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Abstract

Let p be an odd prime and r > 1 an integer. We investigate to characterize the prime
divisors of the class number of the real p"th cyclotomic field Q(¢,r)". Let E be the group of
units of Q(¢pr )", and C the subgroup generated by cyclotomic units of Q((,r)™. Then the class
number of Q(¢,r)" coincides with the order of the quotient group E/C. For a prime ¢ distinct
from p, we show that there is an intimate connection between certain polynomials in Fy|x]
which are divisors of 2" — 1, where n = ¢(p")/2, and the ¢-part of E/C. As a consequence, the
{-rank of E/C is given by the degree of a particular one among such polynomials. Moreover
we give a concrete algorithm by which we can compute such polynomial to obtain the ¢-rank
of E/C.

Introduction

Let p be an odd prime and r > 1 an integer. Let ¢ = (pr = cos(27/p") +
isin(27/p") be a primitive p"th root of unity and h;r the class number of Q({pr)™.
Let E be the group of units of Q(¢,~)", and C the subgroup generated by cyclotomic
units of Q(¢pr)". Then it is well known that k), = [E : C] (cf. [13]). It is difficult to
determine h.f. itself. Indeed, the values of h,} are not known for p > 71 (cf. [10]). Hence
it is interesting to study which prime divisors appear in h;}. The class number parity
of h,f. can be completely checked by easy calculation (see [1], [2], [14]). So it suffices
to study odd prime divisors ¢ of h;@. In the case £ = p, there is a famous conjecture

of Kummer-Vandiver that p never divides h;@. The conjecture has been verified for all
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p < 12 x 10° (cf. [3]). Therefore, excluding this case, we may study odd prime divisors
of h;; distinct from p.

E. E. Kummer [8] investigated this problem firstly and gave a necessary condition
for an odd prime distinct from p to divide h;_ (Satz VI). For a real abelian field K, H.
W. Leopoldt [9] studied the divisibility condition of the class number hx of K by an
odd prime ¢ which does not appear in the degree of K. He showed that if £ is a prime
divisor of hg, then ¢ divides a generalized Bernoulli number. However the converse is
not necessarily valid in general. Subsequently G. Cornell and M. Rosen [4] investigated
the ¢-rank of the ideal class group of Q(¢y)* for a composite conductor f. Their method
does not give any information about the ¢-rank of the ideal class group of Q(¢,-)*. We
have already given a necessary and sufficient condition for ¢ to divide hl‘f in the previous
paper [15]. The method used there depends on certain matrix computations, so that
it is difficult to calculate the Fy-rank of such a matrix if p becomes large. Hence the
practical computation of divisibility of h; by ¢ turns out to be almost impossible.

In 2003, Schoof [12] investigated the quotient group E/C of Q({,)* and gave a
method by which one can calculate all the simple Jordan-Holder factors of it of order
less than 8 x 10°. In this way he obtained an “approximate” value h; of hl"; in the sense

that (a) hy divides h,t, and (b) the quotient hf/ hi is a possibly empty product of
prime powers, each of which is greater than 8 x 105. Cohen-Lenstra heuristics suggests
that h; = h;f for all p < 10%, but it is very difficult to prove the coincidence at present.

In this paper, we treat only with the real p” th cyclotomic field Q((,-)" and inves-
tigate which prime divisors appear in the class number h;@ of Q({pr)". Moreover we
study the structure of the group E/C, which is deeply related to the ideal class group of
Q(¢pr) ™. Our study is done independently of Schoof’s work. Roughly speaking, our aim
of this paper is as follows: (i) We introduce two polynomials v, (z) and w,(z) € Fy[z]
associated with the group theoretical structure of E/C for a prime ¢ # p. (ii) These
polynomials v, (x) and w,(z) have a number theoretical meaning respectively and sat-
isfy wy, |vp |2™ — 1 in Fy[z]. In particular, we show that the ¢-rank of E/C is given
by degw,, — 1 or by degw, according as £ > 2 or ¢ = 2. (iii) Although it is easy to
obtaine v, by definition, the calculation of w, is difficult. We establish an effective
method by which we determine w,, from v,. (iv) By our method we calculate all the
f-rank (E/C) of Q(¢,)T in the range 2 < ¢ < 10%, 3 < p < 10%, and £ # p except one
case (£,p) = (131,7411).
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§1. Notations and Main result

Let n = ¢(p")/2. Let g be a primitive root modulo p”. For every i € Z, we put

Cgi+1 B <__gz‘-4-1

which is a cyclotomic unit of Q(¢,r)". Then we have e,; = ¢; for each ¢ € Z. Among

€; =

€op,€1,--.,6n_1 there exists one relation ege;...e, 1 = —1. Let E;? be the group
of units of Q({pr)" and C’;? its subgroup of cyclotomic units. C;; is generated by
€0,€1,.-.,En_1, L€, C’;? = (eg,€1,.-.,en—1). It is well known that h; = [E;} : C’;;]
(cf. [13]). Hence, to search a prime divisor £ of h\», we must find a cyclotomic unit &
such that /€ € E;? \C’;{T. Let g; be the least positive residue of g° modulo p” for every
i €7,ie., gi =g (modp") and 0 < g; < p". Then g; 0, = ¢; and g;1, = p" — g; for
every ¢ € Z. Let £ be an odd prime distinct from p. For any integers a and b such that
(a, p) = 1, R(a,b) denotes the least positive solution which satisfies ax = b (modp”).
For any integers a, b such that a +b =1 (mod 2), let [a, b],3q be the odd integer which
equals either a or b.
For k=1,2,---,({ —1)/2 and any integer j, we let

S(k) _ 1if [R(£,£ — 2]6) — ggn_j,R(g,g — 2]€) — gn_j]odd > 0,
J 0 otherwise.

(k)

The number ;" is well defined, because g,,_; + g2n—j = p" is odd. Let ¢; € F, be

defined by
(€-1)/2
1, (K k
cj = Z k 1(55) — 5§+)1).
k=1
Since 5§‘Ijr)n = €§~k) for any integer j and k =1,2,---,(¢{ —1)/2, we have ¢4, = ¢; and

Z;:(} ¢; = 0. We define the polynomials w,, and v, in F,[z] by
n—1 ‘
up(z) = Z c;z?  and  wy(x) = ged(uy,(x), 2™ —1).
§=0

e -1
Then w,, and v,, have a trivial divisor z—1 because Z?:o ¢; = 0. For any m | n, we define

Uy, and vy, in Fylz] by () = ZTz_ol( Z_:lo Citkm)T? and v, (x) = ged(upm (z), 2™ —1)

respectively, where ¢t = n/m. We notice that ged(uy,, 2™ —1) divides u,,, but it does not
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necessarily coincide with w,,. From now on let v, (x) and v,,(«) be monic polynomials.
We denote by K, the subfield of Q({,~)* of degree m and by hg,, the class number
of Ky, In particular K, = Q(¢pr)" and hg, = h}. Let Fk, be the group of units in
K,, and Ck,, the subgroup of cyclotomic units in K,,, that is, Ck,, = C;? N FEg,, =
(€0,&1,- -+, &m—1), where & = Noyr)+/ Kom (e;) for each i.

Let R = Fy[z]/(z™ — 1) and let ® : R — F}* be the natural isomorphism such
that &3 0" @) = (ao,a1,...,am_1). Put G = Gal(Q(¢r)T/Q). We define the
group action of G on F}* by (ag,ai1,...,am-1)" = (@m—1,00,-..,am—2), where o is the
generator of G such that (7 = (9.

