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Analytic solutions to the sixth ¢-Painlevé equation
around the origin

By

Yousuke OHYAMA™*

Abstract

We classify analytic solutions of a g-analogue of the sixth Painlevé equation by Jimbo and
Sakai around the origin. We determine the linear connection for one of analytic solutions.

§1. Introduction

Jimbo and Sakai [4] have obtained a g-analogue of the sixth Painlevé equation, so
called ¢-Pyq, as a connection preserving deformation of a linear ¢-difference equation.
The study of the ¢g-Painlevé equations has been developed after Jimbo and Sakai’s work,
but most of them do not use connection preserving deformation, although the technique
of monodromy preserving deformation is useful for the Painlevé differential equations.
The reason why researchers do not use connection preserving deformations might be
some difficulty to calculate connection data for g-difference equations.

In this paper we study linear connection formula for special solutions of ¢- Py, which
are analytic around the origin. In our main theorem 4.3, we determine the connection
matrix only for one special analytic around the origin. Other cases will be published
elsewhere.

For the sixth Painlevé differential equation Pyy, Kaneko [5] has studied analytic
solutions around the origin. For generic parameters of Py there exist four solutions
which are analytic around the origin and Kaneko has determined the monodromy data
of the corresponding linear equation for such type of solutions. Py can be expressed
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by monodromy preserving deformation of the linear equation

m dy (Ao< ), At A1<t>> y

dx T r—t x-—1

We substitute an analytic solution around the origin in (1.1) and take a limit ¢ — 0.
Then we have

(1.2) av (Ao(o) + A(0) n Al(O)) v

dx T r—1

The monodromy data of (1.2) can be determined explicitly because (1.2) can be solved
by hypergeometric functions. For generic solutions, the limit ¢ — 0 is not so easy [3].

We will study a g-analogue of Kaneko’s work. The g-analogue of the sixth Painlevé
equation ¢-Pyp is given by

Yy _ (Z — b1t)(Z — bat) 2z _ (y — a1t)(y — aqt)
azas  (2—b3)(Z—bs) ' bsby  (y—a3)(y—aq)

Y

b1bs aijaz

bsbs  azas’
ai,as,as,aq, by, ba, bs, by are non-zero complex parameters. We set f = f(qt) for any
function f = f(t). ¢-Py1 is expressed as connection preserving deformation of a linear
g-difference equation

(1.3) Y (qx,t) = (Ag(t) + zA1(t) + 22 A0)Y (z,1).

g-Py1 has also four analytic solutions around ¢t = 0. If we take a limit t — 0 in (1.3),

we can solve the limit equation by Heine’s basic hypergeometric functions 2¢1 (a, b, ¢; x)
[2]:

(1.4) 2p1(a,b,c;x) = Zaq" )x",

where (a;q)n = (a)n = [[2) (1 — ag’). We set (a; @)oo = (a)oo = [[720(1 — ag?).

The connection formula of basic hypergeometric functions is given by Watson [6].
We can determine the connection formula of (1.3) by Watson’s formula (see (4.2), which
is the same as the connection formula of (1.3).

The author gives many thanks to Professor Hidetaka Sakai for fruitful discussions.

§2. Connection preserving deformation

In this section we review the work by Jimbo and Sakai [4] on the g-analogue of the
sixth Painlevé equation ¢-Pyg.
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Jimbo and Sakai derived ¢-Py1 as a connection preserving deformation

(2.1) Y(gx,t) = A(z, )Y (x,t),
(2.2) Y(x,qt) = B(x,t)Y (z,t).
Here

A(a:,t) = Ao(t) —|— ZCAl(t) —|— .732142,

x
(x — arqt)(z — azqt)
We set As = diag(ky, k2). The eigenvalues of Ag(t) are 0:t,05t, and det A(z,t) =
Kike(x — ait)(x — ast)(x — az)(z — ag). We assume that

01
6’

B(z,t) =

(ZEI + B() (t))

K1
— ¢ {qil, qu, )
K2

Set
Ag = Codiag(1t,05t)C5 .

We denote lqx = log, .
Birkhoff [1] has shown the following theorem:

Proposition 2.1.  There exist unique solutions Yo(z), Yoo (z) with the following
properties:

Yo(x) = Yo(z)a", Dy = diag(lq 01t,1q02t)
Yoo () = "= DY ()P, Do, = diag(lq k1,1lq k2), u = log, z.

Here Yo(x) and Yoo (z) are holomorphic and invertible at x = 0 and @ = 0o, respectively.
And Yy (0) = Cy, and Yo(oo) = 1.

The connection matrix P(z) is defined by
Yoo () = Yo(2)P(x).

