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Around Kummer theories

By

Noriyuki SUwWA*

Abstract

We establish several theories of Kummer type in connection with the unit group scheme
of a group algebra, following a method presented by Serre in (Groupes algébriques et corps de
classes). The argument is developed not only over a field but also over a ring, as generally as
possible.

Introduction

The Kummer theory is an important item in the classical Galois theory to describe
explicitly cyclic extensions of a field. Nowadays it is standard to deduce the Kummer
theory from Hilbert 90, applying the Galois cohomolgy theory to an exact sequence of
algebraic groups

O—>un—>Gmi>Gm—>O.

However we have an elementary way to verify the Kummer theory by the Lagrange
resolvants. Serre [15, Ch.IV, 8] formulated this method, combining the normal basis
theorem and the unit group scheme of a group algebra.

In this article we established several theories of Kummer type after Serre while the
previous artilce [16] employed the Galois cohomology theory or the étale cohomology
theory.

In Section 1, we paraphrase the argument of Serre [15, Ch.IV, 8] in the framework
of the group scheme theory. The section is concluded by the following

Corollary 1.7. Let R be a ring, G an affine group scheme over R, I' a constant finite
subgroup scheme of G and S/R be an unramified Galois extension with group I'. If there

Received March 31, 2008. Revised June 23, 2008.
2000 Mathematics Subject Classification(s): Primary 13B05; Secondary 14115, 12GO05.
Partially supported by Grant-in-Aid for Scientific Research No.16540040
*Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551,
JAPAN

e-mail: suwa@math.chuo-u.ac.jp

(© 2009 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



116 NORIYUKI SUWA

exists a commutative diagram
r ——— uw)

| |
r —— @G,
and S/R has a normal basis, then there exists a cartesian diagram

SpecS —— @

l l

SpecR —— G/I.

(For the notation, see Section 1.) This assertion is a key of the argument developed in
the succeeding sections. We add there the following statement:

Let R be a ring, G an affine group scheme over R, I' a constant finite subgroup

scheme of G and S/R the unramified Galois extension defined by a cartesian diagram

SpecS —— G

! !

SpecR —— G/I.
If there there exists a commutative diagram

r — G

i l

r —— u(D),
then the Galois extension S/R has a normal basis.
In Section 2, we treat
(1)
(2) the Kummer-Artin-Schreier theory (Corollary 2.7);
(

3) the Artin-Schreier theory (Corollary 2.10).
The argument for the Kummer theory is somewhat a repetition of Serre [15. Ch.VI, 9].

the Kummer theory (Corollary 2.3);

However we give a detailed account because a description of the most typical case will
be a suitable guide map of the argument.

In Section 3, after recalling the definition of several group schemes, we establish
(4) the twisted Kummer theory of odd degree (Corollary 3.6);
(5) the twisted Kummer theory of even degree (Corollary 3.11).
It would be worthwhile to note that a cyclic extension S/R of even degree obtained by
the twisted Kummer theory does not necessarily have a normal basis. The obstruction

is given by an element of order 2 in Pic(R).
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The article is concluded by
(6) the twisted Kummer-Artin-Schreier theory (Corollary 4.4)
in Section 4.

The author expresses his gratitude to Yukio Doi and Hiroshi Naruse for valuable
discussions. This work began with a conversation at a historic temple in the spring.

Notation

For a ring R, R* denotes the multiplicative group of invertible elements of R.

For a scheme X and a commutative group scheme G over X, H*(X,G) denotes
the cohomology group with respect to the fppf-topology. It is known that, if G is
smooth over X, the fppf-cohomology group coincides with the étale cohomology group
(Grothendieck [4], II1.11.7).

List of group schemes

Ga,a the additive group scheme over A

Gm,a the multiplicative group scheme over A
ty, 4 Ker[n: Gpa — Gy 4

G recalled in 1.2

U(I') defined in 1.3

Upya defined in 3.1

Gpya defined in 4.1

List of homomorphisms

a g - Gpm,a recalled in 1.2
xi:U(")p — Gy, p defined in 2.1
01: G — Ul')p defined in 2.1

x:Up — G defined in 2.5

Qe

g UI')p defined in 2.5

Xt :U(Ma = [] Gm.p defined in 3.2
B/A

e:U(I")a — G4 defined in 3.2
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n:U(I")a — Gy, a defined in 3.2

v: H Gm,B — H Gpm,p defined in 3.3
B/A B/A

o1 H G, — U(I')a defined in 3.4
B/A

v H Gm,B — Upja X4 Gyp,a defined in 3.10
B/A

X:U(I)a — Gpa defined in 4.2

Qe

:Gpja — U(I')a defined in 4.2

1. Group schemes

We refer to [1] or [17] on formalisms of affine group schemes, Hopf algebras and the
cohomology with coefficients in group schemes.

1.1. As usual we denote by G,, = SpecZ[U, 1/U] and by G, = SpecZ[T] the multi-
plicative group scheme and the additive group scheme, respectively. The multiplication
is defined by U +— U ® U and the addition is defined by T — T ® 1+ 1 T.

1.2. Let A be a ring and X\ € A. We define a group A-scheme GV by

N — -
g Spec A[X, 1—|—)\X]

with
(a) the multiplication: X — X ® 1+1® X + A\ X ® X;

(b) the unit: X — 0;
X

1+ AX
Moreover, we define a homomorphism of group A-schemes

(c) the inverse: X — —

a™ g = Spec A[T, | = G4 = Spec A[U,

—1]
14+ 2X U
by

U~ 1+ XX.

If X is invertible, then o is an isomorphism. On the other hand, if A = 0, then GV
is nothing but the additive group scheme G, 4.

Hereafter we recall the argument of Serre [15, Ch.VI, 8] in terms of the group
scheme theory.
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1.3. Let I" be a finite group. The functor R — R[I'] is represented by the ring scheme
A(I") defined by

A(I') = SpecZ[Ty; v € I

with
(a) the addition: T, — T, @ 1 + 1 ® T;
(b) the multiplication: T7, Z Ty & Ty
vy =y
Put now

U(I") = Spec Z[T ;v €I,

1
"Ar
where Ar = det(7y,/) denotes the determinant of the matrix (7)., cr (the group
determinant of I'). Then U(I") is an open subscheme of A(I"), and the functor I" —
R[] is represented by the group scheme U(I").

We denote also by I', for the abbreviation, the constant group scheme defined by
I'. More precisely, I' = SpecZ! and the law of multiplication is defined by ey
Z ey ® ey, Here Z1" denotes the functions from I' to Z, and (e, ) cr is a basis of
Yy =y
75 over Z defined by
O =)

N 1
00N s,

The canonical injection I' — R[I']* is represented by the homomorphism of group
schemes i : I' — U(I") defined by

1
T, v e, :Z[TW,A—F] -zt

It is readily seen that I' — U(I") is a closed immersion. Moreover the right multiplica-
tion by v € I" on U(I") is defined by the automorphism v : T’y + T, -1 of Z[T’,,1/Ar].

