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Construction of cyclic number fields with prime
degree and their Frobenius automorphisms

By

Toru KOMATSU*

§1. Introduction

Generic polynomials are solutions of inverse Galois problem. Generic polynomials
are used for the constructions of extension fields, e.g., class fields. In this paper we study
the Galois actions and the Frobenius automorphisms of specialization fields of a generic
cyclic polynomial given by Cohen [1] and Nakano [4]. Let G be a finite group and k
a field. We denote by k(t)[X] the polynomial ring in one variable X whose coefficient
ring is the rational function field k(t) over k with parameters t = (t1,t2,...,t,). For
a monic polynomial f(t,X) € k(t)[X] we say that f(t,X) is a G-polynomial if the
minimal splitting field Sply ) f(t, X) of f(t, X) over k(t) is a Galois G-extension of k(t).
For a G-polynomial f(t, X) € k(t)[X] and an extension field K of k we say that f(t, X)
is K-parametric if all Galois G-extensions L of K are realized as specialization fields
Splg f(s, X) in some s = (s1,82,...,8.), $; € K. For a G-polynomial f(t, X) € k(t)[X]
we say that f(t, X) is k-generic if f(t, X) is K-parametric for every extension field K of
k with 4K = co. First we introduce the cyclic polynomial of Cohen [1] and Nakano [4].
Let [ be an odd prime number and C; the cyclic group of order [. Let k be a field whose
characteristic is not equal to I. There exists a primitive [th root of unity ¢ = ¢; in k.
Let d be the degree of the extension k(¢)/k. We take d parameters t,1o,...,t; and use
them as a d-tuple t = (t1,t2,...,tq4). Let A be the Galois group Gal(k(t,()/k(t)) and
o; the elements of A such that o;(¢) = ¢*. One has A ~ C4. We define an element ¢ of
the group ring F;[A] by

Received April 1, 2008. Revised August 20, 2008.
2000 Mathematics Subject Classification(s): 11R20, 12E10, 12G05.
Key Words: Generic polynomial, Kummer theory, Artin symbol.
*Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan.
e-mail: trkomatu-math@yahoo.co.jp

(© 2009 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



224 TORU KOMATSU

where y is a character of A such that x : A — F, o; — 4. Note that ¢ = ¢ in F;[A].
Now put e = > ca
0 < ¢; <. Then e is a lift of €, that is, an inverse image of € by the canonical surjection
Z|A] — Fi[A]. Let n;, 5 = 1,2,...,d be a basis of k(¢) as a k-module. Let a(t) be a
linear form Z;l:l tin; € k(t,¢) over k(¢). Then one has e(a(t)) € k(t,(). Let A be an
element in the algebraic closure field of k(t,¢) such that A" = e(a(t)). It follows from
the property of € that k(t,(, A)/k(t) is a Galois (C; x Cg)-extension. The group C; x Cq
is cyclic of order Id since d is a divisor of [ — 1. The Galois group Gal(k(t,(, A)/k(t))
has a unique subgroup H of order d. We define a polynomial f(t,X) = F(a(t), X) by

cio; € Z|A] where ¢; are integers satisfying dic; = 1 (mod 1) and

-1

F6X) =F(a(t), X) = [[(X = Tru (¢ A))

=0

where Try(z) = > cyo(z) for 2 € k(t,¢, A). The polynomial f(t, X) is invariant
under the actions of Gal(k(t,(, A)/k(t)). Hence f(t, X) € k(t)[X].

Proposition 1.1 (Cohen [1]).  The polynomial f(t, X) is a k-parametric and C;-
polynomial.

Proposition 1.2 (Nakano [4]).  The polynomial f(t, X) is k-generic.

If k = Q((), then e = o1, a(t) = t; and f(t;,X) = F(t;,X) = X! — t;, which is the
well-known Kummer polynomial. When [ = 3 and k = QQ, we may have e = 207 + 09
and a(t) = t1¢ + t2¢2%. Then f(t1,t2, X) = F(t1¢ + t2¢2, X) is equal to

X3 —3(t7 — tita +13)X + (L1 + t2) (13 — tyta +13)
=X3—-3N(a)X — Tr(a)N(a)

where a = a(t), N(z) = [[,ca 0(2) and Tr(2) = > A 0(2) for z € k(t,¢). When [ =5
and k = Q, one may have e = 401 + 209 + 303 + 04 and a(t) = t1¢ +t2¢? + 3¢ + t4¢L
Then it is calculated that

f(t,X)=F(a(t),X) =X° — 10N (a) X3 — 5N (a)Tr(araz) X >
—5N(a)(Tr(a3aza3) — N(a))X — N(a)Tr(a3aza3)

where a = a(t), a; = 04(a), N(2) = [[,ea 0(2) and Tr(z) = > A 0(2) for z € k(t, ().
In the same way as above, if | =7 and k = Q, then e = 601 + 302 + 203+ 504 + 405 + 04
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and f(t,X) = F(a(t), X) is equal to

F(a(t),X)=X"—21N(a)X5 — 7N (a)(Tr(ajazas) + 2Tr(a1aza4)/3) X*
—T7N(a)(Tr(a%a3azas) + 3Tr(a3azazasas) — 9N (a)) X3
—T7N(a)(2Tr(a3a3aza3as) + Tr(atazazaia?)