The content of this paper is as follows. In §2 we generalize a certain sum considered
by Kummer [8] and obtain the value of the sum, which plays a role when we give a
number theoretical meaning of the above polynomial v, in §4. In §3 we illustrate a
connection between the polynomial ring F[x] and the vector subspace Ker f(A) of F}?,
where A is the circular matrix of degree m such that

010...00
001...00
A= 000...00
000...01
100...00

We write it as A = cire(0,1,0,---,0). For a polynomial f(z) = ag + a1z + -+ +
am_12™ "1 in Fy[z], we obtain the circular matrix f(A) = circ(ag,a1,a2,...,am_1).
We denote by Ker f(A) the kernel of the linear transformation f(A) from IF}* to itself.
Let £ C F}* be a non-trivial Fy-vector space closed under the action of G. Then there
exists a unique monic polynomial f € Fy[z] such that £ = Ker f(A) and f(x)|z™ — 1
(Theorem 3.8). Such a polynomial f is given by f = (z™ — 1)/ged(a*, 2™ — 1), where
« is a generator of the principal ideal ®~1(£) of R with the least degree and a*(z) =
2™ 1a(1/2). In §4 we show a number theoretical meaning of v, (x) which is important
to obtain its divisor wy,(x) defined below. As a consequence, if v,(x) = = — 1, then
( t hj. Moreover, for every divisor m of n, if vy, (z) = — 1, then £ 1 hg,, (Theorem
4.3). This result improves Kummer’s Satz VI in [8] a little. For a divisor m of n and
Yy = (Y0,Y1,---,Ym—1) € F}*, we consider the cyclotomic unit &(y) = £§°&¥* ... &
in §5. Since the vector space {y € F}"; {Z/é(_y) € Ekg, } is closed under the action of
G, it follows from Theorem 3.8 that among the divisors of ™ — 1, there exists a unique
monic polynomial w,,(x) € Fy[z] such that

Kerw,,(A) = {y € F*; V/¢(y) € Exk,,}.

The polynomial wy, (x) plays a significant role for our study. It satisfies z—1 | wy, () | vy ()
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for every m|n. Then the f-rank of E;?/ C’;? is given by degw, — 1. More generally,
for the subfield K, of Q({,r)", the f-rank of Ex, /Ck, is given by degw,, — 1 (The-
orem 5.4). In §6 we explain a concrete algorithm to compute wy,(z) for an odd prime
¢ # p. In §7 we show that the corresponding results in the previous sections hold true
in the case £ = 2. Our method is proved to be sufficiently effective. In §8 we put
r = 1 and by our algorithm we make a table of all the non-trivial polynomials wy,(x)
for the pairs (£,p) in the range 2 < ¢ < 10*, 3 < p < 10%, and ¢ # p except the
only one case (¢,p) = (131,7411). In this exceptional case, we can obtain an “approxi-
mate” polynomial W, (z) = (x —1)(z + 31) of w,(z), but we can not determine whether
wp(x) = (x — 1)(x + 31) or not. Finally we notice that our method yields nothing with

respect to Q(Cor ).

§2. Certain sum introduced by Kummer

Let m > 1 be an odd integer and a,b, ¢ integers such that (ac, m) = 1. We
do not exclude the case (b,m) > 1 in the following. Since (a, m) = 1, we obtain
the least positive solution, say R(a,b), of ax = b(modm). Either R(a,b) — R(a,c) or
R(a,b) — R(a, —c) is odd, because R(a,c) + R(a,—c) = m by (ac,m) =1. We let

1 if [R(a,b) — R(a, ), R(a,b) — R(a,—¢)]oqq > 0,
0 otherwise.

e(m;a,b,c) = {
Here we denote by S(m; a, b, ¢) the following sum which was first considered by Kummer

[8] in the case m = p:

(" = ¢+ ¢
Ca _ C—a ’

S(m;a,b,c) = Z

C#£1

where ¢ runs through all the mth roots of unity except 1. We can determine the value
of S(m;a,b,c) by means of e(m;a,b, c).

Proposition 2.1. Let m > 1 be an odd integer and a,b,c integers such that
(abe, m) = 1. Let m' be a proper divisor of m. Then

S(m;a,bm’,c) = 2me(m;a,bm’,c) — 2R(a,bm’).

Corollary 2.2.  Letm > 1 be an odd integer and a, b, ¢ integers such that (abc, m)
1. Then

S(m;a,b,c) = 2me(m;a,b,c) — 2R(a,b).
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Proposition 2.1 and Corollary 2.2 are proved by a same way. So, it suffices to
prove Corollary 2.2. Then we may assume that ¢ = 1, that is, we may prove that
S(m;1,b,¢) = 2me(m;1,b,¢)—2R(1,b). We expand each term in S(m; 1,b, ¢) as follows:

("= ¢ +¢9 - bte—2k+1 - b—c—2k+1
- =>q +)> ¢ :
TSI 2

We take out the exponents of ( in the right side to obtain two arithmetic sequences
{b+c—2k+1}%_, and {b—c—2k+1}2_,. Multiplying each integer in the first sequence
by —1, we obtain the second one. Since S(m;1,b,¢) = S(m;1,0',¢) if b = V,c =
¢’ (mod m), we may consider that 0 < b,¢ < m. So R(1,b) = b and R(1,—c) =m — c.
Therefore the first sequence lies between —m + 1 and 2m and the second between —2m
and m. We denote by T' the set of the integers appearing in the first sequence. We
divide our consideration into two cases.

First we consider the case where b+ c is odd. Then, since b+c—m is even and b—c
is odd, we have € = 1 or ¢ = 0 according as b—c > 0 or b— ¢ < 0, where ¢ = (m; 1, b, ¢).
Here we observe that T' consists on b successive even integers and that b — ¢ > 0 if and

only if 0 € T'. Since
N -1 if mf x,
Z &= m—1ifm |z
¢#1 ’
where ¢ runs through all the mth roots of unity except 1, we prove S(m;1,b,¢) =

2me(m;1,b,¢) — 2R(1,b) in this case. In the same way as above we can give the proof
for the remainding case b + ¢ is even. This completes the proof of Corollary 2.2.

§ 3. Polynomial ring Fy[z] and the vector space Kerf(A)

In this section we denote by A the circular matrix of degree m such that A =
circ(0,1,0,---,0). For a polynomial f(z) = ag + a1 + -+ + ap_12™ 1 in Fylz], we
obtain the circular matrix f(A) = circ(ag,a1,az,...,am—1). We denote by Ker f(A)
the kernel of the linear transformation f(A) from F}* to itself, that is, Ker f(A4) =
{x € F}"; f(A)x' = 0}, where @' is the transpose of * = (zo,21,...,Zm—1) and 0 is
the zero vector of size m. We notice that each element of Ker f(A) is corresponding
to a cyclotomic unit of Q(¢,»)". Some of the results of this section are well known in
the theory of error-correcting codes, so that we leave the proofs to the reader except
Proposition 3.6 and Theorem 3.8.

Proposition 3.1.  Let f be a polynomial in Fy[x] of degree less than m. Then

dimy, Ker f(A) = deg ged(f, 2™ — 1).
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Corollary 3.2.  Let m be a divisor of n = ¢(p")/2. Then Ker u,,(A) = Ker v,,(A)
for every m|n, where u,, and v, are the polynomials defined in §1.

Remark 3.3.  Though we assume that £ is an odd prime distinct from p except
in §7, all the results in this section are also true for £ = 2. We use them for { = 2 in

§7.

