1}^{5}(1-$\zeta$^{2i})^{a_{i}}
=$\zeta$^{2b}(1-$\zeta$^{2})^{a_{1}}(1-$\zeta$^{4})^{a_{2}}(-$\zeta$^{6})^{a_{3}}(1-$\zeta$^{5})^{a_{3}}

(2.10)
\times(-$\zeta$^{\mathrm{s}})^{a_{3}}(1-$\zeta$^{3})^{a_{4}}(-$\zeta$^{10})^{a_{5}}(1- $\zeta$)^{a_{5}}

=$\zeta$^{2b+6a_{3}+8a_{4}+10a_{5}}(1- $\zeta$)^{a_{5}}(1-$\zeta$^{2})^{a_{1}}(1-$\zeta$^{3})^{a_{4}}(1-$\zeta$^{4})^{a_{2}}(1-$\zeta$^{5})^{a_{3}}.

Hence, the quotient (2.9) is an \ell‐th power in \mathbb{Q}($\mu$_{\ell}) if and only if all the following
conditions hold modulo \ell :

(2.11)  a_{1}\equiv sa_{2}, a_{2}\equiv sa_{4}, \mathrm{a}_{3}\equiv sa_{5}, a_{4}\equiv sa_{3}, a_{5}\equiv sa_{1},

(2.12) b\displaystyle \equiv\frac{(3s^{2}+5s+1)a_{5}}{2-s}.
By (2.11), if any a_{i} vanishes modulo \ell

,
then every  a_{i} does. But in this case,  $\eta$ is a

primitive \ell^{2} ‐th root of unity, which is a contradiction (we want  $\eta$ to generate \mathbb{Q}(E[\ell]) ,

which does not contain $\mu$_{\ell^{2}} ). So no a_{i} vanishes, and from (2.11) we conclude

(2.13) s^{5}-1\equiv 0,
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or s\in\{1 , 3, 4, 5, 9 \} . We see the values b, a_{i} are all determined by the choice of s and a_{5},

leaving only 50 possible values for  $\eta$ of the form (2.8). Using Maple, we can compute

which of the expressions ($\eta$^{\ell s}/$\kappa$^{\ell}) give an \ell‐th power inside \mathbb{Q}($\mu$_{\ell}) .

Proposition 2.1. For each curve E in Ta ble 1, \mathbb{Q}(E[\ell])\subseteq$\Omega$_{\ell} , and is given

explicitly as \mathbb{Q}($\mu$_{\ell})( $\eta$) ,
where $\eta$^{\ell} is given in Table 2.

Remark. In fact, we could have restricted the possible  $\eta$ even further before

starting a computational search, by determining the structure of the action of \triangle on

Gal (\mathbb{Q}( $\zeta$,  $\eta$)/\mathbb{Q}($\mu$_{\ell})) . This action is given by a certain power $\chi$^{j} of the \ell‐cyclotomic

character, and can be computed from the data of  a_{i}, b . But this power j is also de‐

termined by the action of G_{1} on the \ell‐torsion of  E
,

and so even fewer  $\eta$ are viable

candidates. This reduction is not really necessary at the level of \ell‐torsion, but could be

crucial in a future attempt to analyze the Kummer extensions of \mathbb{Q}($\mu$_{\ell^{n}}) lying inside

both $\Omega$_{\ell} and \mathbb{Q}(E[\ell^{n+1}]) ,
for n>1.

