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Bilinearization and Casorati Determinant Solutions
to Non-autonomous 1 + 1 Dimensional Discrete
Soliton Equations

By

Kenji KAJIWARA* and Yasuhiro OHTA™

Abstract

Some techniques of bilinearization of the non-autonomous 1+1 dimensional discrete soliton
equations are discussed by taking the discrete KdV equation, the discrete Toda lattice equation,
and the discrete Lotka-Volterra equation as examples. Casorati determinant solutions to those
equations are also constructed explicitly.

§1. Introduction

The Hirota-Miwa equation, or the discrete KP equation is the bilinear difference
equation of Hirota type given by

ab—c)r(l+1,m,n)r(l,m+1,n+1)+blc—a)r(l,m+ 1L,n)r(l+1,m,n+1)

1.1
(L1) +cla—b)r(l,m,n+1)7(l+1,m+1,n) =0.

Eq.(1.1) is well-known as one of the most important integrable systems[3, 11, 16]. Here,
a, b, ¢ are arbitrary constants playing a role of lattice intervals of discrete independent
variables [, m, n, respectively. The Casorati determinant solution to eq.(1.1) is given

90(18)(l7m7n) Sogs—’_l)(laman e 90(18+N_1)(l,m,n)
(s) (s+1) (s+N-1)
2 (lam,n)SO (laman) 2 (l’m’n)
(12) r(lm,n) = i i ,
‘705\81) (la m, n) 905\87—’_1) (la m, TL) e 905\8I+N_1) (l7 m, n)
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where go( )(l, m,n) (r =1,...,N) are arbitrary functions satisfying the linear relations
(s) ( )
‘701" (l —I— 17 m; n) (l m n) _ (p$8+1)(l’ m’ n)’
a
(s) (s)
(1.3) or (k14 1,ml))— pr_(Lm;n) = o (1, m,n),
( )(l m,n+ 1) —go,(ns)(l m,n)
c —— = o (l,mn).

For example, choosing g0£ %) t0 be sum of the exponential type functions as

(14) @ (1 m, ) =agpi (1 + apy)'(1+ bpy)™ (1 + cpy)"
| + Bra7(1+ agr)' (14 bg)™ (1 + cqr)",

where «,., (3, are arbitrary constants and p,, ¢, are parameters, then it gives the N—
soliton solution.

It is known that eq.(1.1) yields various discrete and continuous soliton equations
by reductions and limiting procedures. For example, let us impose the condition

(1.5) 7(l+1,m+1,n) <= 7(l,m,n),

where <= denotes the equivalence up to multiple of gauge functions which leaves the
bilinear equation invariant. Then using eq.(1.5) to suppress [-dependence and taking
a = —b, eq.(1.1) yields

(1.6) (b—c) et — b+ o) e 4 20 T T = 0,

where 77" = 7(I,m,n). Eq.(1.6) is transformed to

b—c 1 1
1.7 — Mt = - —,
( ) 7?-‘1-1 b te :Ln_ﬁ—ll ,U;Ln
by the dependent variable transformation
(1.8) " = M
" TmTZznjll

Eq.(1.6) or eq.(1.7) are called the discrete KdV equation[2, 16]. The condition (1.5) is

realized by choosing ¢, = —p, on the level of go( ) (I,m,n) in eq.(1.4). Therefore choosing

the entries of the determinant as

(1.9) 9058)(7”7 n) = a;pp(1+bp.)" (1 +cpp)" + Br(—pr)*(1 = bp)™ (1 + cp,)",

it gives the N—soliton solution of the discrete KAV equation. Hence, if a given equation
turns out to be derived by the reduction or other procedure from the Hirota-Miwa
equation, it is possible to construct wide class of solutions in this manner.
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On the other hand, it has been pointed out that a generalization of the Hirota-Miwa
equation is possible in such a way that the lattice intervals are arbitrary functions of the
corresponding independent variables[7, 23]. Such generalization to the “inhomogeneous
lattice” or to the non-autonomous equation is regarded as an important problem in the
context of ultradiscretization or the box and ball systems, since it corresponds to a gen-
eralization such that the capacity of the boxes changes according to the lattice sites[14].
Moreover, many discrete soliton equations are shown to describe discrete surfaces and
curves in various settings of the discrete differential geometry. In this context, such
inhomogeneity of lattice corresponds to the scaling freedom of parametrization of the
geometric objects and therefore it is geometrically natural[l].