Proposition 3.4.  Let f and g be polynomials in Fylx] which divide x™ — 1.
Then f|g if and only if Ker f(A) C Kerg(A). As a consequence, for the divisors f,g of
™ — 1 in Fylz], Ker f(A) = Ker g(A) if and only if f = cg for some non-zero constant
c ey

Now, putting R = Fy[z]/(2™ — 1), we define & : R — F}* by @(Zznol a;Tt) =
(ap,a1,...,am—1), where = x mod (2™ — 1) is a unit of R. Then ® is obvi-
ously an isomorphism as a Fy-vector space. We simply use x instead of Z. For
a = (ap,a1,...,a4m-1) € F}*, the group action of G on F}* is defined by a’ =
(Am—1,G0,- -+, Am—2), where (7 = (9. Since ® is an isomorphism as a Fy-vector space
and R is a ring, we can naturally define the ring structure to Fy*. Hence ® is a ring
isomorphism. That is, for a polynomial 8 = Y " "bizt € R, we obtain ®(3(x ))C’Z =

d(z'B(z)) = (0,...,0,1,0,...,0)®(3(x)) for every i,0 < i < m—1, where 1 in the right
side has the ¢ + 1st position.

Let £ C F}" be a Fy-vector space closed under the action of G. Then <I>_1(£)
is an ideal of R and so it is principal, i.e., ® (L) = aR with some o € R. For
any f = S7 aa’ € Felz], we put f*(x) = 2™ U f(1/x) = S aia™ 1 and
[2(x) = xde8f f(1/x), where f* is called the reciprocal polynomial of f. Since f* =
f& - gm—l-deef and x is a unit, f* and f© have the same effect as an operator in the
following.

Now we suppose that £ = Ker f(A) with f € Fy[z]. Then ®~!(L) = aR for some
a € R. We consider a relation between f and a. We denote by 7 the automorphism of
[F}* defined by @™ = (ao, @m—1,am—2,...,a1) for any a = (ap,ai,...,am—1). Obviously
7 is an involution and satisfies the relation 7707 = ¢~ ! and (ab)™ = a™b” for any a, b €
[F}*. Here, for any a = (ag,a1,...,am—1) and b = (bg,b1,...,by—1), we have f(A)b =
(a™b)! by definition of the product in F}*, where f(A) = circ(ag, a1, a2, ..., am—_1).
Therefore, b € Ker f(A) if and only if a”b = 0.

Lemma 3.5. Let £L = Ker f(A) for a polynomial f in Fylx] with deg f < m.
Then we have

L={beF; &1 (b)f*=0 (mod 2™ —1)}.

Now there exists an ideal I of Fy[z] such that ®~1(L£) = I/(z™—1). Then replacing
a by ged(a, 2™ — 1), we choose the generator a of I with the least degree among the
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non-zero polynomials in 7. It is uniquely determined up to multiplication by non-
zero element of Fy. Here, putting v = (™ — 1)/ged(f*, 2™ — 1), we have yf* =
0 (mod 2™ — 1). By the definition I = {8 € Fy[z]; f* =0 (mod 2™ — 1)}. Thus we
have I = vFy[x], which leads to aw = . This proves the following

Proposition 3.6.  Let f be a polynomial in Fe[z] with deg f < m. Put L =
Ker f(A) and a = (z™ — 1) /ged(f*,2™ — 1). Then we have ®~1(L) = aR.

—1

Remark 3.7.  Ker f(A) is a Fg-vector space generated by b, b, - - - b7 where
a is given by Proposition 3.6 and b = ®(a).

Theorem 3.8. Let L C F}* be a non-trivial Fp-vector space closed under the
action of G. Then, among the divisors of x™ — 1, there exists a unique monic poly-
nomial f € Fy[z] such that L = Ker f(A). The polynomial f is given by f = (2™ —
1)/ged(a*, ™ — 1), where ®~1(L) = aR.

Proof of Theorem 3.8  Let N be the diagonal part of F}*. Put ® (L) = aR with
some « € Fy[z]. We may choose « as a monic polynomial with the possibly least degree.
Obviously deg o < m. We define f by « as in Theorem 3.8.

If £ = N then the assertion is trivial. Hence we may assume that £ # N. Let
a= Z?;Bl birt € Fy[x] and b = ®(a). Then £ = ®(aR) implies that L is generated by
b,b%, -, " asa [Fy-vector space. From the assumption, it follows that b € /. First
we show that £ C Ker f(A). By the assumption we have a*f = 0 (mod 2" —1), which
is equivalent to ba” = 0, where a = ®(f). Hence b € Ker f(A) by the fact written just
before Lemma 3.5. Therefore, since b € Ker f(A) for each j, we have £ C Ker f(A).
Similar argument shows the converse, so we have £ = Ker f(A). The uniqueness of f is
followed from Proposition 3.4. This completes the proof of Theorem 3.8.

. ¢
§4. The polynomial v,(x) and E[(J)

Let p be an odd prime and r > 1 an integer. Put n = ¢(p”")/2 and let £ # p be
an odd prime. In this section we use the results on the sum S(p”;a,b,c) in §2 to show
that all the results in [15] are generalized to the case p”. For k =1,2,...,(/—1)/2 and
for any integers 7, 7, we have z-,“gk_)Z = e(p"; Lg?, (£ — 2k)g’, Lg"), where sgk) is defined in
1. Let ¢, u,(x) and v, (x) be the same as in §1. By E[(Je) we denote the group of the
primary cyclotomic units of Q(¢,r)T, i.e.,

E[(f) ={n € C’;?;of = 7 (mod ¢?) for some integer a € Q((pr )"}
Theorem 4.1.  Let ¢ # p be an odd prime. Then

By C{efrelt .. epiyt € Cua(A)a! = 0 (mod £)},

n—1
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where A is the circular matriz of degree n. Therefore E[(Jﬁ)/(C';?)g is isomorphic to a
subgroup of Ker v, (A)/N, where N is the diagonal part of F}}.

Proof of Theorem 4.1(cf. Theorem 1 [15]) Puta = (((—¢ 1) — (¢! -/t e
Q(¢pr). Then we have ef = (¢ — ¢~ We=1¢ — (¢! — ¢=* +¢a)? 1. Let B be the number
in Q(¢pr)" defined by

Then 3 € Q(¢pr)" and

a a
3= _CE — + T (mod ¢).
This implies that ef = g (1 + £8) (mod £2), where s is an integer such that 1 < s < 2n
and ¢g* = £ (modp"). So, for a cyclotomic unit £ = eg%ei* ...ep 7",

_ n—1 ]
H (1+£87)% = (144> x;87) (mod £?).
=0 §=0

Noting that ¢* is the Frobenius automorphism of Q((,-) at the prime ¢, we can show
that E[(f) ={¢ e C’;?;fﬁ = ¢ (mod £2)}. Therefore, we have £ € Eg) if and only if
Z] 0 xjﬁaj =0 (mod¥). The latter is equivalent to

n—-1  ((-1)/2 (2R (-2’ ] (e-1)/2 CU-2m)g"t o (e-2k)g"

ij Z Clyl _ (g = ij Z ko Cla T (—tg T )

k=1 =0 k=1

because o = — (E 1)/2 —1(¢t2k — ¢=*2F) (mod ¢). Multiplying Cegi + C_egi in both
sides of this congruence and summing them with respect to ( # 1, we get

n—1 (£=1)/2

STa; > KISt (€ - 2k) g bg)

j=0 k=1
n—1 (£=1)/2

= Z E=1S(p"i g’ T, (0 —2k)g" T, £g") (mod £).
j=0 k=1

Here there are perhaps positive integers k£ such that ¢ — 2k = bp" for some positive
integers u and b coprime to p. Hence it follows from Proposition 2.1 and Corollary 2.2
that

n—1 (£-1)/2 n—1 (£—1)/2
ij Z k~t(2p” €(k) —2R(¢,0—2k)) Zajj Z E~1(2p" gglj_)l_i—QR(é,é—Qk)).
j=0 7=0
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Therefore, by (¢,2p) = 1, we have Z}Col zjcj—; = 0 (mod/) for every i. Thus, if £ =
eglelt . .ert Tt € E[(f), then u,(A)(zo,...,Zn_1)" =0 (mod¥). Therefore Corollary 3.2
shows that E,(f )/ (C’;?)e is isomorphic to a subgroup of Kerwv, (A)/N. This completes
the proof of Theorem 4.1.