If I' = {1}, then U(I") is nothing but the multiplicative group scheme G,, 7 =
Spec Z|U, 1/U].

Terminology 1.4. Let R be a ring, I a finite group and S an R-algebra. We shall say
that:
(1) S/R is an unramified Galois extension with group I' if Spec S has a structure of
right I'-torsor over Spec R;
(2) an unramified Galois extension S/R with group I" has a normal basis if there exists
s € S such that (vs),er is a basis of R-module S.

In particular, an unramified Galois extension S/R with group I" is called an un-
ramified cyclic extension of degree n if I" is a cyclic group of order n.
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Example 1.5. Let S = Z[T,,,1/Ar; v € T'], and let R = ST denote the invariants in
S under the action of I'. Then S/R is an unramified Galois extension with group I,
and (T-1),er is a nomal basis of the Galois extension S/R.

Proposition 1.6. Let R be a ring, I' a finite group and S/R an unramified Galois
extension with group I'. Then the Galois extension S/R has a normal basis if and only
if there exist morphisms Spec .S — U(I") and Spec R — U(I")/I" such that the diagram

Spec S —— U(I")

! !

SpecR —— U(I")/T
1S cartesian.
Proof. Assume that the Galois extension S/R has a normal basis (ys)yer. Put s, = ~s
for each v € I'. Then the determinant of the matrix (s/)~,4 e is invertible in S since

Spec S is étale over Spec R. Hence a ring homomorphism ¢ : Z[T,,1/Ar] — S is defined
by T, — s.-1. Moreover we obtain a cocartesian diagram

S % — 7Ty, 1/Ar)]

T I

R «——— Z[T,,1/Ar)",
2]

noting that R = ST.

Corollary 1.7. Let R be a ring, G a affine group scheme and I' a constant finite
subgroup scheme of G.
(1) Let S/R be a unramified Galois extension with group I'. Assume that there ezists a
commutative diagram

r —— u(rn)

P

r —— G@G.
Then, if the Galois extension S/R has a normal basis, there exist morphisms Spec S —
G and Spec R — G/I" such that the diagram

SpecS —— G

J !

SpecR —— G/I'

18 cartesian.
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(2) Let S/R be the unramified Galois extension with group I' defined by a cartesian

diagram
SpecS —— G

! |

SpecR —— G/I.

Assume that there exists a commutative diagram
r — G
| |
r —— u(n).

Then the Galois extension S/R has a normal basis.

Proof. We obtain the first assertion, combining two cartesian diagrams:

SpecS§ —— U({I') —— G

! ! l

SpecR —— U(I'")/T —— G/TI.

Here the left square is given by Proposition 1.6, and the right square is deduced from
the assumption of (1).
On the other hand, we obtain the second assertion, combining two cartesian dia-

grams:
SpecS —— G —— U

! l !

SpecR —— G/I' —— U(I")/T.

Here the left square is deduced from the assumption of (2), and the right square is given
by Proposition 1.6.

Variant 1.8. Let R be a ring and I a finite group. Then the exact sequence
l—I'—UI) — U/ —1
yields an exact sequence of pointed sets
U(D)(R) — (U(I)/T)(R) — HY(R,T') — H'(R,U(I))

(cf. [1], Ch.III, 4.4). Proposition 1.6 asserts that an unramified Galois extension S/R
with group I" has a normal basis if and only if the class [S] in H!(R, I") is contained in
Ker[H (R, I') — H'(R,U(I'))].
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Under the assumtion of 1.7(1), we obtain a commutative (up to sign) diagram with

exact rows

UrR) —— (UIN/I)R) —— HYR,I') —— HYR,U(I"))

| | | |
G(R) —— (G/I(R) —— HYR, ) —— HYR,G).
Hence we obtain an implication
[S] € Ker|[HY(R, T) — HY(R,U(I"))] = [S] € Ker[H'(R, T') — H'(R,Q)].

On the other hand, under the assumtion of 1.7(2), we obtain a commutative (up

to sign) diagram with exact rows

G(R) —— (G/TYR) — HYR,T) —— HYR,G)

l l L l
UI)(R) —— (UI)/T)R) —— HY(R.T) —— H'(R,U(I)).

Hence we obtain an implication

[S] € Ker[H (R, T) — H'(R,G)] = [S] € Ker|[H (R, I") — HY(R,U(I"))].

Remark 1.9. Let I" be a finite group, R a ring and S/R an unramified Galois extension
with group I'. The normal basis theorem asserts that, if R is a field, the Galois extension
S/R has a normal basis. We can verify the normal basis theorem for any local ring R
by Nakayama’s lemma.

2. Kummer, Kummer-Artin-Schreier and Artin-Schreier theories

Throughout the section, n denotes an integer > 2 and I" stands for a cyclic group
of order n. We put ¢ = ¢*™/" and B = Z|(].

First we paraphrase over Z the argument of Serre [15, Ch.VI, 9], adding a remark
on existence of a normal basis.

2.1. Fix a generator vy of I'. Then we have
U(F) = SpecZ[To,Tl, N 7Tn—17 —],

where

To ThT5...T, 1
T TyTs... Tj
A= T2 T3 T4 . T1

T ToTy ... Ty
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The multiplication of U(I") is defined by

Te— > Ti®T; (0<k<n).

i+j=kmod n
As is well known, we have
n—1 n—1
A— (_1)(n—1)(n—2)/2 H (Z Clek)-
I=0 k=0

Let x; : I — C* denote the character of I" defined by x;(7) = ¢'. For a B-algebra
R, the character y; induces a homomorphism y; : R[I']* — R*, which is represented
by the homomorphism of group B-schemes x; : U(I")p — G, 5. More precisely,
1

1
xi:U(I")p =Spec B[Ty, Ty, ..., Th—1, Z] — Gy, 5 = Spec B[U, E]

is defined by
1

—»Eﬂ]b,]},u.,I%_l,—ﬂ.

n—1
1
U kT, . BlU, =
HkZ:OC kB A

o)
The homomorphism of group B-schemes
X = (X0, X1,X25 -+ > Xn—1) : U B — G, g

is an isomorphism over B[1/n]. In fact, x is defined by

n—1
1 1 1 1
U, M. BlUp,Ur,...,Up_1,—, —, ..., B[Ty,Ti,...,Tn_1,—] (0 <1< n),
l’_)kZ:oC k : B[Uo, Uy LT T Un—l]_) [To, T 1A](_ n)
and the inverse s of x is given by
1 n—1
T - —kl
1H971§£:C U H)§§l<in)
k=0
over B[1/n].
We define a homomorphism of group B-schemes o : Gy, 5 — Gy, g by
U — U ZU Uy, ..., Uy s L ] — Z[U. i] (0<1<n).
Y ) Y 7U07U17 7Un_1 7U —

Put 0y =s00: Gy, Briyn] — U(I')B[1/n)- Then the homomorphism o is defined by

n—1
1
T = —kigrk
Lo kEZOC :
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and o7 is a section of y; : U(F)B[l/n] — Gy, B[1/n]- Moreover we have a commutative
diagram of group B-schemes with exact rows

0O—— I' — U{l)p —— (UI")/T)p —— O

» | l

0 —— ppy —— Gup —— GCpp ——0

and a commutative diagram of group B[l/n]-schemes with exact rows

0 —— tuppm —— Gmspium ——  Gmpum —— 0

@ ! s !