+N(a)(Tr(ajazaz) — 2Tr(ajazaq))) X?
—7N(a)(Tr(atajazajas) — N(a)(Tr(afa3as) — Tr(ata3af)/3
—3Tr(adaza3as) + 4Tr(aazazagas) — 9N (a))) X
—N(a)(Tr(aja3azaiad) — TN (a)(Tr(atada3as) — Tr(afadasai)
—2Tr(a3a3a3a4as5) + 3Tr(ada3azaias) + Tr(aaza3asa?)
—2Tr(ajazasza3a?) + 2N (a)(Tr(arazaz) — Tr(ajazay))))

where a = a(t), a; = 0;(a), N(2) = [[,ea 0(2) and Tr(z) = > oA 0(2) for z € k(t,().

In this paper we study the arithmetic of the polynomial f(t, X), in particular,
the Galois actions and the Frobenius automorphisms of the specialization fields over a
number field. In the section 2 we study explicit Galois actions in the Galois extension
Spli(y f(t, X) of k(t) (Proposition 2.1). In the section 3 we introduce a group S to solve
the subfield problem of the generic polynomial f(t, X) (Proposition 3.3). In the section
4, by using the group S, we study the Frobenius automorphisms of the specialization
fields over a finite number field (Theorem 4.1). In the section 5 we study an evolution
of the generic polynomial to decrease the number of the parameters and to succeed the
genericity (Corollary 5.5).

§ 2. Global action

In this section we study the explicit Galois actions of the Galois extension defined by
the cyclic polynomial of Cohen and Nakano. Let f(t, X) be the C;-polynomial of Cohen
and Nakano in the introduction with k = Q. For an integer j € Z we denote by x; the
zero Tr(¢7 A) of the polynomial f(t, X). Since Splgf(t, X) is a cyclic extension of
Q(t) with degree [, there exist rational functions \;; € Q(t) such that z; = Zl ; )‘zﬂ;o
We define the three (I x [)-matrices A, C and V by A = (\j;), C' = (z1;) and V = (z})
where the indices ¢ and j run through the integers from 0 to l—1. Note that z,,+; =
for every m € Z. Here C'is a circle matrix and V is a Vandermonde matrix.

Proposition 2.1.  We have A = CV L.

Proof. It follows from the definition that C' = AV. Since the zeros x; of f(t,X)
are distinct, the matrix V is invertible. Thus it satisfies A = CV 1. O

For example, when [ = 3 and k = Q, we may have e = 201 + 02 and a(t) = t;{ + t2(2.
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Proposition 2.1 implies that

[ 0 1 0 |
2(t — t1ty +t3) t 1
A= Ji—tz bt hi—t
i t1 —ta t1 —ta 11 —t2 |
This shows that
1 t 202 — tity + 13
X1 =— [13(2) — ! i) ( 1 172 + 2),
t1 — 1o t1 — 1o ) tl—t22
1 t 20t — t1to + t
To = 33‘2 —I— 2 0 — ( 1 172 2) .

0 xT
tl—tQ tl—tQ tl_tQ

§3. Group structure

In this section we define a group to solve the subfield problem of the generic
polynomial f(t, X). Let us assume that £ = Q and a(t) = Zi;ll t;¢7. Recall that
e = Zi;i cio; € Z[A] where —ic; = 1 (mod l) and 0 < ¢; < I. For an integer
i with 0 < i < [ we denote the linear form o;(a(t)) by a;(t) and the polynomial
e(ai(t)) € Q(Q)[t] by gi(t). We denote (a;(t))iZ} by a(t) and (g;(t))i=] by a(t). We
define a subspace S of Al=1 by

S ={s=(s1,52,...,8-1)|ai(s) # 0 for every i € Z with 0 < i < [}.

