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Local units are generated by certain cyclotomic units

By

Masanori ASAKURA*

§1. Introduction

Let H be a finite unramified extension of Q, and Op the ring of integers. Put
Gn = Gal(H((pn)/H) and G := limG,,. Let

ZpllG]] := lmZy|G]
be the Iwasawa algebra. Letting qi be the order of the residue field of H, we denote
the group of (qi — 1)-th roots of unity in H by up. Note that uy is equal to the group
of all roots of unity in H if p > 3, but not equal if p = 2. In what follows we fix a
generator (Cpn)n € Zp(1). Let
Uy = lmOy[Gr]™,  Upy = limUy /p"

where the limit in the former is taken with respect to the norm maps. We call Uy the
group of local units. There is a natural inclusion Z,(1) — Ugy.

For n € pug — {1} we put

(1.1) C(n) := (1= n**" Cpn)ns>1 € Un

and call it the cyclotomic unit. Let H'/H be a finite unramified extension. The norm
map for H'/H induces a map Ny g : Ugr — Ug. For ' € pp, we have C(n') € Uny
and hence the cyclotomic unit Ny /yC(n') € Ug(r — 1).

Recently I proved the following result to fix a mistake in my paper [1].

Theorem 1.1 ([2] Theorem 2.2).  Suppose p > 2. Then we have

(1.2) Un=2,1)+ Y  ZllGINuyu(C))

H/,UIGMH/ _{1}
where H' runs over all finite unramified extensions of H.
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After I talked at the RIMS symposium ”Algebraic Number Theory and related
Topics”, people asked me whether one really needs H' 2 H in the summation. The

answer is “Yes” for example when p = 3 and H = Q,. However when p > 5 the answer
is “No” :

Theorem 1.1 bis. Suppose p > 5. Then we have

(1.3) Un=2Z,(1)+ Y Z[[GlC().

nEpm—{1}

In this article we give a proof of Theorem 1.1 bis together with a survey of the proof
of Theorem 1.1. We will give an application of Theorem 1.1 bis to p-adic L-functions
in §4.

Iwasawa’s theorem asserts that the cyclotomic units are related to the p-adic L-
functions. More precisely the characteristic ideal of the group of local units modulo
“cyclotomic units” is generated by p-adic L-function (cf. [3] 4.4.1). In our discussion
we take into account C((p—1) etc. as cyclotomic units even when H = Q,,, though they
do not appear in the above sense. That is why I put “certain” in the title.

§2. Survey of Proof of Theorem 1.1

We recall the proof of Theorem 1.1 in case p > 2 from [2] (we omit the case p = 2
since the argument is slightly different).

_ ~x(o)

Let x : G — Z, be the cyclotomic character defined by o ((pn) = (pn . We write

o, =X !(a). We choose an isomorphism of topological Of-algebra

p—1 times
(2.1) o : Oy[[G]] = Ox|[T]] x - - x Oy [[T]]
which is uniquely determined by
(2.2) P(o14p) =T +1+p,---, T+1+p),
(2.3) (o) = (0% -+, pP~Y)  for Pt =11

We denote by kg := Op/pOp the residue field and put k% := ker(Tr : kg — FF,,) the
kernel of the trace map.

§2.1. Step 1: Coleman’s exact sequence and Nakayama’s lemma

Put by Ugyel the right hand side of (1.2). We want to show Ug = Ucya. A key tool
in the proof is Coleman’s exact sequence

(2.4) 0 — Z,(1) 25 Uy = 0g[[G]] 22 Z,(1) — 0
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of Zp[|G]]-modules ([4], see also [3]). Here the map ¢; is a natural inclusion. The map
iz is the composition of the trace map Try g, : On[[G]] — Z,[[G]] with the Z,-linear
map Zy[[G]] — Z,(1) such that o4 — ((fn)n>1. The map lo, will play an important
role below (see [2] §2.1 for the definition).

Thus it is enough to show ®loo (Unr) = Plog (Ueyel). Since the both sides are Z,[[T] x
-+ X Zp|[T]]-modules, it is enough to check it on each component

(2'5) piq)loo(Ucycl) - pzq)loo(UH) 1< Vi < b—= 1

where p; : Og[[T]] X -+ x Og[[T]] — Og|[[T]] is the i-th projection.

Since Uy is a finitely generated Z,, [[G]]-module (which follows from (2.4)), pi®loc(Usr)
and hence p; ®loo (Ueycr) are finitely generated Zy[[T']]-modules. One can apply Nakayama’s
lemma to (2.5), and thus the assertion is reduced to show the following.

Claim 2.1. piq)loo(Ucycl) Qz,[[1T1] F, = Pi®Ploo(Un) Q7 [[1]] F, for1 <Vi<p-1.
We note that there is an isomorphism

K, ® ky /KT i=1
kn 2<i<p-—1

I

(2.6) Pi®leo(Un) Rz, (1)) Fp

by (2.4) (the choice (2.2) is crucial in the above description).