0 —— I'  —— U)Bpm —— UWI)/I)pam — 0.

Proposition 2.2. The homomorphism x1: I' — p,, g is an isomorphism over B[1/n],
and the inverse is given by o1 : py, prym — I

Proof. For each [, put
n—1
1
EU)=— —kgk,
(U) =~ kE_OC

Then we have
(j =1 modn)

. 1
7y =
B 0 (j#! modn).

Hence the result.

Applying Corollary 1.7 to (1) and (2), we obtain:

Corollary 2.3.(Kummer theory) Let R be a B[1/n]-algebra and S an unramified cyclic
extension of degree n. Then the following conditions are equivalent.
(a) the cyclic extension S/R has a normal basis;
(b) there exists a € R* such that S is isomorphic to R[U]/(U™ — a) and that v acts on
S by yao = (. Here v is the image of U in S = R[U|/(U™ — a).

n—1

If it is the case, — Z o generates a normal basis of the cyclic extension S/R.
n

k=0
Example 2.4. Let R be a ring. The equivalent conditions (a) and (b) in 2.3 hold true
under the assumption: Pic(R) = H'(R,G,, r) = 0.

Hereafter we recall the argument of [11], adding a remark on existence of a normal
basis. We assume now that n = p is a prime number.
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2.4. Put A\=(—1and e = (¢¥* —1)/(¢ — 1) for each k. In particular, we have gy = 0
and ;1 = 1. As is well known, ¢j is a unit of B = Z[(] if k is prime to p. Moreover we
have

N lejey gy g = (1P p.

Hence () is a prime ideal of B, and B/(\) is isomorphic to ).

Put now ( )\X)
1+ r_1
U(X) = 0 .
Then we have
p—1
U(X)=[[(X —en).
k=0

which implies that ¥(X) € B[X] and ¥(X) = X? — X mod A.
Define a homomorphism of group B-schemes

1 1
eiCy - ()
v:g SpecB[X,1+)\X]—>Q SpecB[X,1+)\pX]
by
L AHAX)P -1 1 1
X —U(X)= 7 'B[X,I—I—APX]_)B[ ’l—l—)\X]'

Then we obtain a commutative diagram of group B-schemes with exact rows

0 —— KeeW —— ¢g» L, g ¢

l lam law’)

0 —— p,p —— Gus S N Gm,p — 0.
2.5. A homomorphism of group B-schemes
X :U(I')p = Spec B[To, T4, ..., Tp—1 i] — G = Spec B[X ;]
) ) s LD ,A ,1+)\X
is defined by

p—1 p—1
1 1
X»—>E T/E Ty : B|X, — BTy, Ty, ..., T, 1, —]|.
kZIz-:kk 2 k [ 1—|—)\X] [0 1 plA]

We can verify that the diagram of group B-schemes

U(Is
X/ \ux1/xo0

N)
go\) R Gm,B;
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is commutative, noting that

p—1 p—1 p—1 p—1
k=1 k=0 k=0 k=0
Put
U(X) = ! pz_:l CH 1+ AX)F
l N p k=0

for each . In particular, we have

:iz( P 2
— D

p

Moreover we have
Uo(¢'X + &) = ¥, (X),

which implies that ¥;(X) € B[X] for each [. It is readily seen that

Z N (X) = (1 + AX)!

for 0 <l <p.
Define now a homomorphism of group B-schemes
1
5 :G™ = Spec B[X, T )\X] — U(I') = Spec B[Ty, T, - .., Tp—1, Z]
by
Ty — Uy (X) = lpz_‘jg—kl(HAX)k : BTy, T T, i] — B[X 1(0<1<p)
i . 0y L2154+ p—l;A ,1+)\X = .

Then we obtain a commutative diagram of group B[1/p]-schemes

U(I") Bi1/p]
&,/ o1
\) a™ G
gB (1/p] - m,B[1/p]

since o1 : U(I') g1 /p) — G, B[1/p) and a® Qg‘)l/ | Gm,B[1/p) are defined by

pl
1 1
T Kk . BTy, Ty, ..., Ty, —] — A[U, =] (0 <1
ZHPkZOC U [07 1, 7p17A]_> [U7U](O— <p)

and
1

1
1 X:B|lU,=| — B X, ——=
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respectively.
The homomorphism & is a section of ¥ : U(I") g — G since we have

p—1 p—1
D alp(X) =X, D Ty(X) =1
k=1 k=0

Moreover we have commutative diagrams of group B-schemes with exact rows

0 —— I —— Ul)p —— (UI)/T)p — 0

g Lk l

0 —— KerW —— ¢» ¥, G\ — 0
and
0 — KerW —— ¢ 2, G — 0

L T !

0—— I — —Ul)g — (UD)/)g — 0.

Proposition 2.6. The homomorphism x : I' — Ker WV is an isomorphism, and the
inverse is given by o : Ker ¥ — I,

Proof. For each [, we have

1 (=1 mod p)
0 (j#! mod p).

Hence the result.

Applying Corollary 1.7 to (3) and (4), we obtain:

Corollary 2.7.(Kummer-Artin-Schreier theory) Let R be a B-algebra and S an unram-
ified cyclic extension of degree p. Then the following conditions are equivalent.

(a) the cyclic extension S/R has a normal basis;

(b) there exists a € R with 1+ A\Pa € R* such that S is isomorphic to R X]/(¥(X) —a)
and that v acts on S by ya = Ca+1. Here a is the image of X in S = R[X]/(¥(X)—a).

p—1
1 AP
If it is the case, Vo(a) = E — (Z) MNemlgh=t 2 o~ generates a normal basis
p
k=1

of the cyclic extension S/R.

Remark 2.8. The implication (b)=-(a) is due to Childs [2]. We also refer to Ichimura
[6] and Kawamoto [7] concerning related topics.
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2.9. Reducing the diagrams (3) and (4) modulo A\, we obtain commutative diagrams of
group IFp-schemes with exact rows

0O —— I' —— Ul)p, —— (UI)/T)g, —— 0

® i 5 !

