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On localizations of the characteristic classes
of /-adic sheaves of rank 1

By

Takahiro TSUSHIMA®

Abstract

The Grothendieck-Ogg-Shafarevich formula is generalized to any dimensional scheme by
Abbes-Kato-Saito in [KS] and [AS]. In this paper, we introduce two methods of localization of
the characteristic classes for sheaves of rank 1 and compare them. As a corollary of this compar-
ison, we obtain a refinement of a formula proved by Abbes-Saito in [AS] without denominator
for a smooth sheaf of rank 1 which is clean with respect to the boundary.

§1. Introduction

The Grothendieck-Ogg-Shafarevich formula is a formula calculating the Euler-Poincaré
number of an f-adic sheaf on a curve. A. Abbes, K. Kato and T. Saito generalized
this formula to any dimensional case. To generalize this formula K. Kato and T. Saito
define the Swan class which is produced by the wild ramification of an f-adic sheaf
using logarithmic blow-up and alteration in [KS]. This invariant realizes a deep insight
of S. Bloch that the ramification of a higher dimensional arithmetic scheme produces
a 0-cycle class on its boundary. K. Kato and T. Saito calculated the Euler-Poincaré
number of an f-adic sheaf on any dimensional scheme in terms of the Swan class in [KS].
A. Abbes and T. Saito refined this result using the characteristic class of an /-adic sheaf
in [AS]. They compared the characteristic class with two invariants produced by the
wild ramification. One is the Swan class mentioned above. We call the comparison of
the characteristic class with the Swan class the Abbes-Saito formula. The other is the
0-cycle class ¢ defined by Kato in [K1] for a smooth A-sheaf of rank one which is clean
with respect to the boundary where A is a finite commutative Z;-algebra. We call the
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comparison of the characteristic class with the Kato 0-cycle class the Abbes-Kato-Saito
formula.

We prove a localized version of the Abbes-Saito formula in [T] assuming the strong
resolution of singularities, which is a refinement of their formula. We call this formula
the localized Abbes-Saito formula. We use the localized characteristic class of an f-adic
sheaf to formulate it. The localized characteristic class is a lifting of the characteristic
class to the étale cohomology group supported on the boundary locus and is defined
in [AS, Section 5]. As an application of the localized Abbes-Saito formula, we proved
the Kato-Saito conductor formula in characteristic p > 0 in [T]. This was the main
motivation to consider the localized characteristic class and the main application of the
localized Abbes-Saito formula. At the conference, I reported these results.

In this paper, we study two methods of localization of the characteristic classes for
sheaves of rank 1. To refine the Kato-Saito conductor formula in characteristic p > 0
is the main purpose to consider these localizations. For this purpose, first we define a
localization of the characteristic class as a cohomology class with support on the wild
locus in Section 2 using logarithmic blow-up, and we call it the logarithmic localized
characteristic class.

Recently T. Saito introduced a notion of non-degeneration of a A-sheaf in [S]. This
notion is a natural generalization of the notion of cleanness of a A-sheaf of rank 1 defined
by K. Kato to higher rank. He calculated the characteristic class of a smooth A-sheaf
which is non-degenerate with respect to the boundary.

In Section 3, we define a further localization of the characteristic class as a coho-
mology class with support on the nonclean locus for a smooth A-sheaf of rank 1 inspired
by an idea of T. Saito in [S]. We call it the nonclean localized characteristic class of
an f-adic sheaf. Our main theorem (Theorem 3.8) in this paper is the comparison of
the logarithmic localized characteristic class with the nonclean localized characteristic
class. As a corollary (Corollary 3.10), we obtain an equality of the logarithmic localized
characteristic class of a A-sheaf of rank 1 which is clean with respect to the boundary
and the Kato O-cycle class in the étale cohomology group supported on the wild locus
without denominator. This equality refines the Abbes-Kato-Saito formula mentioned
above.