Remark 4.2.  Theorem 4.1 is valid for any subfield K, of Q({r)T. In fact,
putting E[(fl)( = {n € Ok, ;a" = n(mod?) for some integer a € K,,}, we can simi-
larly show that E[(f[){ /(Ck..)¢ is isomorphic to a subgroup of Ker v,,(A) /N for a divisor
m of n.

Theorem 4.3.  Let p be an odd prime and ¢ # p an odd prime. If v,(x) =z —1,
then €1 hf.. Moreover, for every m|n, if vy, (z) = — 1, then {1 hg,,.

Proof of Theorem 4.3 If (|h}., then /| #(E[(f)/(C’;?)Z). This implies that
Ker v, (A)/N # {1}. Hence v, (z) is not trivial. The latter assertion is proved similarly
by Remark 4.2. This completes the proof of Theorem 4.3.

Remark 4.4.  Theorem 4.3 is sufficiently effective to find the pair (¢,p) such that
(1R In fact, we treat with the case r = 1 and calculate v, (x) for 1227 primes p in the
range 5 < p < 10* and for £ = 3,11,113 and 1009. Then it turns out that the numbers
of non-trivial vy, (x) are 437,216,40 and 12 for £ = 3,11,113 and 1009 respectively.

§5. The polynomial w,(z) for odd prime ¢

Let & = No(¢,r)+/K,, (€i) for each i. For y = (yo,y1,-..,ym-1) € F}", we put
E(y) = &ogyr ... &0 Since {y € F*; /E(y) € Ek,, } is closed under the action of
G, it follows from Theorem 3.8 that among the divisors of ™ — 1, there exists a unique
monic polynomial w,,(x) € Fy[z] such that

Kerwn,(A) = {y € F}*; v¢(y) € Ek,, }.

where A = circ(0, 1,0, ...,0). Then w,,(z) satisfies x — 1 | wy, (x) | vy, (z) for every m | n,
because N C Ker wy,(A4) C Kerr,,(A) C Kerv,,(A), where 7, (z)|z™ — 1 is defined by
Eu, [(Ck,)" ~Kerry,(A)/N. When w,,(z) =z — 1, we call it trivial. We define ji,,
by

P, = degwy,, — 1.

The polynomial v,,(z) is dependent on the choice of the primitive root g modulo p",
but w,,(x) and p,, are independent on the choice of g.

Proposition 5.1.  Let f be a divisor of ™ — 1. Put o = (2™ — 1)/f*(x) and
a=®(a) e F}*. Then f is a factor of wy, if and only if \/{(a) € Fk,,.
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Proof of Proposition 5.1 By Proposition 4.4, f|w,, if and only if Ker f(A) C
Kerw,,(A). On the other hand, as seen in the proof of Theorem 3.8, we have Ker f(A) =
P(aR) = {Z;nz_ol bja”j ; b; € Fy }. Therefore, noting that v/¢(a) € Ek,, if and only if
a € Kerw,,(A), we obtain the assertion of Proposition 5.1.

We notice that Proposition 5.1 is also valid in the case ¢ = 2. The following
proposition shows that wy,(x) dominates all the w,,(x) for the proper divisors m |n.

Proposition 5.2.  Let m,m’ be divisors of n. Then if m divides m', we have
wm () = ged(wpy (), 2™ — 1). In particular, wy,(x) = ged(wy(x), 2™ — 1) for every
m|n.

Corollary 5.3.  Let my and ms be divisors of n and mz = ged(my, ms). Suppose
that W, () = Wi, () = wy,(x). Then we have Wy, (x) = wy ().

Corollary 5.3 is an immediate consequence of Proposition 5.2.
Now, as stated in §1, the /-rank of E;? / C’;? is determined by the following

Theorem 5.4.  Let p be a prime and £ an odd prime distinct from p. Then .,
s equal to the £-rank of E;} /C’;?. More generally, for the subfield K., of Q({pr)™", fim
is equal to the (-rank of Fk, /Ck, .

As a corollary we obtain a generalization of Theorem 5 in [15]. Put p,, = degv,, —1
for each m |n.

Corollary 5.5. /| h;} if and only if wy(x) is non-trivial. In general, for the
subfield K, of Q({pr)", we have that lhg,, if and only if wy,(x) is not trivial. And if
Pm = Pn, then wy,(z) = wy(z), so that p, = wy,. Therefore €|h;§ if and only if |hk,
for such m |n.

Proof of Theorem 5.4 It suffices to prove the assertion only in case m = n,
because the proof in the general case is similarly deduced. Suppose that €|h;r. For
the simplicity, we put £ = E. and C = C,.. We denote by (E/C), the {-clementary
subgroup of E/C, i.e., (E/C); = {xC € E/C; (zC)* = 1}. Then we have a natural
isomorphism (E/C), ~ E* N C/C*.

Next we consider the homomorphism v : Ker w,(A)/N — E*NC/C* such that
Y(yN) = &(y)C* for any y € F?. This homomorphism is obviously well defined and
surjective. On the other hand, since eg, e;,...,e,_o is a basis of C, we can easily show
that 1 is also injective. Thus % is an isomorphism. Therefore we have

(-rank (E/C), = dimy, Ker w, (A)/N = degw, — 1 = u,

This completes the proof of Theorem 5.4.
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Corollary 5.6.  Let m and m' be the divisors of n = @(p")/2. Suppose that
Wiy (x) 7# Wi () for m|m/. Then £ divides the relative class number hg ,/hk,, .

The proofs of Corollaries 5.5 and 5.6 are almost obvious.

Remark 5.7.  The converse of Corollary 5.6 is not necessarily true. Indeed, let
p=2089,r =1, =3 and m' = 6,m = 2. Then we obtain wa(x) = we(x) = wigsa(z) =
(x — 1)(x + 1), and so 3-rank (Fk,/Ck,) = 3-rank (Fk,/Ck,) = 1. On the other
hand, putting a = (4,6,7,3,1,0) € (Z/97)°, we have \9/@ € Fg, \ Ck, by an easy
calculation, and so 3|hk,/hK,. This shows that 3%-rank (Ek,/Ck,) = 1.

Corollary 5.8.  Let n; = ¢(p't')/2 for i > 0. Then wy,(z)|wn,,, () for every
i >0 and wy, () = wy, (x) for every i > s with some positive integer s.

Corollary 5.8 is proved by Theorem 16.12 in [13].

§6. Algorithm to compute w,(z) for odd prime ¢

In this section we explain our algorithm to compute the polynomial w,,(z)
for an odd prime ¢ # p. Now we fix the least divisor m of n such that p,, = p,, so
U (2) = vn(z) and wp,(z) = wy(z) by Corollary 5.5. Here, if pp, = 0, then £ 1 h}.
by Theorem 4.3, i.e., wy,(x) = w,(x) = z — 1. In the following it suffices to give an
algorithm by which we can compute w,,(z) in the case p,, > 0.

Our algorithm consists on two steps: The first step is necessary and useful to save
the time of calculation when v,,(z) has many divisors. So, if v,,(z) has at most two
distinct divisors including = — 1, we can skip the first step. On the other hand the
second step is essential to determine w,, ().

The first step is to calculate an “approximate” polynomial, say W, (x), of wy,(x)
satisfying

W (@) [ () | 0 () [ 27 — 1

Using Proposition 5.1 and the following Proposition 6.1, we can calculate w,,(z) from

U ().