0 —— Z/pZ —— Ga, F1, G, — 0
and
0 —— Z/pZ —— GaF, £, G, — 0

g T l

0O —— I —— U, — (UI)/T)g, —— 0

since ¥(X) = X? — X mod A. The homomorphism of group F,-schemes

- 1
X :U()r, = SpecFp[To, T1, ..., Tp1, Z] — Ggqr, = SpecF, [ X]

is defined by

p—1 p—1

1

X o STy /> Tt By [X] = Fy[To, T, . Ty, =l
k=1 k=0

and the homomorphism of group F,-schemes

1

6 :Gar, = SpeclF,[X] — U(I") = SpecFp[To, 11, ..., Tp1, Z]

S = EX 0<1<p).

T— U (X)=1— (X -0P 1 Fy[To, Th,y ..., Tp1,
Corollary 2.10.(Artin-Schreier theory) Let R be an Fp-algebra and S a cyclic un-
ramified extension of degree p. Then there exists a € R such that S is isomorphic to
R[T]/(T? — T — a) and that v acts on S by ya = a + 1. Here « is the image of T in
S = R[T]/(TP — T — a). Moreover ¥o(a) = 1 — P~ generates a normal basis of the
cyclic extension S/R.

Proof. As is known, we have H!(R,G, g) = 0. Hence it follows from Corollary 1.7(2)
that [S] € Ker[HY(R,I') — HY(R,U(I'))]. We obtain the last assertion, noting that
Uo(X)=1—-TP"! mod A\

Remark 2.11.(Artin-Schreier-Witt theory) Let I" denote a cyclic group of order p™.
Serre [15, Ch.VI, 9] constructed a commutative diagram of group [F,-schemes with exact
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TOwWS

0 —— Z/p"Z —— Wpp, —— ng, ——— 0,

using the Artin-Hasse exponential series. We can construct also a commutative diagram
of group FF)-schemes with exact rows

0 —— Z/p"Z —— Wpp, ——— Wy, —— 0

g [ |

0O —— I —— Uy, — (UU)/T)r, — O,

P

following the Serre. The diagram (7) and (8) coincide with the diagrams (5) and (6)
respectively when n = 1.

Let R be an Fp-algebra and S/R an unramified cyclic extension of degree p”. Then
the Artin-Schreier-Witt theory asserts that there exist morphisms Spec.S — W, r, and
Spec R — Wy, g, such that the diagram

SpecS —— Wy,

L

SpecR ——— Wi,
is cartesian. Moreover the cyclic extension S/R has a normal basis.

Remark 2.12.(Kummer-Artin-Schreier-Witt theory of degree p?) Let I" denotes a cyclic
group of order p?. Put A = Zp[¢], where ¢ denotes a primitive p?-th root of unity.
Then it was shown independently by Green-Matignon [3] and [13] that there exists an
exact sequence of group A-schemes

(#) 0—>Ker\I'2—>W2£>V2—>0

such that
(1) the generic fiber of (#) is isomorphic to the Kummer sequence

0— pp — (G,n)? Oz, (G,)> — 0.

Here

1 1 1 1
O : ((Gm,z)2 = Spec Z[Uy, Uy, ﬁo’ T — ((Gm,z)2 = Spec Z[Uy, Uy, 70, a]
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is defined by

1 1

1 1
—1_.7 il
UO7 Ul] [U()a U17

(Uo,Uy) — (UF,USTUP) : Z[Uy, Uy, 0o T

Ji
(2) the special fiber (#) is isomorphic to the Artin-Schreier-Witt sequence

0 — Z/p*Z — Wy =23 Wy — 0.

Furthermore it was shown by [12] that there exists a commutative diagram of group
A-schemes with exact rows

0O —— I' ——UlN)a — (U")/)a —— O

i Jx l

0 —— Ker¥g —— W, ¥, Vs — 0.

3. Twisted Kummer theory

Throughout the section, n denotes an integer > 3 and I" stands for a cyclic group
of order n. We put ¢ = €™/ w =+ ¢!, B=2Z[¢,1/n] and A = Z|w,1/n].

3.1. The A-algebra B is isomorphic to A[t]/(t*> — wt + 1). Hence the functor R
(R®a B)* is represented by the group scheme (the Weil restriction of G,, g to B/A)

1
77wl V + V2

H Gm,B = Spec AU, V,
B/A

with

(a) the multiplication

U—UQU -VRV, VeUQV4+VRU4+wVeV;
(b) the unit
U—1, V-0

(¢) the inverse
. U+wV Vi -V
U2+wUV 4+ V2 U2+wUV +V2

Moreover, the canonical injection R* — (R® 4 B)* is represented by the homomorphism

U

of group schemes

1
U2 +wUV+V2]’

. 1
i+ Gynoa = Spec A[T, T] — ![/AGWB = Spec A[U, V,
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defined by
U—T, V—D0.

On the other hand, the norm map Nr: (R ®4 B)* — R* is represented by the homo-
morphism of group schemes

1 1
Nr: H Gm.B = Spec A[U, V, 7 T olUV © VQ] — Gy,a = Spec A[T, T]’
B/A
defined by
T U*+wUV + V2
Put

Upja = Ker[Nr: [[ Gm.p — Gom,al-
B/A

Then we have
Upya = Spec AU, V]/(U? + wUV + V? — 1)
with
(a) the multiplication
U—UU -VeV, VUV +VRU+wVeV;
(b) the unit
U—1, V-0
(¢) the inverse

U—U+wV, V-V
By the definition, we have an exact sequence of group A-schemes
0— Ug/a — [[ Gmp — Gna — 0.
B/A
Moreover, a homomorphism of group A-schemes

1

U2 +wUV + V2] - UB/A = SpecA[U, V]/(U2+WUV+V2—1)

v H G, B = Spec AU, V,
B/A

is defined by
U2 -v? 2UV + wV?
— , V= .
U2 +wUV + V2 U2 +wUV + V2

We obtain an exact sequence of group A-schemes

U

0— Gt — [ Gm.s == Up/a — 0.
B/A
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3.2. Assume that 1 <! < n/2. The homomorphism

1 1
xi:U(I")p =Spec B[Ty, Ty, ..., Th—1, Z] — Gy, 5 = Spec B[U, E]
defined by
n—1
U — Z Clek
k=0

induces a homomorphism of group A-schemes x;: U(I")4 — H G, B. More precisely
B/A

1
07 ol V + 72

1
X1 : U(G)a = Spec ATy, T, - .., Th—1, Z] — H Gm,B = Spec AU, V,
B/A

is defined by

n—1 _ _
Ckl 1 _C kl+1

2y

k=0

Ckl C_kl
Tk, Vi Z C C 1

1 1
AlTo, Ty, ... T, —].
]_> [07 1, ’ 1 A]

A
vV U2 +wUV + V2

A homomorphism

1
e:U(I') = SpecZ|Ty, Ty, ..., Th—1, Z] — G,z = Spec Z[U, ]

is defined by

n—1
1
Ty : 7 LT, Ty, ... Ty, —].
UHICZ%IC [U ]_> [07 1, ) 1A]

If n is even, then a homomorphism

1 1
n:U(I") = SpecZ[Ty, Th, .. ., Tp—1, Z] — Gz = Spec Z[U, ﬁ]
is defined by
n—1 1 1
U— § (—1)*Ty : Z[U, ﬁ] — Z[To, Ty, ..., Tp_1, Z]'

k=0
3.3. Assume now that n is odd. Put » = (n — 1)/2. Then the homomorphism

X = (€7X17X27"'7X1“) : U(F)A - Gm,A XA H G;’L,B
B/A
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is an isomorphism. In fact,

1
2l = Gmaa xa [[Grn5s=
B/A

1 1 1
Spec A[Uo, Uy, .., Ui Vis oo Vs —
pec [07 1 ) 1 U() U12+WU1V1+V12 U,?—FWUT‘/T—I—‘/;?]