I would like to thank Professor T. Saito for introducing this subject to me, suggest-
ing that there exists a cohomology class with support on the wild locus which refines
the characteristic class, encouragements and so many advices and thank the referee for
many comments on an earlier version of this paper.

In this paper, k£ denotes a field. Schemes over k are assumed to be separated and
of finite type. For a divisor with simple normal crossings of a smooth scheme over k, we
assume that the irreducible components and their intersections are also smooth over k.
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The letter [ denotes a prime number invertible in k and A denotes a finite commutative
Z;-algebra. For a scheme X over k, Let Kx denote Rf'A where f : X — Speck is
the structure map. If f is smooth, the canonical class map A(d)[2d] — Kx is an
isomorphism by [AS] (1.8). When we say a scheme X is of dimension d, we understand
that every irreducible component of X is of dimension d.

§ 2. Logarithmic localized characteristic class of a smooth A-sheaf of rank
1

In [T], we define a localization of the characteristic class of a smooth A-sheaf of any
rank as a cohomology class with support on the wild locus which we call the logarithmic
localized characteristic class. In this section, we introduce a more elementary definition
of the logarithmic localized characteristic class of a smooth A-sheaf of rank 1.

Let X be a smooth scheme of dimension d over k, U C X an open subscheme, the
complement X\U = J,.; D; a divisor with simple normal crossings and j : U — X the
open immersion. We recall the definitions of the logarithmic blow-up and the logarithmic
product from [AS, Section 2.2] and [KS, Section 1.1]. Fori € I, let (X x X); — X x X
be the blow-up at D; x D; and let (X x X); C (X x X)} be the complement of the
proper transforms of D; x X and X x D;. We define the log blow-up with respect to
divisors {D; }ier

(X xX) — XxX

to be the fiber product J], (X x X); — X x X of (X x X)j(i € I) over X x X. We
define the log product with respect to divisors {D;};cr

(X x XJC (X xX)

to be the fiber product [[,.;(X x X); — X x X of (X x XJ;(i € I) over X x X. The
log blow-up (X x X) is a smooth scheme over k of dimension 2d.

Lemma 2.1.  Let the notation be as above. We consider the following cartesian
diagram

X (X x XT

L,

X—sxxXx

where the right vertical arrow (X x X} — X x X is the projection and § : X — X x X
is the diagonal closed immersion. Then the inverse image X is the union of (G,,)! -
bundles {Dj x (G,,)¥ Y jc1 of dimension d where Dy is the intersection of {D;}icy in
X.
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Proof. Let )A(:, denote the inverse image of the diagonal X by the projection (X X
X)i — X x X for i € I. By the definition of the log product, X, is the union of the
diagonal X C (X xX);and G, p,. Since (X x X is the fiber product of (X x X); (i € I)
over X x X, X is the fiber product of the schemes {X;}ies (i € I) over X. Therefore
the inverse image X is the union of (G,)*-bundles {Dj x (G,)*} s 1 of dimension d

where D is the intersection of {D;};cs in X. Hence the assertion follows. O

We keep the above notation. For a subset It C I, we put DT = Uier+ Di C D. Let
V C X denote the complement of DT in X. Let U’ be the complement of D" := J,. D;
in X where I' = I\ It. We have U = U'NV. Let 5/ : U — V and jy : U — X
be the open immersions. Let (X x X )y C (X x X)f, denote the log product and log
blow-up with respect to {D;};cr respectively.

We consider the cartesian diagram

(X x XTor <2 (V x XT= (V x VT

O

k
XxX<———VxX=—-VxV
where the horizontal arrows are the open immersions and the vertical arrows are the
projections. Let 6y : U — U x U be the diagonal closed immersion, and § : X —
(X x X)yr and oy : V. — (V x V] be the logarithmic diagonal closed immersions
induced by the universality of blow-up. We consider the cartesian diagrams

jzrU’ i (X XXYU' < J (X XX)VU/\XU/

- |

X

X — s X x X<~ X x X\ 6x(X)

and

VY (VX VT =2 (V x VT V

Ll |

Vo VXV V x V\ sy (V)

where §: (X x XJor \ Xpr — (X x XV and gy : (V x VI\V — (V x V] are the
open immersions.