§2.2. Step 2 : p-adic polylogarithm
We want to show Claim 2.1. The following is a key formula (see [2] (2.20)):

(2.7) PPl (N yuC' r=(14p)i—(14p) = —Terr/m lgp_)j(n/) for j =4 mod p — 1.

Here [(P)(2) is the p-adic polylog. The congruence relation

n

(p) — 1 n m
(2.8) L7 (n) = T Z — mod p"On, m2>1

1<n<p™Mm-—1
(n,p)=1
is well-known (cf. loc.cit. (2.17)). Let us rewrite Claim 2.1 more explicitly. If 2 <4 <
p — 1, it follows from (2.7) and (2.8) that one can rewrite Claim 2.1 in the following
way:

Claim (A) Suppose 2 <i < p—1. Then the following elements
p—1 /

1— ()P = n'~

=1

3

generate kg as Fp-module.
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The case 7 = 1 is more delicate. Let us write
PPl (C(1') = qo(n') + u(n)T + - -+ in O [[T]],

P1®loc Ny yuC (') = Try yuqo(n') + Teppr ypaqr ()T + - - in Oy [[T7).
Again by (2.7), one can show the following ([2] Lem. 2.7):

—1 —()?

2. ! == — /

(2.9) (") [ gy € O,
(2.10) o) — par (') = —1%, (') mod p*Opp,
2.11 T =T 1) (o d p7Z
(2.11) pTrg,a0(n') = Trgeyg, i, (n')  mod p~Z,

((2.11) follows from (2.9) and (2.10) together with the fact Trg /g, qo(n’) = 0). Claim
2.1 in case i = 1 is equivalent to say that p1 Ploc(Ucycl) — G @ kg /YT =2 Y @ F, is
surjective, and it is explicitly written in the following way:

Claim (B) The following elements

/ /
-1 ()"
Trg g (1 — . (U')p> mod pOp
generate kY, as F,-module. Moreover there are some n; € ug — {1} and a; € Z,
such that

—n_ —(m)” \ _

and

Zai (%TrH//Qp(ly)_)p(ng))) #0 mod pZ, (cf. (2.8)).

§2.3. Step 3 : Claims (A) and (B)

The proof of Theorem 1.1 is reduced to show Claim (A) and Claim (B) in the
previous section. The proof of Claim (A) is easy and we use only the set ug — {1} to
supply generators of kpy ([2] Prop.2.6).

The former part of Claim (B) is trivial and we do not need H’ either. The latter part
of Claim (B) is the technical heart. The proof can be seen in [2] Prop.2.8 which is about
3 pages long of quite elementary calculations. There we need to assume [H' : Qp] > 2
to find n,. If H # Q, then one can take H' = H so that we do not need H' in the
summation in (1.2). However if p = 3 and H = Q,,, then we do need H’ to show Claim
(B) (see Remark after Claim (C) below).
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§3. Proof of Theorem 1.1 bis

As we have seen in the previous section, we may assume H = Q,. Then all we have
to do is to show the latter statement of Claim (B) without H’, namely

Claim (C) Suppose p > 5 and H = Q. Then there is some n € ug, — {1} such that

1
, l;(lp_)p(n) #0 mod pZ,.

Remark. The above is no longer true if p = 3. In fact, one has

0+ 2%% + 4% + 5%° + " + 8%°
3(1—1n°)

by the congruence relation (2.8). Since p = 3, n must be —1 and then the right hand

mod 3

1
5 15m)

side vanishes.

Proof of Claim (C). Recall from (2.8) the congruence relation

1 nk
1P () = T Z = mod p°Z,.
k

where k runs over the integers such that 1 < k < p? —1 and (p, k) = 1. Put
() =) o € Lolal.
k
Then I*(n) = (1 — np2)l£p) (1) mod p?. We want to show I§ (1) # 0 mod p* for some
n# L1 Since 5(n) = 2025 S5y 07T = (S a?)(Zj21 ) = 0, we may switch
1op(z) with If_ () — I5(x). Let

p—1 _
@)=Y %xk € Zjal.
k

Then I7_,(z) — l5(z) = pl(z). Thus it suffices to show

(3.1) ()20 modp for somen #1,
equivalently
(3.2) I(lm)#0 modp forsome2<m<p-—1.

Let I(z) be the image of I(z) via the natural map Z[z] — Fp[z]/(zP~! — 1). Write

l(z)=co+crx+--+cpox?P? (c; €Fp).
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Then

I[lm)=0modp for2<Vm<p—-1&liim)=0 for2<Vm<p-1

< Cp=C =""=Cp_2.
We will show that this is impossible.

Lemma 3.1.
p—1 p—1
—1
(3.3) o= Y ——) -1
i=1 p

wlo1 =
(3.4) ch=cot—————= "2 1<k<p-2
p =1

k=1, . . :
where the sum Y| 7 is zero if k =1 by convention.