X U(F)A = SpeCA[T07T17 v 7Tn—17

is defined by

n-1 n—1 CRl=1 _ (—Rl+1

Up— Y T, Ui =1
k=0 o S

Ckl Ckl
Tk,Vl|—>Z< = Ty (1<1<r),

and the inverse s of x is given by

(n—1)/2 (n—1)/2
1
Ty — g{Uo + Z C_kl(Uk + (Vi) + Z Ckl(Uk +<_1Vk)} O0<l1<r)
k=1 k=1

We define an endomorphism v : H Gm,B — H Gm,B by
B/A B/A

Ut U V) U V) 1L U4V —U+V)"

v :
T U FwUV vz T T (U L UV 4 V2 D/

Then v is an isogeny of degree n. Furthermore we obtain commutative diagrams of
group A-schemes with exact rows and columns

0 0

J J

Kern ——  Kerv

l L

0 —— Upja —— HGm,B — Gpa —— 0
(9) B/A

[ Il H

0 —— Upja —— HGm,B SELLEN Gma —— 0

B/A

l l

0 0
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and
0 0
Kerv ——— Kern
0 —— Gma — HGm,B - Ugja — 0
(10) BJA

|| | |»

BJ/A

! !

0 0

3.4. Define now a homomorphism of group A-schemes o : H Gm,B — Gm,a X4
B/A

H GIn,B by
B/A

CHU+ V) = U+ V) U+ = (U+ V)

Upr— 1, U — ¢ , Vi— e (1<i<r).
Put 01 =so00: H Gm,p — U(I"). Then the homomorphism o, is defined by
B/A
1 (n—1)/2 (n—1)/2
T) — 5{1 + Y R+ Y Mo+ c—lx/)k} 0<1<7),
k=1 k=1

and o7 is a section of y; : U(I') — H Gm,B. Moreover we have a commutative
B/A
diagrams of group A-schemes with exact rows

0—— I' —— Uy —— (U(I)/T)p —— O

(11) l l’“ l

0 —— Kerv —— HGm,B —r HGm,B — 0
B/A B/A
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and

0 —— Kerv —— HGm,B -7 HGm,B — 0
B/A B/A

e l I l

0—— I —— U4 —— (UI)/T)s — 0.

Proposition 3.5. The homomorphism x1 : I' — Kerv is an isomorphism, and the
inverse s given by oy : Kerv — I,

Proof. For each [, put

(n—1)/2 (n—1)/2
1
EUV)=={1+ > HU+wr+ S RO+
" k=1 k=1
and -1 _ p—i41 1 _ 1
w= T =S
¢t —¢ ¢(—¢
Then we have
1 (=0 modn
Ei(uj,vj) = (. )
0 (j#! modn).

Hence the result.

Corollary 3.6.(twisted Kummer theory of odd degree) Let R be an A-algebra and S an

unramified cyclic extension of degree n. Then the following conditions are equivalent.

(a) the cyclic extension S/R has a normal basis;

(b) there exist u,v € R with u?> + wuv + v?> = 1 such that

(1) S is isomorphic to

CHU+ ) = U+ V)
¢t=¢

U+ =0+

R[U, V/( =

u,

v);

(2) @ +waB + 2 =
(3) 7 acts on S by (e, B) = (B, a +wp).
Here o and 3 are the images of U and V' in S, respectively.

(n—1)/2 (n—1)/2
1
If it is th ,—{1 > D -1 ’“} ¢ !
f it is the case - + 2 (a+CH)" + 2 (a+ (¢ "B)" ¢ generates a norma

basis of the cyclic extension S/R.

Proof. We obtain a commutative diagram of group A-schemes with exact rows
0 —— I' —— Uy —— (UI")/T)p —— 0

(13) | | |

0 —— Kern —— Upya " Up/a — 0,
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combining the commutative diagrams with exact rows

0 —— ' —— Ul)y —— (UI")/T)p —— 0

L P !

0 —— Kerv —— HGm,B —r HGm,B — 0

B/A B/A
and
0 —— Kerv —— HGm,B -, HGm,B — 0
B/A B/A
| [ |
0 —— Kern ——  Upya — Uj/a — 0.

We obtain also a commutative diagram of group A-schemes with exact rows

0 —— Kern —— Upgya LN U/a — 0

w b !

0 —— I' —— U(lN)a —— (U(I")/T)a — 0,
combining the commutative diagrams with exact rows

0 —— Kern ——  Upya SN Upja — 0

i P !

0 —— Kerv —— HGm,B —r HGm,B — 0
B/A B/A
and
0 —— Kerv —— HGm,Bé HGm,B — 0
B/A B/A

| [ I
0—— I —— U4 —— (UI)/T)s —— 0.
Applying Corollary 1.7 to (13) and (14), we obtain the assertion.

3.7. We complete now the statement of [16, Cor.3.12], after recalling an equivariant
compactification of the isogeny n : Ug/a — Up/a, constructed in [16, 2.7].
A rational map of A-schemes

t:Upja = Spec A[U,V]/(U? —wUV +V? — 1) — P}y = Proj A[T}, T3]

is defined by
Tl 1-U wU + |4

T=21 = )
T, TV 1+ U
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The inverse of ¢ is given by

T2 _ T2 OV Ty + Wl

U .
T TN+ 12 TE 4w+ T

The rational map ¢ is defined everywhere and an open immesrion.
Define a rational map v : Proj A[Ty,Ts] — Proj A[T1, T»] by

-1 n_ _1 n n . .
(Tl,TQ)H(C (T1+<T22_1_C2T1+c Ty) ,_(T1+CT2)<_1(_T1C+C ) )

Then we obtain a commutative diagram of rational maps

UB/A ;) IP114

(15 d l

UB/A f) Ph.
Moreover, I' acts on Ug,4 and on IP’}4 by
y:U— -V, V=U+wV
and by
Ty =Ty =Ty, To— Ty + (1 4+ w)1h,
respectively. The commutative diagram (15) is [-equivariant.
Corollary 3.8. Let R be a local A-algebra and S an unramified cyclic extension of

degree n. Assume that one of the following conditions is satisfied:

(1) the unramified extension S ®g k/k is not trivial, where k denotes the residue field
of R.