Let F be a smooth A-sheaf of rank 1 on U which is tamely ramified along V' \ U.
We put Hg := Hom(priF,priF) and H := RHom(prijF, RprijiiF) on U x U and
X x X respectively. Further, we put Hy := RHom(prjjiF, RprijiF) on V x V and



ON LOCALIZATIONS OF THE CHARACTERISTIC CLASSES OF £-ADIC SHEAVES OF RANK 1 197

H := (7. Ho)(d)[2d] on (V x V) respectively. There exists a unique map
(2.1) FHy — H

inducing the canonical isomorphism RHom(prQ}" Rprl]:) — Ho(d)[2d] on U x U
defined in [S, Proposition 3.1.1.1]. We put HU/ = ]1,Rk1*7-{ on (X x X)y/. We define

a map
(2.2) F*H — Hy
to be the composition of the following maps

F*H ~ f*j1,Rky Hy ~ j1,fi Rk1, Hy — j1,Rk1 . f*Hv — j1, Rk H = Hy

where the first isomorphism is induced by the Kunneth formula, the second and third
maps are induced by the base change maps f*j;, — fl! fi and f{REk1, — R%l*f*
respectively, and the fourth map is induced by applying the functor j:,R%l* to the map
(2.1).

By the definition of Hy, we have an isomorphism 6*Hyr ~ jvlgik/ (7« Ho)(d)[2d]. The
base change map g}“,}*Ho — j 05 Ho ~ jL.End(F) and the trace map End(F) — Ay
induce a trace map

(2.3) Tr: 6" Hy ~ jiv 0% (a Ho )(d)[2d] — v Av (d)[2d] = jv Ky — Kx.
The map (2.2) induces the pull-back

(2.4) J7HR (X x X H) — HE (X % XJur, Hur).

The canonical map A — Rg,A induces a map

(2.5) HY (X % XV, Hyr) — HY (X % XTVur, Hyr @ Rg.A).
Lemma 2.2.  The canonical map

(2.6) HY o ((X % XV, Hor @ RguA) —> HY (X % XVir, Hyr ® Rg.A)

1$ an 1somorphism.

Proof. By the localization sequence, it suffices to prove H %7 (VXVY,H®Rgy . A) =
0 for all 4. Since F is a smooth sheaf of rank 1 which is tamely ramified along V' \ U,
H is a smooth A-sheaf of rank 1 on (V x Vfby [AS, Proposition 4.2.2.1]. Therefore
the canonical map H® Rgy A — Rgv*gVH is an isomorphism by the projection
formula. By this isomorphism, we obtain isomorphisms H‘Z/((V X V):H ® Rgy A) ~
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H (V,Ri\,(H ® Rgy.A)) ~ H'(V, Ri\, Rjy ,gi"H) = 0 for all i. Hence the assertion
follows. O

We consider the pull-back by 5

(2.7) 5 HY

% (X% XVur, Hyr @ Rg.A) — H (X, 6*Hy: @ 0*Rj.A).

The trace map (2.3) induces a map

(2.8) Tr: HY (X, 6*Hy ® 6° R, A) — HY, (X, Kx ® 6*Rg.A).
Lemma 2.3.  The canonical map A — S*Rg*A induces an isomorphism
(2.9) HY . (X, Kx)~ HY, (X,Kx ®6*Rj,A).