Table 2. Generator for \mathbb{Q}(E[\ell]) over \mathbb{Q}($\mu$_{\ell})

 $\zeta$(1  $\zeta$)(1  $\zeta$) (1  $\zeta$)(1  $\zeta$) (1  $\zeta$)

10 4 26 3 42 51

121\mathrm{a}1
121\mathrm{c}2

121\mathrm{a}2
121\mathrm{c}1

§3. Computation of G_{2}^{ab}

In light of Proposition 2.1, one might hope to find larger abelian extensions of \mathbb{Q}($\mu$_{\ell})
inside $\Omega$_{\ell}\cap \mathbb{Q}(E[\ell^{2}]) . In this section we prove \mathbb{Q}(E[\ell^{2}])\cap$\Lambda$_{\ell}^{0} is a degree \ell^{3} extension of

\mathbb{Q}($\mu$_{\ell}) ,
but that it essentially contains �nothing new� — being generated by $\mu$_{\ell^{2}} and the

\ell‐torsion of  E and E'

Proposition 3.1. The group G_{2} is isomorphic to \tilde{G}_{2} , and G_{2}^{ab}\cong(\mathbb{Z}/\ell \mathbb{Z})^{3}.

The key step is to construct a morphism G_{2}^{ab}\rightarrow\tilde{G}_{2}^{ab} ,
whose surjectivity is proven

by considering the images of Frobenius elements. One then lifts this surjection to an

isomorphism G_{2}\rightarrow^{\sim}\tilde{G}_{2} to prove the proposition.
Define \tilde{ $\pi$}:\tilde{G}_{2}\rightarrow(\mathbb{Z}/\ell \mathbb{Z})^{3} by

(3.1) \tilde{ $\pi$}:X\mapsto(b, c, a+d-bc) , X=\left(\begin{array}{ll}
\ell 1+a & b+\ell b'\\
\ell c & \ell d1+
\end{array}\right),
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for any a, b, b', c, d\in \mathbb{Z}/\ell \mathbb{Z} . We want to show that  $\pi$:=\tilde{ $\pi$}\circ$\rho$_{2,E} is a surjection. We

proceed by considering each component of \tilde{ $\pi$}=\tilde{ $\pi$}_{1}\times\tilde{ $\pi$}_{2}\times\tilde{ $\pi$}_{3} separately, and giving
criteria for $\pi$_{i}:=\tilde{ $\pi$}_{i}\circ$\rho$_{2,E} to vanish at a Frobenius element f_{p} ,

defined below.

§3.1. Frobenius elements

For r\geq 1 ,
let  $\zeta$ denote a primitive \ell^{r} ‐th root of unity. Let L/\mathbb{Q} be an extension,

unramified away from \ell
,
which contains \mathbb{Q}($\mu$_{\ell}) . Fix a prime  p\neq\ell ,

and let \mathfrak{P} be a prime
in \mathscr{O}_{L} ,

the ring of integers of L
, dividing p . We let \mathrm{F}\mathrm{r}_{p} denote the automorphism x\mapsto x^{p}

inside the Galois group of the residue field extension. There is a natural isomorphism
between this Galois group and the decomposition group of \mathfrak{P} inside Gal (L/\mathbb{Q}) . We let

f_{p} denote the image of \mathrm{F}\mathrm{r}_{p} under this isomorphism.

Lemma 3.2. Let p be a prime congruent to 1 modulo \ell
,

and suppose \mathbb{Q}($\mu$_{\ell^{r}})\subseteq L.
Then f_{p} fixes \mathbb{Q}($\mu$_{\ell^{r}}) if and only if p\equiv 1 (mod \ell^{r} ).

Proof. This is quickly deducible from standard facts about cyclotomic fields. See,
for example, [Was97, Ch. 2]. However, we give a proof here for the convenience of the

reader.

Suppose that p\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} \ell^{r}) . We have f_{p}( $\zeta$)=$\zeta$^{j} for some 0\leq j<\ell^{r} ,
and by

the definition of Frobenius, we have $\zeta$^{j}-$\zeta$^{p}=$\zeta$^{j}- $\zeta$\in \mathfrak{P} . Hence, (1-$\zeta$^{j-1})\in \mathfrak{P},
which divides p . Of course, if (1-$\zeta$^{j-1})\neq 0 ,

then there exists  $\beta$\in \mathscr{O}_{L} such that

\ell= $\beta$(1-$\zeta$^{j-1}) ,
and so \ell\in \mathfrak{P} ,

which is nonsense. Hence, (1-$\zeta$^{j-1})=0 ,
or equivalently

 $\zeta$^{j}= $\zeta$ . So  f_{p} fixes \mathbb{Q}($\mu$_{\ell^{r}}) .