(2) 2 is invertible in R.

Then there exists ¢ € R with ¢® +wc+ 1 € R* such that S is isomorphic to

CHT+Q" =T+ (T4 — (T4

R[T]/( ¢ = )
-1
and that v acts on S by y1 = ﬁ Here 7 is the images of T in S. Furthermore,
T
(n—1)/2 (n—1)/2 _

1 T+( \F T+ (TN\F

—9q1

n{ + kzzl (7’—!—(‘1) + kzzl ( T+ > }

generates a normal basis of the cyclic extension S/R.

Proof. The cyclic extension S/R has normal basis since R is a local ring. Then, by
Corollary 3.6, there exist u,v € R with u? 4+ wuv + v? = 1 such that



138 NORIYUKI SUWA

(1) S is isomorphic to

C%U+<V"—QU+<*VW_M(U+§VV—( v
¢t=¢ ’ (—¢!

R[U,V]/( v);
(2) &2 +waB + B2 =1;
(3) v acts on S by y(a, B) = (=0, a +wp).
Here o and 3 denotes the images of U and V in S, respectively.

Let m denote the maximal ideal of R. Assume first that v is invertible in R. Put
¢ = (1+wu)/v. Then we have

24+ 2u+ wv 1 (24 2u+w)?
v? T2 twet+1 w2 —4 '
Furthermore £ is invertible since v = {(a+(3)" — (a+ ¢ 1B)"}/(¢ — (1) is invertible.

Let 7 denote the image of T in

CHT+Q" =T +H (T+Q" = (T+CH"

A twet+l=

RIT]/( ¢ c T )-
Then an isomorphism of R-algebras
—1 T n __ T —1\n T n_ (T —1\n
o R TR TR (O Ty
S—R[U. V]/(C—I(U + CV):— Uu+¢tvyr R CA (ql+ ¢ o)
¢t—=¢ ¢—¢
is defined by
- 1+«
7
In fact, the inverse of ¢ is given by
N -1 B 21+ w

These imply the last two assertions.

Now assume that the unramified extension S ®pg k/k is not trivial. Then v ¢ m,
that is, v is invertible in R.

At last assume that 2 is invertible in R and v is not invertible in R. Then 1—u? € m.
If 1 —uw € m, then 1 +u ¢ m. Putting ¢ = v/(1 + u), we can proceed the argument
mentioned above. If 1 +u ¢ m, then 1 — u € m, and therefore we can replace (u,v) by

(—u, —v) since we have (—u, —v) = (u,v)(—1,0)" in Ug,4(R).
Remark 3.9. We have

(1 -1 )k L (—C‘l(l+<)’“+<(1+<—1)’“ —(1+OF + 1+ ¢ )

11+w) (—¢1 I+ =1+ CA+QF—¢ A+
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and

sin —,

A+ QP+ —(2cosz)k_lsin (k—2)7r/ o
n

¢—¢t n n
(1+<)z:él_j_ ¢ = (2cos %)k 18111]% sin%,
c(1+ c)’“; <<1(11 +¢hE (2005 9’“‘1 ‘i @/m Z

k
Put n; = sin il / sin T Then, under the notation of 3.8, we have
n n

k —Nk—2T — Nk
T) = —M8M8M8Mm
() NeT + N2

for each k. Moreover we obtain a factorization

(T+C) C(T+< DT = (T ”‘1(T_—nk_zf—nk)
¢—¢ ! MeT + NMey2 /-

3.10. Assume now that n is even, and put r = n/2 — 1. Then the homomorphism

X=Xt Xz xe) U(G)a — G2y xa [ G

B/A
is an isomorphism. In fact,
1
X :U(G)a =Spec ATy, Ty, ... Toy, ] = Gooaxa [[Ghp=
B/A
1 1 1 1

A ry Yr+l, ). Ty TT 91T [
Spec AlUo, Uss o Ur, Ur1, Vi Ve s U2+ wUi Vi + V2 U3+wUrw+‘/;,2]

is defined by

n—1 n—1
Uo — Z Tk, Ur—l—l — Z(—l)ka,

e L Rl ¢k
Ull—)Z ¢ Tk,VzHZWTk(O<l§T)a
k=0 k=0

and the inverse s of x is given by

n/2—1 n/2—1

T — %{UoJr(—l)lUn/ng Z CRU U + Vi) + Z Ckl(Uk_'_C_le)}'
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Define now a homomorphism

1
v H G, = Spec A[U, V, TV T Vz]
B/A
1
— Upya X4 Gy.a = Spec A[U,V, T, T]/(UQ +wUV +V2-1)

by

1 —1 n __ —1 n 1 n_ 1 n
U CHU+ V)" — U+ ¢V (U+CV)" = (U+ V)

(T—C (P +wUV V22 T AUV VIR
T U*+wUV + V>

Then v is an isogeny of degree n. Moreover we obtain a commutative diagram of group

A-schemes
0 0
Kern —— Kerv
(16) 0 —— Upa —— || Gms — Gpa —— 0
B/A

[ l H

0 —— Upja —— Upja xaGpma ——— Gpa —— 0

l |

0 0

Moreover we have a commutative diagram of group A-schemes with exact rows

0O —— [ —— Ul)y —— UI)/I)a —— 0

(17) l l’“ l

0 —— Kerv —— HGm,B - Uja XA Gpma — 0.
B/A

Proposition 3.11. The homomorphism x1 : I' — Kerv is an isomorphism.
Proof. For each [, put

n—1 n—1
{2 + 3 MU AR S U §‘1V)’“}
k=1

k=1

1

El(U7 V) = %
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and I-1 _ ,—i+1 -
Ulz%a Ul=< _C_l.
¢t—=¢ ¢—¢
Then we have
1 (=1 modn)
Ei(uj,v;) = .
0 (j#! modn)

Hence the result.

Applying Corollary 1.7 to (17), we obtain:

Corollary 3.12.(twisted Kummer theory of even degree) Let R be an A-algebra and S
an unramified cyclic extension of degree n. If the cyclic extension S/R has a normal
basis, there exist u,v € R with u®> +wuv+v? =1 and ¢ € R* such that S is isomorphic
to

L MU+ —qu+civyr 1 (U V) - U+ V)

R[U7 V]/(C_l _ C Cn/2 — U C_ C_l Cn/2
and that v acts on S by y(a, B) = (=0, a+wp). Here o and (3 are the images of U and
V in S, respectively.

Remark 3.13. Let o : H Gp.a — U(I')a be a homorphism of group A-schemes.
B/A
Then the composite oo ia a power of Nr : H Gpg,a — G, 4, and therefore we obtain
B/A
an inclusion Kerv C Kernoo. On the other /hand, we have n(vy) = —1.
It follows that there does not exist a homorphism of H Gp,a to U(I')4 which
B/A
induces an isomorphism of Kerv to I'.