The generalization to the non-autonomous equation is technically straightforward
for the “generic” equation such as the Hirota-Miwa equation because of its gauge in-
variance. However, when we consider the reduction to 1+ 1 dimensional system such as
the discrete KdV equation, the reduction procedure does not work consistently because
of the non-autonomous property on the level of both bilinear equation and solution.
Therefore the 1 4+ 1 dimensional non-autonomous discrete soliton equations have not
been studied well.

Recently, Tsujimoto and Mukaihira have considered the non-autonomous discrete
Toda lattice (1DTL) equation on semi-infinite lattice from the standpoint of Ry and
Ry1 type bi—orthogonal functions[12, 13]. By introducing a certain auxiliary 7 function
which does not appear in the expression of the solution, they succeeded in bilinearization
of the equation and constructing molecular type solution. Then it has been shown
that the non-autonomous discrete 1DTL equation on infinite lattice also admits similar
bilinearization, and the soliton type solutions have been constructed[8]. Moreover, three
different bilinearizations of different origins have been presented for the non-autonomous
discrete KdV equation in [9], each of which requires a certain auxiliary 7 function. The
techniques developed in recent researches may enable systematic studies of the non-
autonomous discrete soliton equations.

The purpose of this paper is to give a review and present some new results on
bilinearization of non-autonomous 1+ 1 dimensional discrete soliton equations and con-
struction of their Casorati determinant solutions. This paper is organized as follows.
In Section 2, we give a brief review of the non-autonomous discrete KP hierarchy and
its solutions. In Section 3, we discuss three bilinearizations of the non-autonomous dis-
crete KdV equation. Section 4 deals with two bilinearizations of the non-autonomous
discrete 1DTL equation. We discuss in Section 5 the case of discrete Lotka-Volterra
equation, where the direct reduction from the discrete two-dimensional Toda lattice
equation works without auxiliary 7 functions.
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§ 2. Non-autonomous Discrete KP Hierarchy

§2.1. 7 Function and Bilinear Equations

We define the 7 function 7x(s;1, m; x, y) depending on infinitely many independent
variables N € Z, s, I = (l3,l2,...), m = (my,ma,...), x = (x1,22,...), and y =
(yla Y2, .. ) by

s s s+N—
R MR e
s s s+N—
P8 ST Y
(21) TN(S;lam;m,y) = . . . )

+1 +N-1
9 ol g

where 90(5) = gogs)(l, m;x,y) (r=1,...,N) satisfy the linear equations

oL+ 1) = W) e

(22) e = g,
2:3) o8 (my Z,,%y)n,,)(p@( v) _ = oD (),

(2.4 St = e,

(2.5) 88 P = ),

for v = 1,2,.... Here the lattice intervals a,, and b, (v = 1,2, ...) are arbitrary functions

with respect to the indicated variables. We note that in the following, we indicate only
the relevant independent variables for notational simplicity, as in eqs.(2.2)—(2.5). For
example, the N—soliton solution is obtained by choosing 905,3) as

oo l,—1 oo my—1 —n
ot =arp} [T [T 0+ an@pe) [] i—[ 1+ b, )enzl mpi 3 vy
v=1i=1, p=1 i=i,
(2'6) oo l,—1 oo my—1
-+ ﬂr(ﬁ H H (1 + a,/(i)qr) H H (1 + bﬂ(z 1)87721 Tndy+ Z Yidr ,
v=11i=i, p=1 i=i,

where «,., 0, are arbitrary constants and p,, ¢, are parameters.

It is known that 7xn(s;l,m;x,y) satisfies infinitely many difference, differential
and difference-differential bilinear equations of Hirota type (for autonomous case, see
for example [21]). We call this hierarchy of equations the non-autonomous discrete KP
hierarchy. We give a list of some typical examples included in the hierarchy:
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KP equation (x =1 y = xa, t = x3)

(2.7) (D; —4DyDy +3D2) 7 -7 =0.

Two-dimensional Toda lattice (2DTL) equation (x =z y =y;, n = s)
1

(2.8) EDwDy Ty " Ty = TEL — Tpt+1Tn—1-

Non-autonomous discrete KP equation (I = =1, n =l a = a;(l;),
bm_aj(lj)’ Cm_a'k(lk)’ {Zvjak} C{ 1,2,3,- })
ay(by, — )T+ 1,m,n)r(l,m+ 1,n+ 1)
(2.9) +om(cn —a))T(l,m+ 1,n)7(l+1,m,n+1)
+en(ag — bp)T(l,myn + 1)7(L+ 1,m+1,n) = 0.