Proposition 6.1.  Let p be an odd prime and £ # p an odd prime. For a prime q
such that ¢ = 1 (mod pf), we let Q|q be a prime ideal of the first degree of Q((pr). Letb €
Z satisfy (pr = b (mod Q) and ¥¥" = 1,b # 1(mod q). For a = (ag,ay,...,am_1) €
Fyr, we write £(a) = f((r) by some polynomial f € Zx].

If f(Cpr) is a Lth power in K, then f(b) is a (th power residue modulo q. Therefore
if {/¢(a) € Eg,,, then f(b)% = 1(mod q) for any integer b such that b*" = 1 and
b # 1(mod q).
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Proposition 6.1 is proved by a short calculation. So we leave it to the readers.

Now we decompose vy, (x) into irreducible factors as vy, (z) = g1 (z)g52(z) - - - g;* ()
in Fylz]. Put g(z) = g5 (2) (si < 73) and a(z) = (2™ — 1)/g”(x). Let ®(a) = a € F}.
For the first seven primes ¢; < g2 < -+ < ¢r satisfying ¢; = 1 (mod pf), we make

seven pairs (g;,b;) as in Proposition 6.1 and examine whether f(b;) o= (mod ¢;)
is satisfied. If these congruent equations are all satisfied for the seven pairs (g¢;,b;), we
regard g;'(z) as a factor of W, (z). Otherwise g;’(z) is not a factor of w,,(x). In this
way, collecting all the divisors of w,,(x), we define a “approximate” polynomial w,,(x)
of wy, (x). Here, as we temporarily choose seven primes ¢; to define w,, (z), seven has not
a particular meaning. Namely, w,,(x) only plays a auxiliary role to obtain an essential
polynomial w,, (z).

Remark 6.2.  In Proposition 6.1, we concretely calculate f (b)% as follows: Fix
the least divisor m of n such that py, = pn. Then v, () = vy (x). For a factor h(x) of
vm(x), put a(x) = (2™ — 1)/h>(z) = Z?;Bl a;x' and a = ®(a) = (ag,a1,...,am_1).
Here we have

n—1 a
. <9k+1 _ C—Qk+1 k
£(a) = Nyt /r, (66"l e ') = ,}:IO< Cow —Cooe )

where a;+.,m = a; for every i. In this equation we substitute b for ¢ and obtain the
following number z = f(b) in Fy.

n—1 a
bIr+1 _ ph—Ik+1 k
z = klilo ( T ——— ) mod q.

If 2(a= /¢ £ 1mod q, then \‘/f(_a) ¢ Exk, . This shows that h(z) does not divide
wy (), so that h(z) § W,(z). If 297/ = 1 mod q, we choose another pair (¢, V)
and calculate the corresponding number 2’ for it. And we examine whether 2’ (@' -1/t =
1 mod ¢’ and we repeat these calculations seven times to get a divisor of Wy, (x).

The second step: For each factor of w,,(x) obtained in the first step, we examine
whether it is a factor of w,,(x) by Proposition 5.1 and the following Proposition 6.3.
When we skip the first step, we consider W, (z) = v,,(x) and examine the same test.

Proposition 6.3.  Let p be an odd prime and £ # p an odd prime. Let K,, be
the subfield of Q((pr)™ of degree m. Let & be a unit of K,. Suppose that Q(§) = K,,.
We denote by g(x) the minimal polynomial of & over Q. Then /€ € K,, if and only if
g(z%) has a unique irreducible factor of degree m in Z[x).

The proof of Proposition 6.3 is a routine one. So we omit it. Applying Proposition
6.3 to a cyclotomic unit ¢ in K,,, we can decide whether /€ is contained in K,,.
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From now on, we treat only with the case » = 1. That is, we consider the class
number A} of the field Q(¢,). Put f = (p—1)/m. For the subfield K of Q(¢p) of degree

m, let n(f) be the Gaussian periods of f terms, that is, n(f) Z gt (0<j<m).

J
Then a Z-basis of the ring of integers of K, is glven by n(f), (f), . 7777(r{) 1- S0 a

cyclotomic unit £ of K,, is represented as & = Z —o amz(f ) where a; € 7. To get the

minimal polynomial g(z) of £ over Q, we use the Gauss formula

[3 J+sm
nif) () _ Z "’7[9 +g ],
smod f

(") which contains 7, i.e., nlil =

where 5l in the right hand means the Gaussian period n;
>.s¢ i9"™  Using the Gauss formula and the trivial relation Z;n 01 nif S repeatedly,
we can reduce g(z) = H;nz_ol( — ¢’y e Uz, n(f),ny), . ,777(7{) 1] to a polynomial g(z) of
Z[z]. The remainding is only to check whether g(z%) has an irreducible factor of degree
m.

We here give an example to illustrate our algorithm.

Example 1. Let p = 5437,/ = 31 and r = 1. Then n = 2718, p2718 = pg = 1 and
v6(2) = (¢—1)(2+5) € Fy1[z]. Now g = 5and eg = (¢°—(5)/((—¢™) = 1+nSr+nizh.
where ¢ = (5437 and 771(2) is the Gaussian period of 2 terms. So

€0 = No(o)+/ x4 (€0)
— 4313206656944n. """ + 43181065734607\"°% + 43228744234427(""%)
+4332036559191757°%) + 4673220060409 7% + 4302990157453,{7°%

(906)

where n, is the Gaussian period of 906 terms.

Now, to examine whether h(z) = (z + 5)|wg(x), we put a(z) = (2% — 1)/h*(z) =
6(5 + 62 + 2% — 53 — 62 — 25), so that a = ®(a(z)) = 6(5,6,1, -5, —6, 1) Here we
may consider a = (5,6,1,—5,—6,—1). Put b=a’ + (6,6,6,6,6,6) = (5,11,12,7,1,0).
Then %/¢(a) € Ef, if and only if 3/¢(b) € Ek,. Hence we have

UE(b) = el elele
= —62544579175599971003041467088683482 1401637367721915868046577(906)
—676396481927502489316711570176 196043255858956747268393593877(906)
—6193152508641 79786847202352727877542257603996317668063524877(906)
—622732773110659273004075669670244720199864779156660046776177(906)
—6234129729181136596 19206475378297498757173512057335416778577(906)
—624100654084580302691224500327591183109608787024635341071377(906)
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We calculate the minimal polynomial g(x) of {(b) over Q. Then

g(x) =1—37914039246610352215088352391670418089817473990254831297910x
—52640663545217914581877701877797657992550443567446555416593 /
548686612147881645821650051877097330551416795839586592078:
—154275569908394591335361358545259896427515799142841111292857/
40039740920639203417445787746748346444094937666840061480782°
—52640663545217914581877701877797657992550443567446555416593 /
548686612147881645821650051877097330551416795839586592078z*
—379140392466103522150883523916704180898174739902548312979102° + 2°.

Therefore we have
(1 — 62 — 542222 — 1089423 — 5422z* — 62° 4 )| g(a31),

which shows that « + 5 is a factor of wg(z). Thus we have waris(z) = wg(x) = (v —
1)(x + 5) and 31-rank of Edj3./Cdysr is 1.

Remark 6.4. In example 1, for every m|n = 2718, we obtain that wy,(x) =
(x —1)(z+5) or wy(x) =2z —1 according as 6/m or not. We here show an interesting
example. Let p = 7753 and £ = 5. Then n = 3876 and wss7e(r) = wia(z) = (@ —
(z+2)(x?2+2+1). Hence ws(z) = (z—1)(22 + 2+ 1) and wy(z) = (z — 1)(x + 2)
by Proposition 5.2, so that 5|hk, and 5|hk,.

§7. The polynomial w,(z) for the case ¢ =2

In this section we illustrate a method by which we can determine the 2-rank of
E;} / C;?. This method is a similar one in the preceding sections.