Conversely, if f_{p} fixes \mathbb{Q}($\mu$_{\ell^{r}}) ,
then  f_{p}( $\zeta$)= $\zeta$ ,

and so  1-$\zeta$^{p-1}\in \mathfrak{P} . As in the

preceding paragraph, this element must therefore be zero. This is only possible if

p\equiv 1 (mod \ell^{r} ). \square 

§3.2. The first component of \tilde{ $\pi$}

Let \tilde{ $\pi$}_{1}:\tilde{G}_{2}\rightarrow \mathbb{Z}/\ell \mathbb{Z} be defined by sending the matrix X in (3.1) to b
,

and let

$\pi$_{1}=\tilde{ $\pi$}_{1}\circ$\rho$_{2,E} . Consider  $\Phi$(x) ,
the \ell‐division polynomial for  E . As  $\Phi$(x) does not

split completely over \mathbb{Q}($\mu$_{\ell}) , G_{1} is nontrivial and $\rho$_{1,E} is surjective. It follows that the

composition

(3.2) G_{2}\rightarrow G_{1}\rightarrow^{$\rho$_{1,,E}}\tilde{G}_{1}\rightarrow \mathbb{Z}/\ell \mathbb{Z},
where the right‐hand arrow sends a matrix to its upper right entry, must be surjective.
Notice that the composition of the first two arrows is also given by $\rho$_{2,E}(\mathrm{m}\mathrm{o}\mathrm{d} \ell) ,

and so

(3.2) is just a different expression for $\pi$_{1}.

Suppose that p\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} \ell) is a prime. Set L=\mathbb{Q}(E[\ell^{2}]) ,
choose any prime \mathfrak{P}

dividing p in \mathscr{O}_{L} ,
and let  f_{p}\in Gal(L/) be defined as before. By Lemma 3.2,  f_{p} fixes
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\mathbb{Q}($\mu$_{\ell}) ,
and so we may view f_{p}\in G_{2} . Let Ẽ be the reduction of E at \mathfrak{P} , and let \mathrm{F}\mathrm{r}_{p}

denote the Frobenius automorphism x\mapsto x^{p} of the residue field \mathscr{O}_{L}/\mathfrak{P}.

Lemma 3.3. Suppose that p\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} \ell) . Then $\pi$_{1}(f_{p})=0 if and only if  $\Phi$

splits completely over \mathrm{F}_{p}.

Proof. Recalling some standard facts about the reduction of elliptic curves [Sil86,
VIII.7.1], we know that the coordinates of any point T\in E[\ell] are \mathfrak{P}‐integral. Further,
the reduction map E\rightarrow\tilde{E} is injective on E[\ell] because p is a prime of good reduction and

 p\neq\ell [Sil86, VII.3.1]. Finally, we recall that the reduction map (which we denote by an

overline) and the action of Frobenius commute, so that for any point  T, \overline{f_{p}(T)}=\mathrm{F}\mathrm{r}_{p}(\overline{T}) .