Non-autonomous discrete 2DTL equation (I = [;, m = m;, n = s, a1 = a;(l;),

b = bj(mj)’ {Za.]} C{ 1’2"”})

(1 —abp)mn(l+1,m~+ 1)1 (I,m) — 1 (I + 1,m) 1 (I, m + 1)

(2.10)
+aibym i1 (l,m 4+ D711 (L4 1,m) = 0.

Backlund transformation (BT) of 2DTL equation (z = 1, m = m;, n = s,
bm = bz(mz), 1€ {1,2, e })

(2.11) (Dy — b)) Tn(m) - m(m + 1) + by 7p—1 (M) T (m + 1) = 0.

BT of non-autonomous discrete KP(2DTL) equation (I = [l;, m = [, n = s,
ar = a;(l;), bm = aj(lj)’ {i,j} {12}

aTpe1(l,m+ D1 (L4+1,m) — by T (L+ 1,m) 1, (I, m + 1)

(2.12)
— (a; = b)) 1 (L, m)m (I 4+1,m + 1) = 0.

§2.2. Casoratian Technique

In order to prove that the 7 function given in the form of Casorati determinant
satisfies the bilinear equations, the Casoratian technique is quite useful[16, 17]. We
demonstrate the outline of the technique by taking eq.(2.11) as an example.

Under the setting of eq.(2.11), the 7 function (2.1) reads

n n+1 n+N-—1
wéz(m)wé ;(m>---so§ §<
n n+1 n+N-—1

oS (m) S (m) - (m)
(2.13) Taimy=|"" """ ° ,

m)

n n+1 n+N-—1
e (m) o5 (m) - TN (m)
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where gogcn)(m) (k=1,...,N) satisfy the linear relations

(2.14) Do (m) = oY (m),
(2.15) o\ (m) — oV (m — 1) = by @' (m— 1),

For instance, if we choose go,(cn) (m) as

m—1 m—1
(216) oV (m) = awppp [T (1 +biog e + Beap T (1+big e,
i=ig i=ig

we obtain the N—soliton solution.

The bilinear equation (2.11) is reduced to the Pliicker relation, which is the quadratic
identity among the determinants whose columns are properly shifted. To this end,
we first construct difference/differential formulas which express determinants whose
columns are shifted by 7,,(m).

Lemma 2.1.  The following formulas hold.

(2.17) Tn(m)=]0,--- ,N—2,N—1],

(2.18) Tn(m—1)=|0p—1,1,--- ,N—=2,N — 1|,
(2.19) —bm—1 Tn(m—1)=]| 1,,-1,1,--- ,N =2, N —1|,
(2.20) )
(2.21) )

where “j,, 7 is the column vector

o) (m)

(n+j5)

@y (m)
(2.22) jm=|""

o (m)

and the subscript is shown only when m is shifted.

Proof. Eq.(2.17) follows by definition, and eq.(2.20) is derived from the differential
rule of determinant. Using eq.(2.15) to the i-th column of 7,,(m — 1) for i = N, N —
1,...,2, we have

Tn(m_ 1):| Om—lalm—la"' aN_Qm—laN_ 1m—l |
:| Om—lala"' aN_QvN_]- |a
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which is eq.(2.18). Multiplying —b,,—1 to the first column of the right hand side of
eq.(2.18) and using eq.(2.15) we have eq.(2.19),

_bm—lTn(m_l):| _bm—l'Om—lala"' >N_2,N_1|
—|lp1—1,1,--- ,N=2,N—1]
:|1m—171,"'7N_2’N_1|'

Differentiating eq.(2.18), we have

Opn(m—1)=|1p_1,1,-- N—2N—1|4]|0p_1,1,-- ,N—2, N |
:_bm—lTn(m_1)+| Om—lala"' aN_QaN |a

from which we obtain eq.(2.21). This completes the proof. O
Finally, eq.(2.11) is derived by applying Lemma 2.1 to the Pliicker relation

0=|0pm_1,0,1,--- ,N—2|x| 1,--- ,N—2,N—1,N |
(2.23) ~10,1,-- ,N—2,N—1|x| Opp_1,1,--- ,N—2,N |
+10,1,-- ,N—=2,N | x| Opp_1,1,--- ,N—2,N—1].