Let e; = sin(2g;117/p")/sin(2¢;7/p") be the cyclotomic unit in Q(¢,r)" defined
in §1. Let Fo = Z/2Z. Let ¢; be 0 or 1 according as e; is positive or not. We
define the polynomials u,, and v, in Fy[z] as u,(z) = Z;:(} cjz" 177 and v, (z) =
ged(up (), 2™ + 1). We note that 2™ + 1 = 2™ — 1 in this case. For a polynomial
flz) = Z?z_ol ajz? in Falx], we define f*(z) as in §3, i.e., f*(z) = 2" 1 f(1/x). Then

*(z) = ged(ul (x), 2™ +1). For any m|n, we put ¢ = n/m and define polynomials u,, and

U, in Folz] as upy,(x) = Z;nz_ol( 7,;_:10 Citkm)T™ 170 and vy, (x) = ged(um(z), 2™ + 1)

respectively.

Un

The following theorem was given by Bentzen [1].
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Theorem 7.1. 2|k} if and only if deg ged(v,(z), v} (2)) > 0.

Here we give another proof of Theorem 7.1. Our proof is based upon the following
results in [14].

Lemma 7.2. (Lemma 1 [14]) Let C;?,o be the subgroup of C’;C« of totally positive
cyclotomic units. Then we have

Kerv; (A) ~ C;C«,O/(C’;?)?

Theorem 7.3.  (Theorem 1 [14]) Let E[(J2 ) be the subgroup of C’;l of 2-primary cy-
clotomic units, i.e., E[(JQ) ={n € C’;?;QQ = 1 (mod4) for some integera € Q(¢pr)*}.
Then we have

Ker v, (A) ~ B /(C)2.

Now, Corollary of Theorem 1 [14] shows that k), is even if and only if Ker v, (A4) N
Kerwv}(A) # 1. Since dimy, Ker v, (A) N Ker v} (A) = degged(v,(z), v (x)), it follows
from Lemma 7.2 and Theorem 7.3 that 2|k, if and only if deg ged(vy (), v} (z)) > 0.
This completes the proof of Theorem 7.1.

Theorem 7.4.  Let p be an odd prime and ¢ = 2. Then, among the divisors of
™ + 1 in Folz|, there exists a unique monic polynomial wy(x) such that

Ker wy(A) = {y € Fy; V&(y) € Ef},

where wy(x) is a divisor of ged(vy(x), v} (x)) and v + 1 1 w,(x). And the 2-rank of

rvn

E;}/C} is equal to the degree of wy(x).

Remark 7.5.  wy,(x) is not necessarily equal to ged(vy, (), v (x)). As an exam-

r n

ple, we have vy, (x) = (23+2+1) (23 +22+1) = ged(vn(2), v (2)) and wy, (z) = 22 +22+1
for p =4327.

Corollary 7.6.  Let m be a divisor of n. Then, among the divisors of ™ + 1 in
Fox], there exists a unique monic polynomial wy,(x) such that

Ker w,,(A) = {y € Fy"; /{(y) € Ek,, }.

Here wy, () is a divisor of ged(vp, (x), v}, (x)). It satisfies wy, (x) = ged(wy, (x), 2™ + 1)

rYm

and x + 1 { wy,(z). The 2-rank of Ek, [Ck,, 1is equal to the degree of wy,(z).

In case ¢ = 2, w, again dominates all the w,, for the proper divisors m|n by
Corollary 7.6. On the other hand, w,(z) does not have x + 1 as a divisor in case { = 2.
This is quite different from the fact  — 1w, (x) in case £ > 2.
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Proof of Theorem 7.4  For the simplicity, we put £ = E;Q and C' = C’;{T. Suppose
that 2|h}. Since E? N C C Eg), we have Kerw,(A) C Kerwv,(A) by Theorem 7.3.
It follows from Proposition 3.4 that w,|v,. Similarly Kerw,(A) C Kerv}(A) implies
wp|v}:. Therefore w,, is a divisor of ged(vy,, v)). We denote by (E/C)y the 2-clementary
subgroup of E/C. Then, in a similar way as in Theorem 5.3, we have

(E/C)2 ~ E*NCJC? ~ Ker w,(A).

We notice that Z;:ol ¢; = 1(mod 2) implies (1,1,...,1) € Kerv,(A) and = + 1 t v,(x),
so Kerw,(4) NN = {(0,0,...,0)}. Therefore we have x + 11wy, (z) and

2-rank (E/C)y = dimy, Ker w,,(A) = deg w,.
This completes the proof of Theorem 7.4.

In the case ¢ = 2, Theorem 7.4 shows that ged(v,(x), v (x)) plays a role as an

rrn

approximate polynomial w, (x) of w,(z). Thus, for each factor of ged(v,(z), v} (z)) in

Fy[z], we examine whether it is a factor of wy,(x) by Proposition 5.1 and the following

Proposition 7.7.  Let p be an odd prime. Let K, be the subfield of Q((pr)™ of
degree m. Let £ be a unit of K,,. Suppose that Q(&) = K,,. We denote by g(z) the
minimal polynomial of & over Q. Then /€ € K,, if and only if g(z?) has a unique
irreducible factor h(z) in Zlx] of degree m such that g(x?) = (—1)™h(x)h(—x).

The proof of Proposition 7.7 is same as one of Proposition 6.3. So we omit it.

Remark 7.8.  In the case £ =2 and r = 1, Bentzen [1] calculated the polynomial
wp (x) for p < 6000. Our calculation of wy(x) was done for p < 10000 and it coincides
with his table for p < 6000.

Example 2. Let p = 7687,/ = 2 and r = 1. Then n = 3843 and v,(x) =
ot 4+ 210 4 2% + 23 + 1. So we have ged (v, (2), v (z)) = 22 + 2+ 1 € Fa[z]. Now g =6
and eg = (C® —(¢79)/(C—¢71) = ?7(()2) + 775?27 + 774(@15, where ¢ = (7687 and n§2) is the
Gaussian period of 2 terms. Since p,, = pg3, we must consider the cyclotomic units in
Kgs. But it suffices to consider the cyclotomic units in K3 because x2 + z + 1|.71:3 +1in

IFQ [il’}] So

€0 = Nowoy+ /x, (€0) = 1232950453533095368675°°°>) + 118931742316119858677>"°

+1228629425811080184172°%%

(2562)

where n, is the Gaussian period of 2562 terms.
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Now, since w,, () | ged (v, (z),v%(x)), we may examine whether h(z) = 22 +x + 1

is a factor of wz(x) = wy(x). Then a(x) = (z3 — 1)/h*(x) = —1 + x, so that a =
®(a(x)) = (1,1,0). Hence we have

¢(a) = &6 = —114579034093582°%%) — 1105255923587 {2702 — 1141764455621 >

We calculate the minimal polynomial g(x) of £(a) over Q. Then
g(x) = —1 + 365089730250537413942 — 33928107201322 + z°.
Therefore we have
g(z?) = (=1 + 6042265554z — 5927612 + 2°)(1 + 60422655542 + 59276122 + x°),

which shows that wagaz(r) = ws(x) = 2 + 2 + 1, so that 2-rank of Fiyg,/Crygr is 2.