Proof.
- p—1lp—1 ,. - \p—1 1 .
)= S5 U 2L iy
i=1 j=0 p
p—1p—1 ,. . _
D) PRI
i=1 j=0 p
p—1p—1 -1
= (Zp -1 ip—2]) it
i=1 j=0 p

where the last equality follows from (i + jp)P~! = iP~! — pi?~25 mod p2.

.p_l_l
- T )

i+j=p—1, 2(p—1)

:jé (“HT” — P2 (p—1 —i)> + ((p_ 1);_1 - 1)> .

The second term is zero (modulo p). Noting Zf:_ll iP=2 = 0, one has

p—1 p—1 1 p—1 p—1 1
w=y (e ) =3 () -0

i=1 =1



LOCAL UNITS ARE GENERATED BY CERTAIN CYCLOTOMIC UNITS 189

Let 1 <k <p-—2. Then

SR I G )

i+j=k, p—1+k

Zk: (Zp_l—_l —ip_Q(k—i)) +§: (ZP_IT_l — P 2(p— 1+k—i)>

p

—

1=1 i=k
p—1 p—1 1 k‘p_l 1 p—1

=> (Z— — P 2(k — i)) +—— ) (P2 (p-1)).
=1 p p i=k

Noting Zf:_ll i?P=2 = 0, the first term is equal to ¢y and the third term is equal to
— S 1iP=2. Thus one has (3.4). 0

Lemma 3.2. There is some 1 < k < p — 2 such that

lo1 &
CL — Co = ——Zip_27‘é0 mod p.
p i=1

Proof. Let B;(x) be the Bernoulli polynomial

m o0
m i r x
Bm(x) ::Z(i>Bix S | —ZBZﬁ.

=0

As is well-known, (B, (k) — By,)/m =142""1+... 4 (k—1)™"1! for an integer k > 1.
Put

a(x) =

= | =

( i —i)) - B8 Pont ¢ g2l

i=1 p

The degree of a(x) is p — 1 and the leading coefficient is 1/(1 — p). We have
kp_l 1 k—1
alk) = ——— — Zip_Q
p i=1

for 1 <k < p—1. Now suppose that a(k) = 0 mod p for all 1 < k < p — 2. Since
a(p —1) = 0 mod p, a(z) mod p has roots x =1,2,--- , (p — 1), which means
(3.5) a(z)=2P"' —1 mod p.

This is impossible. In fact a direct calculation shows

zlill(l’ —i) = e %p(p - 1)331’—2 + (é]ﬂ( — 1)2 _ %p(p —1)(2p — 1)> P34
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Therefore one has

1

1 —1
a(r) = (—Ewp_Q + Exp_g’ -I-) + (xp_l +(p—1)ByaP™2 + (p 5 >BQQ;P—3 T )

1
Exp_l—l—zxp_g’-l---- mod p
which contradicts (3.5). O

Lemmas 3.1 and 3.2 implies that there is some k such that ¢y Z ¢ mod p and it
proves (3.2). This completes the proof of Claim (C) and hence Theorem 1.1 bis.

8§4. Application to special values of p-adic L-functions

Let L, (s, x) denote the p-adic L-function which is characterized as a p-adic analytic
function on Z, such that

(4.1) Ly(1—r,xw") =1 —-x@p HLA-r,x), >0

where L(s,x) is the Dirichlet L-function and w : (Z/p)* — Z, is the Teichmiiller
character. Due to Iwasawa’s theorem, for each 1 < i < p — 1 there is a G,,:(T) €
FracOpg[Imagex][[T]] such that

(4'2) wai(l +p)r - (1 +p)) = _Lp(l - sz’) (T € Zp)'

(Note that if xw" is odd then G, = 0 as Ly(s,xw’) = 0.) On the other hand let
F,§” (T) = pi®loo(C(n)) € Oy|[T]] for n € pg — {1}. As we have seen in (2.7), we have

F,gi)((l +p)Y —(1+p) = —lgp_)j(n) for j =4 mod p — 1.

The p-adic polylogarithms are expressed as p-adic L-functions and vice versa. Therefore
F#) (T') are expressed as a linear combination of G,,: (T') (see [2] (2.16) for details). Thus
Theorem 1.1 bis implies the following (cf. loc.cit. Rem. 2.3).

Theorem 4.1.  Suppose p > 5. Then we have

Og|[T]] 2<i<p-1

XX: Zoltmage XN ()23 00 o i =1

where x runs over all Dirichlet characters whose conductors are divisors of fug = qu—1.

As a simple consequence, one has the following: For each 2 < i < p — 1 there
exists at least one Dirichlet character x whose conductor is a divisor of p — 1 such that
G i (T) is a unit in Z,[[T]], in other words, G, i (L +p)" — (1 +p)) = —Ly(1 — 7, xw")
is not divided by p for any r € Z,,.
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