Since P(qx) = P(z), P(x) is expressed by theta functions. We call a function f(z)
pseudo-constant, if f(xq) = f(x). Jimbo and Sakai has proved the following theorem:

Theorem 2.2.  The connection matriz P(z,t) is pseudo-constant as a function
of t, i.e. P(x,qt) = P(x,t) if Y satisfies (2.1-2.2).

A(z,t) has the following form:

of) = ki((x —y)(x —a) + 21) Kow(T — y)
Az, t) = ( riw = (yz + ) ko((x —y)(z — B) +z2)> .
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Here
1 _
a R [y 2 (0 + O2)t — K121 — Kaze) — Kal(a1 + a2)t + az + ag — 2y)],
1
6=
K1 — R2

[y 1((01 + 02)t — k121 — Kaz2) + K1((a1 + a2)t + a3 + ag — 2y)],
y=z1+ 20+ (y+ )y + B) + (a + B)y — arast® — (a1 + a2)(az + as)t — azay,
§ =y~ ! (arazazast® — (ay + 21)(By + 22)),

1 1
by = alag’ by = CL1€L27 b3 =——, by=—.
01 B2 K19 K2
The matrix elements of By(t) are given by
—K9oQZ tlar +as) — Koquwz
Bll - —Qq_ _ﬁ + ( ! _2) Y ) B - 24 )
1 — Koz KoZ 1— koZ
K19Z asqt — Y ast —
Blel—q_(alqt—O_H-w—_y) (alt—ﬁ—i‘ 2 y>,
w(l — k1q9Z2) K1qZ KoZ
—K19Z tlay +as) — vy
322=—1q_<—5z+Q(1 _2) y)-
1—kiqZz K197

The compatibility condition (2.1-2.2) is equivalent to ¢-Py1 and one more equation
on w:

w by Z—bs
by zZ— by
By Theorem 2.2, ¢- Py is expressed as a connection preserving deformation.

§ 3.

w

Meromorphic solutions around the origin
In this section we will list up all of meromorphic solutions of ¢-Py; around the
origin.

If a solution y, z of ¢-Pyy is meromorphic around the origin, it is evident that the
solution is developed either as

or as

y(t) =D yat", 2(t) = zat"  (yo.z0 #0),
n=0 n=0

y(t) = Z ynt™,  z(t) = Z znt"™ (y1,21 £ 0).
n=1 n=1

If y(0) # 0 and 2z(0) # 0, we have two cases

(3.1)

asbs — a4bs azbz — asby

o _ asbs — asby _ ashs — asbs

Case I)  y(0) by — by z(0) pye—

(3.2) Case D) y(0) = ===, 2(0) = ===,
3 — ba

az — a4
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and higher terms can be determined recursively.
If y(0) = 0 and z(0) = 0, we have two cases

alag(bl — b2) . ble(al - a2)

3.3 Case III "(0) = . Z(0)= :

( ) ) y ( ) CLle — albz ( ) (a2b1 - alb2)q
ajaz(by — ba) , bibz(a1 — az)

3.4 Case IV "0)= ——=, Z(0)= :

( ) ) y ( ) a1b1 — a2b2 ( ) (albl - a2b2)q

and higher terms can be determined recursively. These results can be checked out by
direct calculation. We remark that the four series above converge for |t| < r for a
positive number r. The convergence is proved by a g-analogue Briot-Bouquet theorem.

§4. Connection matrix for the solution III

Here we express the connection matrix only for the solution III. Other cases can
be shown similarly. We use some simple transformations of the connection.

Lemma 4.1. (1) Assume that Y (xzq) = A(x)Y (x) for a matriz A(x). If a scalar
function y(x) satisfies y(xq) = a(x)y(z) for a scalar function a(x), Z(x) = y(z)Y (z)
satisfies Z(xq) = a(x)A(z)Z(x).

(2) The function f.(x) = 2'9¢ satisfies f.(xq) = cf.(x).

(3) The function g.(x) = (cx;q)oo satisfies g.(xq) = T ngc(a:).

(4) Set ©(z) = (;9)00(q/%;9)00(q;@)oo- The function h.(x) = O(cx) satisfies

1
he(zq) = —ahc(x).
(5) The function k(z) = ¢“(*~1/2 satisfies k(xq) = xk(z). Here u = lq.