Proof. We consider the distinguished triangle
Ri'A|x (d)[2d) — Kx — Kx ® 0* R, A —

by the isomorphism A(d)[2d] ~ Kx. By this triangle, it is sufficient to prove that
HfjJr(X, Ri'A|x) is zero for j < 2d + 2. For a subset J C I, let X; = D x (Gyn)?’
denote the (G,,)* -bundles over D;. By Lemma 2.1 and the purity theorem, we obtain
isomorphisms R77'A = 0 for j < 2d, R*¥'A ~ @D, Az, (—d) and R2H1A = 0. By
these isomorphisms and Dy = 6(X) N X, we acquire H£+ (X, Ri'A|x) = 0 for j < 2d,
HYP(X, Ri'A|x) ~ @ cp Hyynp,(Dy,Ap,(=d)) for i = 0,1. Hence the assertion
follows from the purity theorem. O

Definition 2.4.  We call the image of the element id;, 7 € End x (jiF) ~ H% (X x
X, H) under the composite of the maps (2.4)-(2.9) the logarithmic localized characteristic
class of 1) F and we denote it by Clg.gﬁo(j!]:) € H) (X,Kx).

§3. Nonclean localization of the characteristic class and comparison with
the logarithmic localized characteristic class

In this section, we will define a further localization of the characteristic class as
a cohomology class with support on the nonclean locus which we call the nonclean
localized characteristic class.

Let the notation be as in the previous section. Further, we assume that £k is a
perfect field. Let R = ¥;crr; D; be the Swan divisor of F with respect to the boundary
D defined by K. Kato in [K1] and [K2]. We assume that the support of the divisor
R is DT. We regard R C X as a closed subscheme of (X x X)' by the log diagonal
map X — (X x X) and let 7 : (X x X)Bl — (X x X)’ denote the blow-up at
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R. Let A; C (X x X)) be the exceptional divisor above D; x D; for each i € I. Let
(X x X )(R) be the complement of the union of the proper transforms of A; for i € I
in 771((X x X)). We consider the cartesian diagram

i (R)
X 2 (X x X))

Lk

X — > XxX

where fU) : (X x X)(B) — X x X is the projection. Let 5 : U x U — (X x X)(®)
be the open immersion and 6% : X — (X x X)) the extended diagonal closed
immersion induced by the universality of blow-up.(See [AS, Section 4.2] and [S, Section
2.3].)

Let E* be the complement of (V x VJin (X x X)) which is a vector bundle over
DT. Let T C DT be the nonclean locus of F which is a closed subscheme in X, and W
the complement of T"in X. (See [K2] for the notion of cleanness.) Then, the sheaf F is
clean with respect to the boundary W\ U. Let Ry denote the restriction of R to the
open subscheme W C X. We have the open subschemes U C V C W C X. We consider
the cartesian diagram

(X x X)) 2 (VxVY
lh l%l
(X % XVir <2 (V x X}

where h : (X x X)) — (X x X)y is the projection and all the arrows except h are
the open immersions.

We put H) .= jiR)Ho(d) [2d] on (X x X)), The map of functors 3!( Y
induces a map

(3.1) h*Hyr = h*juRkyH = )0 H — G20 Ho(d)[2d) = HO.
By the maps (2.2) and (3.1), we obtain the following map

(3.2) B HB)

defined in [S, Corollary 3.1.2.2]. This map induces the pull-back

(3.3) ST HY (X % X, H) — Hon (X x X)5, 1),

There exists a unique section e € T'(X, §(R” jiR)Ho) lifting the identity idr €
Endy (F) ~ T'(U, 0f5Ho). (See [S, Definition 2.3.1].) We consider the natural cup pairing

(3.4) U:T(X, 6B B 10) x H2(X x X)B), A(d)) — HL(X x X)B) HEB),
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We write [X] for the image of the cycle class [X] € CHy(X) under the cycle class map
CHy(X) — H¥((X x X)B) A(d)). By the pairing (3.4) and the pull-back (3.3), we
obtain an element f(R)*idj!]: —eU[X] € H (n) ((X x X)) (R,

We have the localization sequence

H iy (W x W)W G0y s H gy (X % X) 5 1) — H ) (X x X)) 1)

(3.5) — H° (W x W) FEwW) HBEw)y gL (X x X)) 1y —

w(Rw)

where T is the complement of WEw) in X(B) and H%,IV% ") is the restriction of H ()
to the open subscheme (W x W)(Ew) ¢ (X x X)(B),

Lemma 3.1.  The canonical map HY ) ((X X XB) 1By — H

X(R)((X X
X)) HR)) s injective.