Therefore we have shown that the 7 function (2.13) actually satisfies the bilinear equa-
tion (2.11). Other equations are derived in a similar manner. We refer to [16, 17| for
further details of the technique.

§3. Non-autonomous Discrete KAV Equation

§3.1. Casorati Determinant Solution

In this section we consider the following difference equation|[10]

1 1 1 1
Ly Lym _( +_)vm+1
(am bn+1 ) el Am+1 bn "
B ( 1 1 > 1 ( 1 1 ) 1
Qp, bp ) O Am+1  bntl vgfll ’
where a,,, b, are arbitrary functions of m and n, respectively. If a,, and b,, are constants,
eq.(3.1) is equivalent to the discrete KdV equation (1.7). We call eq.(3.1) the non-

autonomous discrete KdV equation.
The N—soliton solutions to eq.(3.1) can be expressed by Casorati determinants as

(3.1)

follows:
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Theorem 3.1.  For each N € N, we define an N x N determinant 7,"* by

(s) (s+1)

N-—1
ot (m,m) o (myn) - o T ()
N—
9058) (m7n) Soés—i_l)(m?n) e 9058+ 1)(m,n)
(3.2) o . . _ ,
s s+1 s+N—1
oW (m,n) o (mn) - oy (m,m)
m—1 n—1
o (m,n) =crpy [ (1 +aip) [T (1 +05pr)
i=my Jj=ngo
(33) m—1 n—1
+8:(=p)* T] (0= aipr) ] 0= bjpr).
i=my Jj=ng
Then
m m—+1
m Tn lTTL
(34) Uy = ﬁ,
n 7-n—l—l

satisfies eq.(3.1).

Unlike the autonomous case, eq.(3.1) cannot be put into the bilinear equation
directly in terms of a single 7 function 7" because of the non-autonomous property.
This difficulty is overcome by introducing suitable auxiliary 7 functions. In the following,

we discuss three different bilinearizations.

§3.2. Bilinearization (I)

Proposition 3.2.  Let 7)), and o), be functions satisfying the bilinear equations
(3.5)  —€e(am —by) 7';”0;”;31 + am (b, + €) Tﬁla;”“ —bp(e+ am) T;”HU,TH =0,

(3.6)  e(am —by) UTTT:[fll + @ (bp — €) T+ bp(e — ap) T 0T =0,

where € is a constant. Then

ol Tm  rmtl
3.7 g = = L
( ) n T:Ln n TrrlnT:ZTj—ll
satisfy
1 1 1 1 1 1
o9 (Eo) Damy (1oL wre (e L) o
€ b, € am

1 Lo (11N . (N S WP
oo (L) R (Bo1) e (1) wre e
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and the non-autonomous discrete KdV equation (3.1). In particular, eq.(3.2) and
~(s+1)

~(s ~(s+N—
‘70& )(ma n) 1 (ma n) U <,0§ * 1)(m,n)
~(s ~(s ~(s+N—
‘Pg )(ma n) 905 +1)(m7 n) U ‘Pg * 1)(m,n)
(3.10) o = ,
~(s ~(s ~(s+N—
&8 (m.n) B85 (myn) -+ BTNV (m,n)
where
m—1 n—1
(811) @ mn)=api+ep) [ (1 taip) [T 0+ b0
1=my Jj=ngo
m—1 n—1
+8:(—pr) (L —epr) J[ @ —aipe) [T (1 = bjpr),
1=my Jj=ng

solve the bilinear equations (3.5) and (3.6).

The bilinearization described in Proposition 3.2 is derived from the discrete KP
hierarchy. The key idea is to introduce auxiliary “autonomous” independent variables
(corresponding lattice intervals are constants) simultaneously, and to apply the reduc-
tion procedure through those autonomous variables. Let us take k =11, [ = lo, m = I3
and n = ly, and choose the corresponding lattice intervals as a1(l;) = 0, az(l2) = ¢,
asz(l3) = am, as(ly) = by, where § and € are constants. The variables k and [ are the
autonomous variables mentioned above.