Because \mathrm{F}\mathrm{r}_{p} generates the Galois group of the residue field extension, we have the

following chain of equivalent statements::

$\pi$_{1}(f_{p})=0 \Leftrightarrow $\rho$_{2,E}(f_{p})\equiv\left(\begin{array}{ll}
1 & 0\\
0 & 1
\end{array}\right) (mod \ell )

\Leftrightarrow  f_{p}(T)=T for every T\in E[\ell]

\Leftrightarrow \mathrm{F}\mathrm{r}_{p}(\overline{T})=\overline{T} for every \overline{T} \in Ẽ [\ell]

\Leftrightarrow Ẽ [\ell]\subseteq\ovalbox{\tt\small REJECT}(\mathrm{F}_{p})
The last statement holds if and only if  $\Phi$ splits completely over \mathrm{F}_{p}. \square 

§3.3. The second component of \tilde{ $\pi$}

Let \tilde{ $\pi$}_{2}:\tilde{G}_{2}\rightarrow \mathbb{Z}/\ell \mathbb{Z} be defined by sending the matrix X in (3.1) to c
,

and let

$\pi$_{2}=\tilde{ $\pi$}_{2}\circ$\rho$_{2,E} . Then the isogenous curve  E':=E/\langle P_{1}\rangle has its \ell^{n} ‐torsion generated by
the basis \{P_{n+1}+\langle P_{1}\rangle, Q_{n}+\langle P_{1}\rangle\} . We denote by G_{n}' the group Gal (\mathbb{Q}(E'[\ell^{n}])/\mathbb{Q}($\mu$_{\ell})) ,

and denote by $\rho$_{n,E'} the representations into \tilde{G}_{n} ,
with respect to these bases. We now

consider the composition

(3.3) G_{2}\rightarrow G_{1}'\rightarrow\tilde{G}_{1}$\rho$_{1,E'}\rightarrow \mathbb{Z}/\ell \mathbb{Z},
where this time the right‐hand arrow sends a matrix to its lower left entry. Suppose

 $\sigma$\in G_{2} ,
and $\rho$_{2,E}( $\sigma$) is given by the matrix X in (3.1). Since

(P_{2}+\langle P_{1}\rangle)^{ $\sigma$}=(1+a\ell)P_{2}+c\ell Q_{2}+\langle P_{1}\rangle=P_{2}+cQ_{1}+\langle P_{1}\rangle,

(3.4) (Q_{1}+\langle P_{1}\rangle)^{ $\sigma$}=(\ell Q_{2}+\langle P_{1}\rangle)^{ $\sigma$}

=\ell((b+\ell b')P_{2}+Q_{2})+\langle P_{1}\rangle=Q_{1}+\langle P_{1}\rangle,
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we have

(3.5) $\rho$_{1,E'}( $\sigma$)=\left(\begin{array}{ll}
1 & 0\\
c & 1
\end{array}\right),
and so 3.3 gives precisely $\pi$_{2} . As before, $\Phi$'(x) ,

the \ell‐division polynomial for  E'
,

does

not split completely over \mathbb{Q}($\mu$_{\ell}) . Hence $\rho$_{1,E'} and $\pi$_{2} are surjective. We obtain the

following result, whose proof is essentially identical to the proof of Lemma 3.3.

Lemma 3.4. Suppose that p\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} \ell) . Then $\pi$_{2}(f_{p})=0 if and only if $\Phi$'

splits completely over \mathrm{F}_{p}.

§3.4. The third component of \tilde{ $\pi$}

Define \tilde{ $\pi$}_{3}:\tilde{G}_{2}\rightarrow \mathbb{Z}/\ell \mathbb{Z} as the composition

(3.6) \tilde{G}_{2}\rightarrow^{\det}1+\ell(\mathbb{Z}/\ell^{2}\mathbb{Z})\rightarrow^{(1+x\ell)\mapsto x}\mathbb{Z}/\ell \mathbb{Z} .

Explicitly, it sends the matrix X in (3.1) to (a+d-bc) . Define $\pi$_{3}:=\tilde{ $\pi$}_{3}\circ$\rho$_{2,E} . Then

\det($\rho$_{2,E})\equiv $\chi$(\mathrm{m}\mathrm{o}\mathrm{d} \ell^{2}) ,
where  $\chi$ is the \ell‐cyclotomic character. Hence, by Lemma 3.2,

$\pi$_{3}(f_{p})=0 if and only if p\equiv 1 (mod \ell^{2} ).