Proof. It suffices to prove HWI(RW) (W x W)Ew), H%/‘JEW)) = 0 by the localization

sequence (3.5). We consider the exact sequence

HV_[/(RW)\V((W X W)(RW),H%%W)) — H__ (R)((W % W)(RW) H(RW)) N H ((V y V)VH)
Since we have H ! WxW (Rw)’H(Rw) — 0 by [S, the proof of Theorem 3.1.3],
w

w (BRw )\V
it suffices to prove the vanishing H ‘;1((V x VJ;H) = 0 by the exact sequence. Since H
is a smooth sheaf on (V' x V) by [AS, Proposition 4.2.2.1], the canonical map Z*‘}ﬁ ®
R?VA — R?Vﬁ is an isomorphism by the projection formula. By this isomorphism,
we acquire isomorphisms H‘;l (VXVVH) ~ H Y (V,Ri\,H) ~ H YV, it HORi\,y A) ~
H?d1 (‘7,;}?3* ﬁo(d)®R?§/A). Thereby it is sufficient to prove that H2¢—1 (‘7,/{}*/3* Ho (d)®
R/{!VA) = 0. By Lemma 2.1 and the purity theorem, the sheaf szij is zero for j < 2d.
Hence the assertion follows. O

Corollary 3.2.  Let the notation be as above. Then there exists a unique element
(fB* idj,7)" in HYm ((X x X) B HEBY which goes to the element fH)” idjr —eU
(X] € HO 0 o (X x X)B) 1B by the canonical map HOr (X x X) B HE)) —

HS iy (X x X)), ),

Proof.  Since F is clean with respect to the boundary W\ U, the element f (R)*idj, F—

eU[X] goes to zero under the restriction map H (Xx X)) 7By — HY ey (W
W)(RW),H%% W)) by [S, Corollary 3.1.2 and Theorem 3.1.3]. Therefore the assertion fol-
lows from Lemma 3.1 and the sequence (3.5). |

(R)

The base change map s Jx  — J«0f; and the trace map End(F) — Ay induce

a trace map

(3.6) TeU . W HI) 5 55 Ho(d)[2d] ~ j.End(F)(d)[2d] — Ax(d)[2d] ~ Kx
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Definition 3.3. We consider the following map
.. s « TR
(fPid) 7)€ H i (X x X)) HE)) = HY(X, 6 HF)) —— HY(X,Kx)

induced by the pull-back by 6 and the trace map (3.6). We call the image of the
element (f (R)*idj! #)" in Corollary 3.2 by this composition the nonclean localized char-
acteristic class of HF and we denote it by C’;CI’O(]'!}").

We will compare C2°(j,F) with Cgf’o(j;]:) in H), (X,Kx) defined in Definition
2.4. (Theorem 3.8.)

Lemma 3.4.  The canonical maps

(3.7)  Hp (X x X)W HID @ h*Rg.A) — Hy ) (X x X)) HID @ h*Rg.A),

(3.8)  HY, (X x X)) 1B @ h*Rg.A) — HY (X x X)) HI @ h*Rg,A),

(3.9) Hy (X x X)) 0" Rg.A) — Hm (X x X)) h*Rg.A)
and
(3.10) HZ (X x X) B p*Rg.A(d)) — HE((X x X) B h*Rg.A(d))

are isomorphisms.

Proof. We prove the assertions in the same way as Lemma 2.2. O
We consider the composite
H iy (X x X)) HE) — HE ) (X x X)H 1P @ b Rg.A)

~ HY (X x X)B HB o p* Ry, A)

where the first map is induced by the canonical map A — h*Rg,A and the second
isomorphism is (3.7). Let (f(R)*idj!y:)log € HY, (X x X)® HEB) @ h*Rg,A) denote
the image of the element f(R)*idj,}- € H?((R) (X x X)) 1) by this map.