We now consider the discrete KP equation (2.9) with respect to the variables
(k,m,n)

(3.12) (apm —bp) T(k+ 1, L,m,n)r(k,l,m+1,n+1)
+ am (b, —9) T(k,l,m+1,n)r(k+1,l,m,n+1)
+bp (0 — am) T(k, I,m,n+ 1)7(k+1,1,m+ 1,n) =0,
and the same equation with respect to the variables (I, m,n)
(3.13) €(am —by) 7(k, 1+ 1,m,n)r(k,l,m+1,n+1)
+ am (b, —€) T(k,I,m+ 1,n)r(k, 14+ 1,m,n+ 1)
+bn(e —am) 7(k,l,m,n+ 1)7(k, 1+ 1,m+1,n) =0.

Under this setting, the 7 function (2.1) is written as

N_
PP Pt L QN
1 N-—1

) oSt L gt N
(3.14) T(k,l,m,n) =| ' ' )

1 N-—-1
o N
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m—1 n—1

0 (k,1,m,n) =arpi(1+0p,)* (1 +ep,)' T (1 +aip) J] (1 +05pr)
1=my Jj=no

(3.15)

m—1 n—1

+Brqs (14 0,) (1 + eq)t [ (14 aigr) J] (1 + bjgr).

1=my Jj=no
We next impose the reduction condition on the autonomous independent variables k, [
as

(3.16) T(k+ 1,14+ 1,m,n) < 7(k,l,m,n).

This is achieved by imposing the condition on go( ) (r=1,...,N) as
(3.17) O (k+1,1+1,m,n) = o (k,1,m,n).

In order to realize eq.(3.17), one may take

(3.18) ¢ = —pr, 0=—¢,

so that

O (k+1,14+1,m,n) = (1 —€p?) ¢ (k,1,m,n),

N
(3.19) (k4 1,1+ 1,m,n) = Hl% 2) 7(k,1,m,n).

Then, suppressing the k-dependence by using eq.(3.16), the bilinear equations (3.12)
and (3.13) are reduced to

—€(am —byp) T(l,mn)T(l+1,m+1,n+1)+ap(b, +¢) 7+ 1,m+ 1,n)r(l,m,n+1)
—bp(e+am) T(l+1,m,n+1)7(l,m+1,n) =0,

€(am —bp) T+ 1, mn)T(l,m+1,n+ 1)+ an(b, —€) 7(I,m+ 1,n)7(l+1,m,n+1)
+bn(e —am) T(l,m,n+1)7(l+1,m+1,n) =0,

respectively. By putting
(3.20) " =7(l,m,n), o,

n n

=7+ 1,m,n),

we obtain the bilinear equations (3.5) and (3.6). Then an easy calculation shows that
U and v) satisfy eqs.(3.8) and (3.9).

We finally show that v]* satisfies eq.(3.1). Eq.(3.1) is derived from the cubic equa-
tion in terms of 7,)* which is obtained by eliminating o] from the bilinear equations (3.5)
and (3.6). However, this procedure can be done more systematically in the following
manner. Introducing a vector

\I]m—i—l
(3.21) ®$:<" ),
v
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egs.(3.8) and (3.9) can be rewritten as the following linear system:

(3.22) oL, = LI, oIl = M,

e 11 1 1)\ 1
m 1 bn am " bn am—l—l "
(3.24) M]" = —— o
Am+1 € - —
Am+41 €

Then the compatibility condition of the linear system
(3.25) LM = M L,
gives eq.(3.1). This completes the proof of Proposition 3.2.

Remark.

63

1. The linear system (3.22)—(3.24) is the auxiliary linear system of eq.(3.1) and the

matrices L', M are the Lax pair, where the lattice interval e plays a role of the

spectral parameter. In this sense, the bilinearization in this section can be regarded

as that for the auxiliary linear system.

2. If we eliminate v)* from eqgs.(3.8) and (3.9), and put w]' = ¥I", we obtain the

non-autonomous potential modified KdV equation

m m — ym+1
(3 26) m+1 _ m Tn wn—l—l Wy, m
: wn—|—1 - wn m m m+17 ’y'n, - 9
—Wpia + " Wn am

by taking € — oco. The solution of eq.(3.26) admits several expressions. For exam-

ple, let us use the internal variable s in eq.(3.2) explicitly and write 777" = 7.7*(s).

T (s+1)

Then it is shown that w;" = =57

determinant size N as 7,' = 77*(NN), then it is also shown that w]' =

satisfies eq.(3.26).