For two elements q = (¢q1,¢2,.-.,q—1) and t = (r1,7r2,...,7-1) € S we define a com-
position law +g on S by q +gt = (s1,52,...,5-1) where
j—1 -1 -1
55 = Z%‘Tj—i + Z QiTi+j—i — qu—i
i=1 i=j+1 i=1

with 0 < j < (. For an integer ¢ with 0 < ¢ < [ we define a rational function m,(t) € Q(t)
by m;(t) = TI'Q({,C)/Q(t)((C_i —1)/ay1(t))/l, and denote (mz(t))i;i by m(t).

Lemma 3.1.  The set S is an algebraic torus of dimension | — 1 with the com-
position law +g and an isomorphism S — GL 1 s+ a(s). The identity ids of S is
(—1,—1,...,—1). The inverse element of s € S on +g is equal to m(s).

For an integer ¢ with 0 < ¢ < [ we define a rational function g;(t) € Q(t) by g;(t) =
Tro,¢) /00 (€4 = 1)g1(t))/1, and denote (6i(©):Z1 by a(t). Note that § is a map from
S to itself.

Lemma 3.2.  We have g(t) = a(g(t)).
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Let K be an extension field of Q. For a K-valued element s € S(K) of S let Ly denote
the minimal splitting field Sply f(s, X) over K of f(s, X) € K[X]. For a positive integer
n and s € S let [n](s) denote the sum s +g 6 +g ---+g 6 with n terms.

Proposition 3.3.  For two elements q and v € S(K), the field Lq is contained
in the field Ly if and only if there exist an integer j € Z and an element s € S(K) such

that g(q) = [518(x) +s [I](s).
For example, when [ = 3, it is calculated that

S = {(s1,52) € A%|s? — 5159 + 53 # 0}
(Qb (J2) +s (7’1, 7’2) = (Q27“2 — 4172 — Q271,171 — q17T2 — qy’l),
idg = (—1,—1),

m(sy,82) = 52 ik
1,22) — 9 9
s%—slsg—i-s% s% —3182—1—3%

a(s1,52) = (7 — sTs2 + $183, 5152 — $183 + 53).

Remark.  For the finite field IF,, of characteristic p # [, the mod p reduction model
Sr, of the algebraic group S is well-defined.

8§4. Local action

In this section we study the Frobenius automorphisms of the specialization fields
of f(t, X) over a finite number field by using the group S. Let K be a finite number
field. Let Lo denote the minimal splitting field Sply f(s, X) of f(s, X) over K for an
element s € S(K). For an integer i let 2; be the zero Tr (¢'{/g1(s)) of the polynomial
f(s,X). Now assume that Ly # K, that is, [Ls : K] = [. Let 71 be the generator of
Gal(Ls/K) where 11 (z¢) = x1. Let p be a prime ideal of K and P a prime ideal of
K(¢) above p. Let I, be the residue class field of K at p and Fg that of K(¢) at B.
Now put dy = [Fyp : F,] and dg/, = [Fp : F,] where p is the prime number below p.

Theorem 4.1.  Ifp is not equal to l and s (mod p) belongs to S(F), then Ls/K

L,/K
is unramified at p. In such a case, the Frobenius automorphism (%) of p in the

extension Lg /K is equal to T{ where j is an integer satisfying

dyp _
{p ; 1]@(5)=[jdgp/p](l,O,O,...,O) in S(F,).

Proof. The condition s (mod p) € S(F,) implies that the additive P-adic valu-
ation vyp(g1(s)) of gi(s) is equal to 0. It follows from P { [ that P is unramified in
Ls(¢)/K(¢) and so is p in Ls/K. For an element 7 € Gal(Ls/K) let 7 be the extension
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of 7 to Gal(Ls(¢)/K) such that 7(¢) = (. It is easily seen that 71({/g1(s)) = (V/g1(s)
for 71(x;) = zi41 and 71(¢) = ¢. For an element 7 € Gal(Ls(¢)/K(()) let 7 denote

the image of 7 by the natural inclusion map Gal(Ls(¢)/K(¢)) — Gal(Ls(¢)/K). It is
known (cf. Frohlich-Taylor [3] Theorem 30) that
-(%57)
L. P '

(M)dw _ (Ls(C)/K(C)>K and (M)
ddg/e

p P p
= Tf for some j € Z. Then one has that 7}

L,/K
Now suppose that L

(LS(OiéK(O)K

integer 71, then (

By class field theory, if gl(s)(pdm_l)/l = (%1 (mod P) for an

L

Ls(Q)/K(¢)

B

) = 7,71, The elements 71|z, and 71 coincide and have
K
order [. This means that jdg,, = j1 (mod [). Thus it holds that

91(5)(pd513—1)/l = de‘13/P (mod ZB)

By the definition of g(t) we have

dg _
{p 7 1] a(s) = [jdgp)(1,0,0,...,0) in S(Fy).