The pull-back by §(7) the trace map (3.6) and the isomorphism (2.9) induce a map

T 5B g (X x X)), HP @ W RG.A) — HY (X, Kx @ 0" Rg.A) ~ HY 4 (X, Kx).
We write Te " (F)7iq,, r)loe ¢ HY . (X,Kx) for the image of the element
(fBid;, )8 € Hy. (X x X)) 1P @ h*Rg.A)

under the map TrB) . 5B,
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Lemma 3.5.  Let the notation be as above. We have an equality
CHE0 (i F) = e (£ d, z)'s
in HY (X, Kx).
Proof. We consider the commutative diagram
FI gz € Hyry (X x X)), HI) —— HY (5 (X x X)), HP @ h* Rg.A)
[ridyr € Hy (X % XJor, Hyr) ———— HY (X % XJor, Ho @ Rg.A)

(3.7) y e A TE(R) (R -
~—— Hy g (X x X)), 1P @ h* RG. A) % HY, (X, Kx @ 5" Rg.A) ~ HS, (X, Kx)

h*T idT
(2.6) ~ - T §* ~
-~ H%U,\v((X x XJor, Hyr @ RguA) —2 > HO (X, Kx @ 8" Rg.A) ~ HY (X, Kx).

The right( resp. left) hand side of the equality is the image of f (R)*idj, FE€HY (X x
X)) HEDY ((resp. frid;,F € H% (X x XV, Hy)) by the composite of the maps
in the upper( resp. lower) lines in ghe commutative diagrams. Therefore the assertion
follows from the commutative diagram. O

We study the relationship between the elements ( f(R)*idj! 7) and ( f(R)*idj! F)lo8
to compare the two localizations.

Lemma 3.6.  We consider the composition
HY (X xX)B HBEy — B (X x X)) HB on*Rg.A) ~ HY (X x X)) H P on* RG.A)

where the first map is induced by the canonical map A — h*Rg.A and the second
isomorphism is (3.8). Let (eU[X])*¢ € HY (X x X)) HEB) @ h*Rg,A) be the image
of eU[X] € HY((X x X)) HUEY by this composition. Then, we have an equality

(Fidgr) = (S i)' — (e U [X])®
in HY, (X x X)B) HB @ h* Rg, A).
Proof. Since we have T®) ¢ ET, we obtain the following commutative diagram

(fidjr)" € Hom (X x X)), HIT) ——— Hp (X x X)), 1P @ h* R A)

lcan. :l(3.7)

* lo % o~
PP idg,r — e U[X] € HY ) (X x X) B HP) —Z5 1Y ) (X x X)) HP @ h*Rg.A)
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where the horizontal arrows are induced by the canonical map A — h*Rg.A. By
this commutative diagram, the isomorphism (3.7) and Corollary 3.2, the assertion is
proved. O

By Lemmas 3.5 and 3.6, and Definition 3.3, it suffices to calculate the element
(eU[X])e € HY, (X x X)B) HE)  h*Rg.A) to prove our main theorem (Theorem
3.8). For the calculation, we will write it in terms of a cycle class with support on the
vector bundle E7 in the following Lemma 3.7.

We consider the composite
(3.11)

HY (X x X)™, A(d)) — HX'((X x X)), k" Rg.A(d) = Hp' (X x X)), h* Rg.A(d))
where the first map is induced by the canonical map A — h*Rg,A and the second
isomorphism is (3.10). Let [X]'°® € HZ4 (X x X)®) h*Rg.A(d)) denote the image of
the element [X] € H¥((X x X)) A(d)) under the map (3.11). By the canonical cup
pairing
(3.12)

U:T(X, 6P 1B H0) x HE(X x X)® h*Rg.A(d) — HY (X x X)P HB @ b*RG.A)

and the isomorphisms (3.8), (3.10), we obtain an element e U [X]'°8 in HY, (X x
X)B) HIB) @ h*Rg,A). By the definitions of the two pairings (3.4) and (3.12), we
obtain an equality

(3.13) (e U[X])°8 = e U [X]'8
in HY, (X x X)) HE) @ h*Rg.A).