§ 3.3. Bilinearization (II)

satisfies eq.(3.26). Similarly, writing 77" with

T (N+1)
T (N)

The non-autonomous discrete KdV equation (3.1) admits an alternate bilineariza-

tion involving an auxiliary 7 function which does not appear in the expression of the

solution.
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Proposition 3.3.  Let 7' and k' be functions satisfying the bilinear equations

(3.27) bp(am—1+ am)kn1Tn’ — am—1(am + by) ,T+117'7T+1+am(am L —ba)T m+-|-117_7'rln —

(3:28) bn(am—1 — @) 7T — am(@m—1 — bo) T K + Am—1(@m — ba) T KNy = 0.

Then v defined in eq.(3.4) satisfies eq.(3.1). In particular, 77" in eq.(3.2) and

) m,m) o (m,n) - Y (mym)
(S) (m n) (S+1)(m n) . (S+N—1)(m n)
(3.29) ko= ? ? ,
29 (m,m) 90 (m,m) - 9D (m m)
m—2 n—1
) m,n) =ampi(1+ ampy) [ (L+azpr) [T (1 + brpr)
j=m. k=n
(3.30) e v
+ ﬁr( ampr H 1- a]Qr H (1 - bka)v
: k= no

solve eqs. (3.27) and (3.28).

Remark. In the autonomous case, namely if a,, and b,, are constants, the auxil-
iary 7 function &' reduces to 7%, the bilinear equation (3.27) yields the equation which
is equivalent to eq.(1.6), and eq.(3.28) becomes trivial, respectively.

Proposition 3.3 is proved by applying the Casoratian technique based on the linear
relations among the entries of the determinants

(3.31) o) (m+1,n) — ol (m,n) = am e (m,n),

(3.32) OB (m —1,n) + am o (m —1,n) = & (m, n),

(3.33) W m,n) = am P (myn) = (1 aip7) ¢ (m = 1,n),
(3.34) (s)(m n+1)— @is)(m n) = by, go(S“)(m,n).

We refer to [9] for further details of the proof.

§3.4. Bilinearization (III)

The non-autonomous discrete KdV equation (3.1) admits the third bilinearization
through the non-autonomous version of the potential discrete KAV equation[15]

1 1 1
3.35 mil ™ = —_—
( ) u’n—|—1 U, (CL2 b2 ) m+1 _ u;n+1 ’
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or
1 1 1 1 1 1
~m+1 ~ ~m+1 ~ —

I e G L e G | 2
where u)"' and u;" are related as

m—1 1 n—1 1

~Mm __ m

(3.37) i _u”+za_i+zb_j'

1=mo J=no
We note that u" is related to v)”* in eq.(3.1) as

1 1 1
— +1
S (o =50 g =
Proposition 3.4.  Let 7,7 and p]' be functions satisfying the bilinear equations
m—+1_m m m-+1 1 1 m-+1_m m-+1_m
(339) Pn Tn—l—l - pn—l—lTn = CL_ - b_ (Tn Tn—l—l — In+1 Tn ) )
m n

1 1
(3.40) pzlfllﬂf — p?rﬁf}l = (a_ + b_) (T;’fingn - T,T_HTT?H) )

m n

Then vI* defined by eq.(3.4) and

pm m—1 1 n—1
(3.41) up = 2 > -y

1=mo Jj=no

1
b;’

satisfy eq.(3.1) and eq.(3.35), respectively. In particular, 7,7 defined by eq.(3.2) and

s s+N— N

90(1 )(ma n) e 903 - 2 (ma TL) Soj(ls+ )(ma n)
N-—-2 N

(3 42) pm . SoéS) (ma n) e Soés+ )(ma TL) Sogs—i_ )(ma n)
N— N

oW (m,n) -+ o2 (m,m) oy (m, m)

where go&s)(m,n) (r=1,...,N) are given by eq.(3.3) solve eqs.(3.39) and (3.40).

Proof of Proposition 3.4 is given by the Casoratian technique by using the linear
relations (3.31) and (3.34)[9].

Remark.