8§ 8. Numerical results

We here treat with Q(¢,)" (r = 1) and tabulate all the non-trivial polynomials
wy, () for the pairs (¢, p) in the range 2 < £ < 10%, 3 < p < 104, and £ # p except the one
case (£,p) = (131,7411). The number of non-trivial polynomial w, (z) is 345 in all. For
this exceptional case denoted by T in the table, we can obtain w,(x) = (z — 1)(x + 31),
but we can not determine wy(z) = (x — 1)(z + 31). We recall that the triviality of
wy () means wy,(x) = x —1 for £ > 2 and w,(z) = 1 for £ = 2 respectively. In the table
we denote by m the least divisor of n such that p,, = p,, where p,, = degv,(z) — 1 or
pn = deg v, (z) according as ¢ > 2 or £ = 2. We notice that w,(z) is trivial for the pair
(4, p) lying in above range and not appearing in the table. Hence, if there exists an odd
prime p < 10* such that (¢,p) does not appear in the table for every ¢ < 10, then h;
has no prime divisors < 10*. The number of such odd prime p < 104, p # 7411 is 925
as against the number of all odd primes p < 10* is 1228.

First we used three personal computers for about 270 hours to calculate approx-
imate polynomials w,(x) in 2000. We used a program which was written in C with
inline-assembler. Each PC consisted on Pentium 3, 800 MHz with 512 MB memory.
Second we used a personal computer(Pentium 4, 3.2 GHz with 1 GB memory) for about
6 hours to calculate w,(z) from w,(z) a few years later. We used a Mathematica pro-
gram named “nt003-44”. However, by working only nt003-44, we could not obtain all
the wy,(z) with one exceptional case (¢,p) = (131,7411). In fact, for the following 28
pairs, since the coefficients of a defining equation g(z) of £(a) are very huge, i.e., ex-
ceeding 5000 digits, we could not find an irreducible divisor h(z) with degree m of g(z*)
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by nt003-44:

(£, p) = (23, 4049), (29, 5209), (29, 9689), (31,8431), (37, 3433), (47, 829), (61, 3121),
(61,6361), (67,8713), (71,953), (73, 5581), (73, 9857), (79, 4603), (97, 4481),
(97,6337), (101, 5701), (109, 7417), (109, 8017), (113, 8317), (113, 9521),
(131,7411), (151,3301), (211, 1231), (313, 6577), (421, 7841), (541, 9551),
(883,3547), (1451, 5051).

For these 27 pairs excluding (131,7411), we used the Chinese Remainder Theorem
for the coefficients of g(z%) in additon to nt003-44, and determined the coefficients of
h(z) and checked that h(z) divides g(z%). We could therefore obtain w,, () in above 27
cases. For the case (¢,p) = (131,7411), we could not obtain g(z) itself, so we could not
adapt the Chinese Remainder Theorem for it to get wy,(z).
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Table of the non-trivial polynomials w, (x) for p < 10* and ¢,2 < ¢ < 10*

L p| m | wn(x) l p| m | wn(z)

2| 163 3| +a+1 214801 [ 6| 22 +a+1
2| 277 6 | ®+x+1 215197 | 6| 2°+z+1
2| 349 6 | (2> +2x+1)? 2| 5479 | 3 | 2+ x+1
2 | 397 6 | ®+x+1 2156531 7| 2+x+1
2 | 491 712 +z+1 215659 | 3| 224+x+1
2 | 547 3| +ax+1 215779 | 3| 2*+xz+1
2 | 607 3| +ax+1 21593 | 3| 2°+z+1
2| 709 6 | (2 +z+1)° 216037 | 3| 2®+x+1
2 | 827 72 +ar+1 216079 | 3| z2+x+1
2| 853 3|22 +z+1 216163 | 3| z2+x+1
2 | 937 3|22 +z+1 216247 | 3| 22 +z+1
21 941 | 10 | z2*+ 22 +2>+2z+1 1] 26301 | 7| 23+x+1
211009 | 63 | 22+2+1 216553 |21 | 2°+x+1
2 | 1399 3| 2 4+z+1 216637 | 3| z24+x+1
2 | 1699 3| 2 4+z+1 216709 | 3| z24+x+1
2 | 1777 6 | 22 4+x+1 216833 | 7| 23+22+1
2 | 1789 6 | 22 4+x+1 217027 | 3|22 +z+1
2 | 1879 3| 2 4+z+1 217297 | 6| 22 +z+1
2 | 1951 3| 2?2 +z+1 217489 | 3 | 2®+xz+1
2 | 2131 3| 2?2 +z+1 217589 | 7|22 +z+1
2 | 2161 5| at+ 23+ +x+1 (2739 3| 224+x+1
212311 | 21| 22+2+1 21 7687 | 63 | 22 +ax+1
2 | 2689 3| 2®+x+1 217841 | 7| @ +a+1)(2®+22+1)
2 | 2797 6 | 22 4+x+1 21787 | 3| z*4+ax+1
2 | 2803 3| 2 4+z+1 217879 | 3| z24+ax+1
2 | 2927 7Tl 23 +ar+1 21811 | 3| 2>+z+1
2 | 3037 6 | > +x+1 218191 |63 | 22 +zx+1
2 | 3271 3| 2?2 +z+1 21809 | 3| 22+z+1
2 | 3301 5| at+ a3+ +x+1( 2829 3| 224+x+1
2 | 3517 3| 2 4+z+1 21847 | 3| 2> +z+1
2 | 3727 3| 2 4+z+1 218731 3| 2°+z+1
2 | 3931 5| at+ 23+ +x+1( 28831 5| at+ad+22+x+1
2 | 4099 3| 2 4+z+1 218887 | 3| z24+ax+1
2 | 4219 3| 2?2 +z+1 219109 | 6| 2> +z+1
2 | 4261 6 | (22 +z+1)2 21928 | 3|22 +2+1
2 | 4297 6 | (22 +2+1)? 219319 | 3| 2®+x4+1
2 | 4327 7Tl 23+ +1 219337 | 3| z24+x+1
2 | 4357 6 | 22 4+x+1 219391 | 3| 2> +z+1
2| 4561 | 30 | (#* +z+1)2 219421 | 6 | 2 +2+1
2 | 4567 3| 2 4+z+1 219601 | 3| 2>+z+1
2 | 4639 3| 2 4+z+1 219649 | 6 | 2> +z+1
214789 | 126 | 2?2+ x+1 219721 | 3| 22 +z+1