§3.5. Proof of Proposition 3.1

It is possible to prove G_{2}\cong\tilde{G}_{2} by establishing an isomorphism between G_{\infty} and

\tilde{G}_{\infty} using a Frattini‐type argument. However, here we present a direct, if elementary,

proof.

Proof of Proposition 3.1. In view of the preceding Lemmas, it is a simple matter to

search over the primes p\equiv 1 (mod \ell ) to find primes  p for which  $\Phi$ or  $\Phi$' splits completely
over \mathrm{F}_{p} . We catalog the behavior for three such primes, and the consequences for  $\pi$(f_{p}) ,

in the following table. (Note, we assume E=121\mathrm{a}2 or 121\mathrm{c}1 . For the other choices of

E
, simply interchange the columns for  $\Phi$ and  $\Phi$

Table 3. Behavior of  $\pi$(f) for E\in\{121\mathrm{a}2, 121\mathrm{c}1\}
 $\Phi$ splits completely  $\Phi$ splits completely

overover

(0, ,0)
(0,0, )
(,0,0)

3631
10429
13553

In particular, the entries marked * must be non‐zero. Hence,  $\pi$ is a surjection,
and \# G_{2}^{ab}\geq\ell^{3} . It is easy to verify that \#[\tilde{G}_{2}, \tilde{G}_{2}]=\ell^{2} ,

so \#\tilde{G}_{2}^{ab}=\ell^{3} . Via the
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inclusion $\rho$_{2,E} ,
we view G_{2} as a matrix subgroup of \tilde{G}_{2} . Certainly \#[G_{2}, G_{2}]\leq\ell^{2} . Both

claims of the proposition follow if \#[G_{2}, G_{2}]=\ell^{2}.
As  $\pi$ is a surjection, we know for any (x, y, z)\in(\mathbb{Z}/\ell \mathbb{Z})^{3} there exists at least one

element $\sigma$_{i}\in G_{2} such that  $\pi$($\sigma$_{i})=(x, y, z) . That element $\sigma$_{i} has the form

(3.7) $\sigma$_{i}=\left(\begin{array}{lll}
a_{i}\ell 1+ &  & x+b_{i}'\ell\\
 y\ell & 1 & +(xy+z-a_{i})\ell
\end{array}\right), a_{i}, b_{i}'\in \mathbb{Z}/\ell \mathbb{Z}.
Select $\sigma$_{1}, $\sigma$_{2}\in G_{2} to be inverse images of (1, 0,0) and (0,1,0) , respectively. Then we

have

[$\sigma$_{1}, $\sigma$_{2}]^{2}=(^{1+2\ell}0
(3.8)

[$\sigma$_{1}^{2}, $\sigma$_{2}]=(^{1+2\ell}0
-(2+4a_{2})\ell 1-2\ell) ,

-(4+4a_{2})\ell 1-2\ell)
These two elements of [G_{2}, G_{2}] clearly generate distinct subgroups of order \ell . Hence,

\#[G_{2}, G_{2}]>\ell and the proposition follows. \square 

Let K=\mathbb{Q}(E[\ell^{2}])\cap$\Lambda$_{\ell}^{0} ,
so that G_{2}^{ab}= Gal (K/\mathbb{Q}($\mu$_{\ell})) . We have

Corollary 3.5. For any E in Ta ble 1, the field K is contained in $\Omega$_{\ell} , and is the

compositum of \mathbb{Q}(E[\ell]) , \mathbb{Q}(E'[\ell]) and \mathbb{Q}($\mu$_{\ell^{2}}) .

It is still open even whether the \ell^{2} torsion of these elliptic curves is rational over

$\Omega$_{\ell} . This illustrates our general understanding of $\Omega$_{\ell}- its structure is quite mysterious

beyond the subextension which is abelian over \mathbb{Q}($\mu$_{\ell\infty}) .
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