1. Eq.(3.38) follows immediately from eq.(3.39) by dividing the both sides by 7,7 , 71

n n
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2. If we introduce the continuous independent variables x1, s, - - - through 3058) (m,n)
as
m—1 n—1 5
301(:9) (m’ TL) :ani H (1 + bjpr) H (1 + Ckpr) eprm1+Prm3—|—-..
(3.43) 7=mo ko
m—1 n—1 5
+6,(—pr)* H (1- bjpr) H (1 —cxpr) 6_prml_prms+“',
Jj=mo k=no
then 7" becomes the 7 function of the KdV hierarchy. In this case, p;' and u' can
be expressed as
or’m 0
(3.44) Py = 8;1 Uy = o, log 7",
respectively. Accordingly, )" satisfies (3.36) and the potential KAV equation
gam 3 [oum\® 103%am
(3.45) T2 (C ) 280 g
0x3 2 \ Oz, 4 Oxy
simultaneously. This is consistent with the fact that the potential discrete KdV
equation is derived as the Backlund transformation of the potential KdV equation[15].
§4. Non-autonomous Discrete Toda Lattice Equation
§4.1. Casorati Determinant Solution
The non-autonomous discrete 1IDTL equation is given by[4, 8, 12, 13, 22]
@) AT+ B M = AL+ B+ A

(4.2) —

AL BE = 41!

n—n’

where \; is an arbitrary function in ¢. The N-soliton solution is expressed by Casorati
determinants as follows[8, 22]:

Theorem 4.1.  For each N € N, we define an N x N determinant 7. by

n n+1 n+N-—1
S @) I R) - TN (1)
oS () STV (E) - TN (1)

e @) ST @) - TN ()
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t—1 t—1
(43) 907("11) (n, t) = O‘rp? H (1 - prﬂj) + ﬁrp;n H (1 - p;lﬂj)a
Jj=to Jj=to

where \¢ 1s an arbitrary function in t, ., B, are arbitrary constants, and p, are pa-
rameters (r =1,...,N). Then

t t+1 t+1 ¢
T, T, T, T,
t —1 n'n41 t n—1"n+1 o -1
(44) An = —Hy t t+1° Bn = —Ht tt+1 0 Ap = Mt =+ fy

satisfy (4.1).

§4.2. Bilinearization (I)

Proposition 4.2.  Let 7t and 0! be functions satisfying bilinear equations

(4.5) (1= 8pe) 77105 — 005 + 0pe 7, 1160,51 = 0,
(4.6) Ht Trt2,+10f2/+1 —0 Triillef) = (e —9) T£+19f1+1-
Then
ot ! Lt

t n t -1 'n'n+l t n—1"'n+4+1
(4.7) \Pn:E’ Ap =~y TR BnZ—MtT;LH’
satisfy
(4.8) (1= 6ue) W, — W — SBLULH, =0,
(4.9) pe Uy + 0y ARV, = (g — 6) Wit

and the non-autonomous discrete 1DTL equation (4.1). In particular, eq.(4.2) and

EROE RORE R0

©1 ©1

—(n —(n+1 —(n+N-—1
w0 W SOF U= U

—(n —(n+1 —(n+N-1

Rl 0 R Rl ()RR AN (3
where

t—1 t—1

(4.11) 2 (n,t) = app} (1= 0p,) [[ (1 = prssg) + Bepy™ (1= 0p, 1) T (1 = 2y 1)
Jj=to Jj=to

solve the bilinear equations (4.5) and (4.6).
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Proposition 4.2 can be proved by the similar technique to that in Section 3.2. Let
us take k =11, t =13, l = mq and n = s, and choose the corresponding lattice intervals
as a1(ly) = =6, as(la) = —py, bi(my) = €, where § and € are constants. The variables
k and [ are the autonomous variables. We consider the discrete 2DTL equation (2.10)
with respect to the variables (n,[,t)

(4.12) (L4 epe)mn(k, L+ 1, t+ 1)1 (k, 1, t) — T (K, Lt + D)1 (R, 1+ 1,8)
— €T (b L+ L, )1 (k, Lt + 1) =0,
and its Bécklund transformation (2.12) with respect to the variable (n, k,t)

(4.13) piTn1(k+ 1,007, (k, Lt +1) — 6Ty (B, Lt 4+ )1 (B + 1,1, 1)
_(:ut - 5)Tn+l(k, la t)Tn(k + 1, la t+ 1) = 0.

Under this setting, 7 function (2.1) is now written as

(n) (n+1) Spgn-i-N—l)

¥1
n n+1 n+N—1
¢§)¢§+)-~~90§+ :

(4.14) Tn(k, 1, t) = ,
(pg\r;) (pg\r;-i-l) ) SDg\rrz—i-N—l)
t—1
(n)(k’ l’ t) =QrDy (1 - 5p7") (1 + Ep;l)l H (1 - thr)
i=ig
(4.15) 1
T Brgr (1= 6q,)F (L + eq ) T - o).
i=io
We impose the reduction condition on k, [ as
(4.16) Tn(k+ 1,1+ 1,t) = 7 (K, L, t).