3.14. We conclude the section by constructing an equivariant compactification of the
isogeny v : H Gm,B — Upja X4 Gy a.

B/A
(a) An open immersion

1 T]_ T2 2 .

: 5 = Spec A[U, V., A[=L 221 c P2 = Proj A[Ty, Ty, T:
L QAG B = Spec A[U,V, U2+wUV+V2]_>SpeC [To To] C roj A[Ty, T1, 1]
is defined by

I T
— U =~ V.
T — U, T, —
If R is a local A-algebra, then the map ¢ : (H Gm,p)(R) — P?(R) is given by
B/A

(u,v) — (1:u:v).

v),
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(b) An open immersion

1
L:Upya X4 Gpa = Spec AU, V]/(U? + wUV + V? — 1) x 4 Spec A[T, 7

— P! x 4 P! = Proj A[Uy, Us] x 4 Proj A[Vy, V3]

is defined by
Uy 1+U wU+V W

R SN — -

U, V 1-U "V,
If R is a local A-algebra, then the map ¢ : Ug/a(R) X Gy (R) — PY(R) x P}(R) is given
by

— T

(u,v),t) — ((L+u:v),(t:1)).
(c) A rational map
P% = Proj A[Ty, Ty, Ts] — P! x4 P* = Proj A[Uy, Us] x 4 Proj A[Vy, V5]
is defined by

CHTy + (D)2 = ¢(Th + ¢ T)"/? U (Ty + (o)™ — (Ty + (1 Ty)"/?
¢ T (¢ !
Vi T2+ WD Ty + T3, Vo T3

U1|—>

If R is a local A-algebra, then the map v : P?(R) — P! (R) x P!(R) is given by

(to . tl . tg) —
-1 n/2 _ -1 \n/2 n/2 _ —1; \n/2
((C (t1 +Ct2) = _Cgtl + (o) : (t1 + Ct2) — ét_ll'i‘C t2) ), (B twtits +3 - £2)).

The rational map v is defined outside of the locus (T, T% + wTiTs + T3) U (T1,Ts) and
finite of degree n.
It is readily seen that the diagram of rational maps

H Gm,B — IP’?L‘
B/A

(18) Vl lu

U/a XA G a — PL x4 PL.

is commutative. Moreover I acts on H Gm,B by
B/A

y:U— -V, V—=U-+wV.
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Define now an action of I" on P% by
TO — To, Tl — —TQ, T2 = Tl +LUT2.
Then the commutative diagram (18) is I™-equivariant.

Remark 3.15. Let K be a field over A. The rational function field of P%- = Proj K|[Tp, T}, T3]
is given by K(s,t) by the identification s = Ty/T5 and t = T1/T5. On the other
hand, the rational function field of P} x x P = Proj K[Uy,Us] x ¢ Proj K[Vy, Va] is
given by K (u,v) by the identification v = U; /Uy and v = V4 /V,. The rational map

v: P2 — PL xg PL defines an embedding of fields K (u,v) — K(s,t). The extension
K(s,t)/K(u,v) is cyclic of degree n. More precisely, we have

CHEF Q"2 =+ )2 Q2=+ )2,
¢ o (—¢ T
and 7 acts on K(s,t) by

v(t? + wt + 1),

S

tH—L,SH .
t+w

t+w

Furhtermore we have

0—1 k 1 _Ck_l + Ck_l _Ck + C_k
1 w = C_ C—l Ck o C_k <k+1 . C_k_l

for each k. Put

k _
Nk = - — sn—/sn—
¢ — C
Then we have y
—Ne—11 — Nk S
() = ————, ) =

, V(8) = ———
Net + N+ Nt + Ne+1
for each k. Moreover we obtain a factorization

CHT+ Q"2 =T+ )2 (T2 = (T+H"2 (7ot =y
¢1=¢ (—¢! e

The minimal polynomial of s over K (u,v) is given by

n—1 s ’I’L/2—1 s 2
(- = - G b
bt Nt + Nik+1 baiird Nt + Nik+1

By expansion we obtain a polynomial closely related to the generic polynomial for
cyclic extensions of degree n, discovered by Hashimoto-Rikuna [5], or to the Chebyshev
polynomial of degree n, noting that
(—"ﬂk—lt—ﬁk >(_77k—1t_77k+ _1)_ 2 +wt+1 _1( s >2
Mt + M1 Nkt + Nk-+1 (et +nk1)? v NIt Mg/
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4. Twisted Kummer-Artin-Schreier theory

Throughout the section, p denotes a prime number > 3 and [" stands for a cyclic
group of order p. We put ¢ = e?™/?, w =+ A=¢—("', B=7[¢] and A = Z[w].

First we recall the twisted Kummer-Artin-Schreier thoery, estabilshed in [16, Sec-
tion 4].
4.1. A commutative group A-scheme G, 4 is defined by
Gp/a = Spec A[X,Y]/(X* +wXY +Y?-Y)
with

(a) the multiplication

X— X141 X -wXX -2XRY -2YRX -wYQY,
Y=Y ®R14+10Y 4+ (0 -2)Y @Y +wX®Y +0wY ® X +2X ® X;

(b) the unit
X—0,Y—0;

(¢) the inverse
X—-X-uwY, Y=Y

Put now

Then we have

Furthermore, put

0=0(), B=A[fcB
and
O =Trp/af=0()+6O(), 1=Nrg/ab =0(()0(CH).
A commutative group A-scheme Gz /a8 defined by

Gp/a = Spec A[X,Y]/(X? +0XY +7Y? -Y)

with
(a) the multiplication
X X®1l+10X - 0X0X -21XQY —2iY @ X — 0iY @Y,
Y=Y ®R14+10Y + (@ -2)Y @Y +0X QY +0Y @ X +2X ® X;
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(b) the unit
X—0,Y—0;

(c) the inverse
X—-X-oY, Y=Y

We define also a homomorphism of group A-schemes

U Gpya = Spec A[X, Y]/(X?+wXY+Y?-Y) — G/, = Spec A[X, Y]/(X*+0XY +7Y*-Y)
by

X o 5(X,Y) = % O+ AX + )} 45 -1 - AX + ).

Y — T(X,Y) = % [{1 FAMX A -2+ {1 -MX + <—1Y)}p].
The homomorphism W is étale finite of degree p. The exact sequence of group A-schemes

0 — Ker¥ — Gp/a , GB/A —0

is called the twisted Kummer-Artin-Schreier sequence.
4.2. We define a homomorphism of group A-schemes

1
Y :U()a = Spec ATy, Ty, ..., Tp-1, Z] — Gp/a = Spec A[X,Y]/(X*+wXY+Y?-Y)

as the composite of the homomorphisms

1 1

L U(D) 4 = ATy, Ty, ..., Ty 1, — i AUV,
x1:U(I')a = Spec AlTo, Th, ..., T) bA]—)qu ,B = Spec [UVU2+wUV—|—V2]
defined by

=1l g1 —k+1 p—1 .k k
¢ ¢ ¢ =¢
UH;—C_I_C Tk’Vszzl—C—C—lTk

and

i 1 2 2
’V-qum,BZSpeCA[U,V, U2+WUV+V2]—>GB/A=SpeCA[X,Y]/(X +wXY+Y*-Y)
is defined by

uv V2

X

Y :
T eV V2 T U2 WUV V2
Then the homomorphism Y is deifined by

A NS I R S | p—1l .k =1 .k .k
Cm ) (EEn)

X — —= — .