A ¢-difference equation can be reduced to a simple form by transformations in
Lemma 4.1. We remark that f./q(z)©(cz)/O(dr) is pseudo-constant.
We substitute the solution III in (2.1) and take a limit t — 0. Then we have

A(z,0) = Ayx + Ay,

where
azbibotasbibo—asbibs—a;baby w(0)
A _ b1b2(bs—b3q) s s by
1= b4(a1b4—a4b1)(a4b2—a2b4)(a4b1 —a1b3q)(a4b2—a2b3q) a3a4b2+a2b3b4q—a2a3b2b4—a2a4b2b4
a2b3b2(bs—b3q)2w(0) a2b2b4(bs—b3q)

and Ay = diag (1/(b3q),1/bs) . The eigenvalues of A, are —ay /by, —as/bs.
The equation

(4.1) Y(xzq) = A(z,0)Y (x)
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has local solutions Y (9)(z) and V() (z) around z = 0 and x = oo, respectively. We set

Dy = diag (Iq (—a1/b1),1q (—az2/b2)) and Dy, = diag (Iq(—a3/(b3q)),1q (—asz/bs)).
The matrix

Z(zx) = (?/L)OOY(:U)

satisfies an equation

Z(xq) = (/io + A ) Z(x)

T — as

and Z(z) has a solution Zy(z) = Zo(z)zP° around z = 0 and Zuo(z) = Zuo(z)zPe
around z = 00. Zg (x) is invertible around = = 0 and Zoo (x) is invertible around z = oo.

Proposition 4.2.  The solution of (4.1) around x =0

u(u— 0), (0
YO (z) = A w1y o' 2Do
" (x/as) (0) , (0)
3)o0 \Y21 Y22

15 represented by

a4b2 CL4b2 a1b2 . X
CLng a9 b4 CLle e a4 ’
a4b1 CL4b1 Clgbl . X )

(0) )
Y1z = Ciz 241 (Cblb3 aby’ albzq ay

yﬁl) =C11 2

q
asby’ a2b4 asb;  ay

a2b4 CL4b1 a2b1 X
asbs’ alb4 arby " ay

yéz) =Ca -2

where

Cll = bg(alazbi — CLgCL4b1b2),
012 = bl (alagbi — a3a4b1b2)w(0),
021 = a1b4(a2b4 — agbg)(a2b4 — a4b2)/w(0),

022 = agb4(a1b4 — agbl)(a1b4 — a4b1).

(2) The solution (4.1) around x = oo

(u—1)/2 (oo) (oo)
Yy — L Do
Yo (z) = T e,
(r/a3)c Ya1 ~ Yoo
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18 represented by

a2b4’ a1b4’ b4 ’ i
(00) _ bsquw(0) asby asby by azq) 1
Y12 bg — b4 a1b3’ CL2b37 b3 g T ZE’
() _ agbaq asbrg b3g® azq 1
y2l 201 CLQb4 ) Cle4 ) b4 ) T 33,

(00) agby arby by asq
! a3b2 a3b1 b3q T

(c0) asby asby bz asq
Y1 =201\ —V>—F—> 7 — |,

Yoo =~ = 2¢

where

O arazazashs®q(arby — asby)(a1by — agbr)(asbs — azba)(azby — asbs)

2
(a3a4b1b2 — a1a2b42) (a3a4b1b2q — a1a2b42) w(O)
By Watson’s connection formula [6]

(b, ¢/a; q)o(az,4/0%; ¢) oo
(¢,0/a;0)oc (2, 0/ 7 @)oo
(@, ¢/b;q)o0 (b2, 4/b2; @)oo
(¢, a/b;q)oo(2,0/ 7 @)oo
We obtain the connection matrix P(x) = Y (©)(2)~1Y () (z) for the solution III of ¢-Pyr.

We denote (a,b; q)oo = (a5¢) oo (b;9) oo

(4.2) 291 (a,bicq52) = 201 (a,aq/c; aq/b; q; cq/abz)

2¢1 (b, bg/c;bg/a; q; cq/abz) .

Theorem 4.3.  The connection matriz of (2.1) for the solution I1I between x = 0

P(x) _ P11 P12
D21 P22 ’

(a4b1 (131)1 > ( bl.’E a1b3q q)
a1ba? arbs’ 1b3q’ bz oo .1q (a2bs/asb2)
Y

P11 = azby baq x  asq
201 03 3
Cl <a1b27 b4 aQ) <a37 x 7Q)

and x = oo s given by

where

o

<a4b1 asb q> ( biz  aibiq”. )
Y
bsqw(0) aibs’ albs’ aibsq’ biz Oo$lq(a3b1/a1b4q)’

bs — by ‘ agb;  bag & asq
Cll albz’bg’q a3’ xaq
o0

<a4b2 asbo . q> ( box azbsq CJ)

a2bq? azba’ azbsq’  baw 0 lq (a1bs/asby)

b
aibs bsq x  asq,
C\112 <a2b17 ba aq> (as’ T 7Q>oo

(a4b2 azbo . q) ( box a2b4q2.q>
- b3qw(0)_ azbs? azbs’ azbag’ boz 7 00 ,lq(azbz/azbaq)

N bs —b by b a
3 4 012 Zibia 513(]’ q ax_Ba ;qaq
o0

b12 =

b21 =
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We remark that P is pseudo-constant expressed by theta functions.
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