Lemma 3.7. Let the notation be as above.
1. We consider the cartesian diagram

A X) — (X x X)B) —— (VX VT

L,k

X —2 = (X x Xy =—— (VX V.

Let b' : CHy(X) — CHy(h='(X)) be the Gysin map. Then there erists a unique
element [X — h'X] € CH4(E™) which goes to [X] — h'[X] € CHqg(h™'(X)) under the
canonical map CH 4(E™) — CH 4(h~1(X)).
2. Further, this element satisfies an equality

SPIX — BX] = (~1) - ca(Q/ (l0gD) (R) — O, (logD) 5+ 1 [X]

in CHo(DT) where cq(.)d+ N[X] is the localized Chern class introduced in [KS, Section
3.4].
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3. We also write cl([X — h'X]) for the image of the cycle class cl([X — h'X]) by the
canonical map HE (X x X)) A(d)) — HE (X x X)B) h*Rg.A(d)) where cl :
CHy(EY) — H2 (X x X)B) A(d)) is the cycle class map. Then we have an equality

cl([X — h'X]) = [X]°®

in HE (X x X)B) h*Rg, A(d)).

Proof. First we prove 1,2. We consider the commutative diagram

(R)
X 5 (X x X)(®

-

X —2> (X x X)p

where the horizontal arrows are the diagonal closed immersions and & : (X x X)) —

(X x X)y is the projection. The conormal sheaves Ny xxxym and Nx;(xxxJ,,

are naturally identified with Q7 /x(logD)(R) and 3% / ,(logD") respectively, and we have

h=1(X)\V = ET. Therefore it is sufficient to apply Lemma 3.4.9 in [KS] to the diagram

by taking (V x VJ'C (X x X)) as the open subscheme U C Y in Lemma 3.4.9 in [KS].
We prove 3. By the following commutative diagram

BE(X] € Hn) (X % X)W, A(d) == Hey (X x X)), h* Rg.A(d)) 3 (h*[X])'®

] ol

[X] € H((X x XJur, A(d)) HY((X x X, Rg.A(d)) = 0,

we acquire (h*[X])'°¢ = 0. We consider the commutative diagram

(X — h'X]) € HE (X x X)B) A(d)) —— HZL (X x X)B), h*Rg.A(d))

l(l) :l(&g)

[X] — *[X] € B3 (X x X)), A(d)) —= H3n (X % X)® h*RG.A(d)).

The element cl([X —h'X]) € HZL (X x X)B) A(d)) goes to [X]—h*[X] € H2, ((X x
X)) A(d)) under the map (1) by Lemma 3.7. Hence the assertion follows from this
commutative diagram and (h*[X])'& = 0. O

We are ready to prove the main result in this paper.

Theorem 3.8. Let X be a smooth scheme of dimension d over a perfect field
k and U C X be the complement of a divisor with simple normal crossings. Let F be
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a smooth sheaf of rank 1, and T and D™ the nonclean locus and the wild locus of F
respectively. Then we have an equality

CEMO ) + (~1)T - ca(Q . (logD) (R) — 0k, (logD")) 5, N [X] = CpE° (3. F)
in HY (X, Kx).
Proof. By Lemmas 3.5 and 3.6, and the commutative diagram
(F7idgr)" € Hipr (X x X)), 1) ——— Hp (X x X)), 1 @ h* Rg..A)

lmm.gm* lmm.gm*

can.