PRIME DIVISORS OF THE CLASS NUMBER AND CHARACTERISTIC POLYNOMIALS

L p| m| wy(z)/(x—1) L p| m| wpy(x)/(x—-1)
3] 229 2| x+1 3 | 5741 2 | z+1
31 257 | 2| z+1 3 | 5821 2 | z+1
3] 401 | 8| 2242 —1 3 | 6053 2 | z+1
3| 521 (26| 2 +a>—2+11 3| 6133 6| xz+1
3] 641 | 40 | 224+ 2 —1 3| 6637 6 | z+1
31 73| 2| z+1 3| 6737 41 2241
31 71| 2| z+1 3| 6997 2 | z+1
311129 | 6| z+1 3| 7057 6| z+1
311229 | 2| z+1 3 | 7481 2 | z+1
3113713 2| z+1 3| 7537 2 | z+1
311489 | 6 | z+1 3| 7573 6 | z+1
311901 | 2| z+1 3| 7673 2 | z+1
312089 | 6| xz+1 3| 7753 2 | z+1
312213 2| xz+1 3| 7873 6 | (z+1)°
312557 | 6| x+1 3| 8017 2 | z+1
312677 2| z+1 3 | 8069 2 | z+1
312713 | 6| z+1 3 | 8297 4| 22 +1
31273 8| z2—x—1 3| 8581 | 858 | z+1
312777 | 4| z+1 3 | 8597 2 | z+1
31287 | 6| x+1 3| 8713 6 | z+1
312017 | 6| z+1 3 | 8761 6 | (x+1)2
313137 | 2| z+1 3 | 8837 2 | z+1
313221 2| z+1 3| 9133 2 | z+1
313220| 2| z+1 319281 | 40 | z+1
313877 | 2| z+1 3 | 9293 2 | z+1
31389 | 6| x+1 319413 | 26 | (x4+D(2® +2* —x+1)
314001 | 40 | z+1 3 | 9697 4| 2241
34241 | 4| 22 +1 3| 9749 2 | z+1
314409 | 2 | z+1 3 | 9833 2 | z+1
3| 4481 | 40 | z+1 51 401 | 20 | z+1
314493 | 2| z+1 5| 457 4| z—2
314597 | 2| z+1 5| 641 4| z—2
314649 | 2 | z+1 5| 857 4| xz—2
314729 | 2| z+1 51 977 4| xz—2
314933 | 18 | z+1 5 | 1093 2 | z+1
315081 | 2|x+1 5 | 1297 8 | 22 —2
31521 | 2| z+1 5 | 1429 2 | z+1
315281 | 6| xz+1 5 | 1873 8 | 22 -2
315207 | 2| z+1 5 | 2081 2| z+1
315333 2| z+1 5 | 2153 2 | z+1
315477 | 2| z+1 5 | 2473 4| z—2
315521 6| xz+1 513121 | 20| z+1
35641 | 4| 22 +1 5 | 3181 2 | z+1
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L p| m| wp(x)/(x—-1) L p| m| wn(z)/(x—1)
5 | 3253 2|1 z+1 7 | 2437 3| x—2
513697 | 4| x42 72557 | 6| (z—2)(x—3)
5 | 4073 4| x+2 7| 2917 6 | z—3
5 | 4357 2|1 z+1 7| 3217 3| x—2
514441 | 12 | (z + 1)(z —2) 7|3313| 6| 2—3
5 | 4457 4| x+2 71 3571 3| z+3
5 | 4657 4| x+2 7 | 4219 3| z+3
5 | 4793 4| x+2 7 | 4229 2|1 z+1
5 | 4889 4| x+1 7 | 4339 3| z+3
5 | 4937 4| x+2 7 | 4597 6 | z—3
5 | 4993 24 | x+2 7| 4783 3| x—2
5 | 6113 2|1 x+1 7 | 4861 6 | x+2
56449 | 104 | x + 2 7 | 5273 2|1 xz+1
5 | 6481 24 | x+1 7 | 5417 2|1 xz+1
5 | 6521 4| x+2 7 | 5953 6| x+3
5 | 6949 2| z+1 7 | 6037 6 | xr—3
5 | 7229 2| z+1 7| 6709 6 | xr—3
5 | 7529 4 | z+2 7 | 6991 3| x—2
5173 12| (z+2)(@?+z+1) | 7]6997 | 6| z—23
5 | 7817 2|1 x+1 717057 | 84 | x+1
5 | 8161 12 | 42 717351 | 21 | x—2
5 | 8297 4 | z—2 77489 | 48 | x — 2
5 | 8377 4 | z+2 7| 7621 3| x—2
5 | 8501 10 | z+1 7 | 8017 6 | x+2
5 | 8689 24 | x+1 7| 8287 3| x—2
5 | 9161 4| x+2 7 | 8563 3| x—2
5 | 9181 10 | z+1 7| 8629 6 | x—2
5 | 9377 4 | z+2 7 | 8893 6 | x+2
5 | 9601 20 | z+2 71 9013 6 | x+2
5 | 9829 2|1 x+1 7 1 9029 2|1 xz+1
7 313 3| xz—2 7 1 9049 6| x+1
7 977 6 | xz+1 7| 9133 6 | xr—3
71 817 | 6| (z+2)(z—2) 719277 | 3| z—2
7 | 1009 6 | xz+1 71 9319 3| x+3
7 | 1069 6 |xz—3 7| 9421 6 | xr—3
7| 1129 6| x+3 71 9613 6 | x+2
7| 1381 6 |xz—3 719697 | 24 | x—2
7 | 1567 3| x+3 11 191 5| x—5
7 | 1601 2|1 x+1 11 631 5 | x4+ 2
7 | 1831 3| x—2 11 641 | 40 | x— 4
711889 | 16 | 2 —xz—1 11| 821 |10 | z+3
7 | 1987 3| xz—2 11 | 1297 2| x+1
7 | 2029 2|1 x+1 11 | 1861 5| x—5




PRIME DIVISORS OF THE CLASS NUMBER AND CHARACTERISTIC POLYNOMIALS

L p| m| wy(z)/(x—1) L p| m | wn(z)/(x—1)
11 | 2351 5| z—4 19 4591 9| xz+3
11 | 2381 | 10 | =+ 3 19 5557 3| xz+8
11 | 2621 | 10 | = — 2 19 8017 3| xz+8
11 (3001 | 10 | (@+2)(w+4) | 19| 8389 | 6| z+7
11 | 3581 5| x—4 23 4049 22 | —10
11 | 4201 5| z—3 23 5413 11 | -3
11 | 5101 | 10 | =+ 4 29 5209 28 | x—4
11 | 5441 | 10 | # — 2 29 6257 4| 412
11 | 5501 | 55 | x —4 29 9689 28 | z+3
11 | 6581 | 10 | = — 3 31 5119 3| xz+6
11 | 8681 | 10 | = — 2 31 5437 6 | x+5
11 (9421 | 10 | (w+2)(w+5) | 31| 8431 | 15| 2 —14
13 | 1063 3| x+4 31 9001 10 | z+2
13 | 1459 3| x+4 31 9127 3| x—5
13 | 2617 4 | x+5 31 9907 3| z+6
13 | 3041 41 z+5 37 2113 12 | z -8
13 | 3469 6| z—4 37 3433 12 | z —14
13 | 4729 | 12 | = + 2 37 7561 6 | z—11
13 | 5827 3| x+4 37 8269 3| xz—-10
13 | 6073 | 12 | 46 41 2417 8| x+14
13 | 6229 6 | z+3 41 6421 10 | .+ 10
13 | 6529 | 12 | =+ 2 41 7937 4| z-9
13 | 6781 6| x+3 47 829 46 | =+ 4
13 | 7333 6| x+3 61 3121 20 | 428
13| 7369 | 12 | 2 —6 61 6361 60 | z438
13 | 8101 2 z+1 67 8713 33 | x —26
1319241 | 84 | = — 3 71 953 7| x—32
17 | 1697 4 | z+4 73 5557 6 | xz—9
17 | 2417 4| z—-4 73 5581 9| xz—-16
17 | 4817 8| xz—2 73 9511 3| z+9
17 | 6577 4| z—-4 73 9857 8 | x+22
17 | 6673 8| xz—2 79 4603 39 | x —25
17 | 6961 8| xz—2 97 | 4481 32 | x —28
17 | 9041 4| z—-4 97 6337 48 | =+ 25
17 | 9817 4| z—-4 101 5701 10 | z—6
19 | 1153 | 72 | =+ 3 109 7417 12 | z +41
19 | 1459 9| z—-6 109 8017 12 | z -8
19 | 1489 3| x+8 113 8317 14 | =+ 28
19 | 2659 3| z—T7 113 9521 28 | 42
193313 9| 2—7 1317 | 74117 | 65 | x4 31
19 | 3529 | 18 | = +8 151 3301 | 150 | = —4
19 | 3547 9| z+8 211 1231 15 | 2+ 77
19 | 4177 | 18 | = +4 313 6577 8 | x—125
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[1]
2]
3]
[4]
[5]
[6]
[7]
(8]

[9]

[10]
[11]
[12]
[13]
[14]

[15]

YouicHl KOYAMA AND KEN-ICHI YOSHINO

L p | m| wy(z)/(x—1) L p | m | wy(z)/(x—1)
421 | 7841 5 | z+ 142 883 | 3547 | 9 | = — 286
541 | 9551 5 | z—124 1451 | 5051 5 | 4430
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