Sen)(Som)
k=0 k=0

(ZX;: ¢, ) (,;) ¢r,)
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On the other hand, a homomorphism of group A-schemes
a:Gp/a = Spec A[X,Y]/(X*+wXY+Y?-Y) — Ug s = Spec A[U, V]/(U*+wUV+V?>-1)

is defined by
Ur—1—-wX-2Y, V—2X+4uWwY,

and a homomorphism of group schemes

1
X1 :Upja = Spec A[U, V]/(U* +wUV +V?—1) — U(I')a = Spec A[Tp, Tt . . ., Tp—1, 5]
is defined over A[1/p] by
1 (p—1)/2 (r—1)/2
T Ei(U,V) = 2_9{1 + Y CHUHEs S HUHcV 0 <i<p).
k=1 k=1
Put now E;(X,Y) = E;(1 — wX — 2Y,2X + wY) for each [. Then we have
) L oy G »
B(X.Y) = [1 + 3 A+ Y - aX + Y} ]
k=1 k=1
Moreover we obtain an identity in A[X,Y]/(X? +wXY +Y?2 -Y)
- —1(p a1 L
Eo(X,Y) = { - ( )Ak_l(X FORPl LS (X + CY)P‘l}{l CMX + <—1Y)}
—p\k p
—1(p k—1 TS 1 1 =
={ E(k)(—)\) TR S (XY Hitax+an} 7.
k=1

It follows that F;(X,Y) € A[X,Y]/(X? 4+ wXY +Y? —Y) for ecach I. Hence a homo-

morphism of group A-schemes

1

&:Gpja=Spec A[X,Y]/(X?+wXY+Y?-Y) — U(I')a = Spec AT, Ty, ..., Tp-1, Z]

is defined by
Ty — E(X,Y) (0<1<p).
Moreover we have a commutative diagrams of group A-schemes with exact rows
0 —— @' —— Ul)a — (UI")/ T4 —— 0

(19) | % |

0 —— Ker¥ —— Gp/a T, GB/A — 0
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and

0 —— Ker¥ —— Gpya Y,

(20) | E

GB/A
0 —— @' —— Ul)y —— (UI")/T)p —— 0.

—>0

Proposition 4.3. The homomorphism x : I' — Ker V¥ is an isomorphism, and the

inverse s given by % oo :KerV¥V — I'.

Proof. For each [, put

& = wo = (Cl_g_zf_;l) (g:fj) m =} = (Cl — C_l>2.

Then we obtain

. 1 (j=! modp
Ey(&,m) = ( , )
0 (j#! modp),
noting that
) 1 (p—1)/2 (p—1)/2 o
E(UV,V?) = 2_9{1 + 3 RO S U Y) }
k=1 k=1

Hence the result.

Applying Corollary 1.7 to (19) and (20), we obtain:

Corollary 4.4.(twisted Kummer-Artin-Schreier theory) Let R be an A-algebra and S
an unramified cyclic extension of degree p. Then the following conditions are equivalent.
(a) the cyclic extension S/R has a normal basis;

(b) there exist a,b € R with a* + &ab + 7jb*> = b such that

(1) S is isomorphic to

RIX,)Y]/(E(X,Y) —a, T(X,Y) — b);

(2) @® +waf + %
(3) v acts on S by y(a, B) = (—a — wPB,1 +wa + (w? — 1)8).
Here a and B are the images of X and Y in S, respectively. If it is the case,

(p—1)/2 (p—1)/2

1+ Y tererd) S {(1-Ma+ )]
k=1 k=1

generates a normal basis of the cyclic extension S/R.



148 NORIYUKI SUWA

REFERENCES

[1] M. DEMAZURE and P. GABRIEL, Groupes algébriques, Tome I, Masson & Cie,
Editeur, Paris; North-Holland Publishing, Amsterdam, 1970.

[2] L. CHILDS, The group of unramified Kummer extensions of prime degree, Proc.
London Math. Soc. 35 (1977), 407-422.

[3] B. GREEN and M. MATIGNON, Liftings of Galois covers of smooth curves, Compo-
sitio Math. 113 (1998) 237-272.

[4] A. GROTHENDIECK, Le groupe de Brauer, Dix exposés sur la cohomologie des
schémas, North-Holland (1968), 46-188.

[5] K. HAsHIMOTO and Y. Rikuna, On generic families of cyclic polynomials with even
degree, Manuscripta Math. 107 (2002), 283-288.

[6] H. ICHIMURA, On power integral bases of unramified cyclic extensions of prime
degree, J. Algebra 235 (2001), 104-112.

[7] F. KawaMOTO, On normal integral bases, Tokyo J. Math. 7 (1984), 221-231.

[8] M. KipA, Kummer theory for norm algebraic tori, J. Algebra 293 (2005), 427-447.
9] T. Komatsu, Arithmetic of Rikuna’s generic cyclic polynomial and generalization
of Kummer theory, Manuscripta Math. 114 (2004), 265-279.

[10] Y. RIKUNA, On simple families of cyclic polynomials, Proc. Amer. Math. Soc.
130 (2002), 2215-2218.

[11] T. SEKIGUCHI and N. SUwWA, Théories de Kummer-Artin-Schreier, C. R. Acad.
Sci. Paris Sér. I Math. 312 (1991), 418-420.

[12] T. SEkIGUCHI and N. SUWA, On the structure of the group scheme Z[Z/p™]*,
Compos. Math. 97 (1995), 253-271.

[13] T. SEKIGUCHI and N. SUWA, A note on extensions of algebraic and formal groups
IV, Tohoku Math. J. 53 (2001), 203-240.

[14] T. SEkIGUcHI, F. OORT and N. SUWA, On the deformation of Artin-Schreier to
Kummer, Ann. Sci. Ecole Norm. Sup. (4) 22 (1989), 345-375.

[15] J. P. SERRE, Groupes algébriques et corps de classes, Hermann, Paris, 1959.

[16] N. Suwa, Twisted Kummer and Kummer-Artin-Schreier theories, Téhoku Math.
J. 60 (2008), 183-218

[17] W. C. WATERHOUSE, Introduction to affine group schemes, Springer, 1979.

[18] W. C. WATERHOUSE, A unified Kummer-Artin-Schreier sequence, Math. Ann.
277 (1987), 447-451.

[19] W. C. WATERHOUSE and B. WEISFEILER, One-dimensional affine group schemes,
J. Algebra 66 (1980), 550-568.