C3HO (i F) € He (X, Kx) HY (X, Kx) ~ H) (X, Kx ® 6" Rg.A),

we obtain an equality
Cr0(hF) = CE°(hF) = T - 6007 (e U [ X))
in HY, (X,Kx). Since we have
TrB B (e U [XT]108) = e () U s [ X]lo8 = §(B) [ X]los
in H %+ (X, Kx), we acquire equalities
el . s (e U [X])8) = Te . s (e U [X]°%) = 6B l([X — B X))

= (—1)* - ca(Qx 4 (logD)(R) — Qi (logD")) 5+ N [X]

by the equality (3.13), and Lemma 3.7. Therefore the assertion is proved. O

We show that the logarithmic localized characteristic class refines the character-
istic class. The localized Chern class (—1)? - cd(Qk/k(logD) (R) — Qﬁf/k(logD’))gJr N
[X] € HY,, (X,Kx) goes to the difference (—1)¢ - cd(Qﬁf/k(logD)(R)) N[X]— (-=1)?-
cd(Qﬁ(/k(logD’))ﬂ[X] € H°(X, Kx) by the canonical map HY (X, Kx) — H°(X,Kx).
(See [KS, Section 3.4].)

Let (Ax,Ax) € H°(X,Kx) denote the self-intersection product. Since the conor-
mal sheaf Ny, x.xym ( resp. Nx/(xxxJ,, ) is isomorphic to Qﬁ(/k(logD)(R), ( resp.
Qﬁ(/k(logD’),) we have an equality (—1)d-cd(Q§</k(logD)(R))ﬂ[X] = (Ax, Ax) (xxx)m) -
(resp. (—1) - ca(@ (logD")) 1 [X] = (Ax, Ax)(xx7p, )

Corollary 3.9.  Let the notation be as in Theorem 3.8. Let C(.) denote the
characteristic class defined in [AS, Definition 2.1.1]. Then, the image of the logarith-
mic localized characteristic class CBE’O(]}]—" ) € HY (X,Kx) under the canonical map

HY (X,Kx) — H°(X,Kx) is the difference C(jiF) — C(ju,Av).
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Proof. By Definition 3.3, the nonclean localized characteristic class C’;Cl’o(j!]: )
goes to the difference C(j1F) — (Ax,Ax)xxx)m € H(X,Kx) by the canonical map
HY(X,Kx) — HY(X,Kx). The localized Chern class (—1)% - cd(Qﬁf/k(logD)(R) —
Qéf/k(logD’))ng N [X] goes to the difference

(Ax, Ax)(xxx)m — (Ax, Ax) (xx X7

under the canonical map H), (X, Kx) — H%(X,Kx). We have an equality

C(junAu) = (Ax, Ax)(xx X7y

in H°(X,Kx) by [AS, Corollary 2.2.5.1]. Hence the assertion follows from Theorem
3.8. O

Let the notation be as above. We assume that F is a smooth A-sheaf of rank
1 which is clean with respect to the boundary D. Let cx € CHy(D™) be the Kato
O-cycle class of F. (See [K2] or [AS, Definition 4.2.1].) We have an equality cx =
—(—l)dcd(Qk/k(logD)(R) — §2§(/k(logD))§Jr N [X]. (See loc. cit.)

Corollary 3.10. Let X be a smooth scheme of dimension d over a perfect field
k and U C X be the complement of a divisor with simple normal crossings. Let F be
a smooth sheaf of rank 1 and DT the wild locus of F. If F is clean with respect to the
boundary, we have
—cr = P81 F) - 58 (iAv)

Zn .H%+ (X, ICX).
Proof. Since we assume that F is clean with respect to the boundary D, we have
MO\ F) = 0. Thereby the equalities (—l)dcd(Qﬁ(/k(logD)(R) — Qﬁqk(logD’))gJr N

(X] = CpE°(hF) and (—1)%ca(Q ), (logD) — Q% (logD") 5, N [X] = C%°(iAw)
hold in HY, (X,Kx) by Theorem 3.8. Hence we obtain

CREO(hF) = CpE°(jihv) = (—1)%ea(Qy i (logD)(R) — Qi 1, (logD)) B+ N [X] = —cz.

O
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