Here the element y = (1,0,0,...,0) satisfies a;(y) = ¢*. Note that (p?* —1)/l and jdgy
are integers, and g(s) and v are elements in S(Fy). Thus the equation above holds over
IFy. O

The ramifications at [ of the specialization fields of f(t, X) over Q are as follows.

Proposition 4.2.  Let s = (s1,52,...,5-1) be an element of S(Q) such that
s; € Zy and Zi: si Z 0 (mod [). Then the extension Splyf(s, X) of Q is unramified
at | if and only if it satisfies Zi;} is; =0 (mod I).

Proof. Let us denote Splgf(s, X) by L. The ramification index of [ in L/Q is
equal to that of £ in L(¢)/Q(¢) where £ = (1 — () is the prime ideal of Q(¢) above
[. Now put ng = Zi;i s;. It follows from the assumption that ng € le. There exist

integer n; and a positive integer j such that a(s) = ng +ny(1 —¢)? (mod £771). One

(-0

has
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where n = ny/ng € Z; N Q. Thus, estimating the sum Zi: i/~ modulo [, we have

as)\ _ J1+n(1-¢) (=1, j
6(n_o):{l G<jciop WA

If j =1 and ny # 0 (mod (), then e(a(s)/np) = 1 (mod £) and e(a(s)/ng) # 1
(mod £2). This means that £ ramifies in Ls(¢)/Q(¢). In fact, SplgF(a(s), X) =
SplgF(a(s)/ng, X) for e(ng) € Q(¢)*!. When j > 2, we see that e(a(s)/ng) = 1
(mod £') by using the above congruence, repeatedly. Thus £ does not ramify in
Ls(¢)/Q(¢). Note that a(s) —ng = Zi;i({’ —1)s; =(¢C—-1) Zi;i is; (mod £2). Hence
L(¢)/Q(¢) is unramified at £ if and only if it satisfies Zi;} is; = 0 (mod £). This
proves the assertion of the proposition. O

8§ 5. Decreasing parameters

In the section 5 we study an evolution of the generic polynomial to decrease the
number of the parameters and to succeed the genericity. For an integer ¢ € Z we denote
¢*+ (7% by w; and simply w; by w. For an element z € Q(t,w) we denote the trace
Tro(w)/00) (2) by Tru(z). The following properties of w; are easily seen.

Lemma 5.1. For1l <i,j < (I —1)/2 we have Tr,(w;(w; — 2)) = 10;; where &;;
is the Kronecker’s delta.

Lemma 5.2.  For an element z € Q(t,w) we have
1 (1-1)/2
=7 Z 2)z)w;.

Let u be (I —1)/2 parameters uy,us,...,ug—1y/2. We denote by b(u) a polynomial
C—I—Z(l D/2 ;0. In the same way as the definition of F(a(t), X) we define F'(b(u), X) =

Hj:O(X Tr (¢7V/e(b(u)))), which is written by h(u, X). For 1 <i < (I —1)/2 let
7;(t) be rational functions in Q(t) such that

o G lat) — ca(t)
mi(t) = _jTrw ((wz 2) a(t) —a(t) )

where a(t) = Zi it ¢~ We denote (7rz(t))z(.l=_11)/2 by 7 (t).

Lemma 5.3.  We have b(n(t)) = (¢ — ¢ Ya(t)/(a(t) — a(t)).

Proof.  Since —(¢ta(t)—Ca(t))/(a(t)—a(t)) belongs to Q(t,w), Lemma 5.2 implies
T (a(t) —a(t)). Thus we have b(w(t)) = ¢ +
S (s = (¢ = 1l (a(t) - (1), 0
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Proposition 5.4.  We have Splyh(m(t), X) = Splg) f(t, X).

Proof. Tt follows from Lemma 5.3 that b(w(t))/a(t) = (¢ — (1) /(a(t) — a(t)) €
Qt,w)*. TIf z € Q(t,w)*, then e(z) € Q(t,¢)*!. The ratio e(b(n(t)))/e(a(t))
is an Ilth power element in Q(t,¢). Kummer theory shows that Q(t,(,/e(a(t)))

and Q(t, ¢, v/e(b(m(t)))) coincide and so do their subfields SplgyF(a(t),X) and

Corollary 5.5.  The polynomial h(u, X) is a Q-generic C;-polynomial.
We can see the arithmetic of h(u, X) by that of f(t, X) via the map 7.

Remark.  Smith [5] and Dentzer [2] construct cyclic polynomials of odd degree
over Q. Smith [5] also gives a generic C;-polynomial over Q with (I — 1)/2 parameters.
Smith decreases the number of the parameters by multiplying elements of Q(t,w) as
that for our h(u, X).
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