This is realized by choosing the parameters of the solutions as

(4.17) e=—5 g =L

r

so that

P (k+ 1,0+ 1,8) = (1= 6p,)(1 = bp, ") oM (k,1,1),

N
(418) Tn(k F10+ 17t) _ H(l — 5p7’)(1 — 5p;1) Tn(k,l,t).

r=1
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Suppressing I-dependence by using eq.(4.16), and putting
(4.19) Tk, 1) =78, T(k+1,1,t) = 67,

n?

the bilinear equations (4.12) and (4.13) are reduced to egs.(4.5) and (4.6), respectively.

It is clear that the linear equations (4.8) and (4.9) follow from the bilinear equations
(4.5) and (4.6), respectively, through the dependent variable transformation (4.7). In
order to obtain eq.(4.1), we introduce

v,
(4.20) Pl = ( \1;1> :

After some manipulation, the linear equations (4.8) and (4.9) can be rewritten as

(421) o, = ILB., oL = Mial,

(4.22) Ll = -0 [AZH + B+ (1= o) (i - %)} —02 AL By
n 1 O I
n i o % _% _Afl

Then the compatibility condition L, M} = M} Lt . | gives eq.(4.1). This completes
the proof of Proposition 4.2.

§4.3. Bilinearization (II)

There is an alternate bilinearization for eq.(4.1), which is similar to the second
bilinearization of the non-autonomous discrete KdV equation discussed in Section 3.3.

Proposition 4.3.  Let 7t and 1 be functions satisfying the bilinear equations

(4.24) Tt = = e (1T — o)
(4.25) P Thr — 1 Th T = (e — 1) T i

Then Al and B! defined in eq.(4.7) satisfy eq.(4.1). In particular, eq.(4.2) and

n n+1 n+N-—1
w% ;<t> E +I;<t>~- w% +N 1;<t>
wn t n—+ t n+N— t
(4.26) . 2.()2.() 2 ()’
n. ’I’I/. o n 1\}—
R O R AR () RN G ()
t—2 -2
(4.27) M (t) = rpp (1 = pipse) [ (1 = prp) + Bopy (1 —p; M) T (1 =0y 1),
J=to Jj=to

solve eqs.(4.24) and (4.25).



70 K. KAJIWARA AND Y. OHTA

Eq. (4.1) is derived from the bilinear equations (4.24) and (4.25) as follows; multi-

: 1
plylng (1 o Ht—1 Mt

)riTh 1 to eq.(4.25) and using eq.(4.24) we have

(4.28) (1) (em, 1 — e ) = () (eeamy By — g )

o t_t+1_t—1 __t
- (/\t - )‘t—l)TnTn Tn+1Tn+1-

Dividing equation (4.28) by 7.7t 7. 7L, 1, we obtain the first equation of eq. (4.1).

The second equation is an identity under the variable transformation (4.7).
Proposition 4.3 is proved by applying the Casoratian technique based on the linear
relations among the entries of the determinant

(4.29) P (t+1) = M () — pep" (1),
(4.30) Y () = @M (t = 1) = etV (t - 1),
(4.31) (1= pise) (1= p; )l (= 1) = 9 () — pep ")),

We refer to [8] for further details of the proof.

Remark.  Recently Tsujimoto has presented a theoretical background of appear-
ance of the auxiliary 7 function 7 in this section by considering the two-dimensional
chain of the Darboux transformations[22].

§5. Non-autonomous discrete Lotka-Volterra Equation

§5.1. Lotka-Volterra Equation

The Lotka-Volterra equation

(5.1) 7 log uy = Upi1 — Up_1,
can be transformed to the bilinear equation
(5.2) (Dt + D)Tng1 - Tn = Ta—1Tn+2,

through the dependent variable transformation

+ 1.

Tn—1Tn+2 d Tn+1
5.3 S (b L s — |
(5-3) tn Tn+1Tn dt 8 Tn

The N-soliton solution to eq.(5.1) is given by

n n—+1 n+N—1
()(+)"‘90(1+ )

Y1 ¥
(n) (n+1) (n+N-1)
« o (p2

2
(54) Tn = 2 ’ .

1 N-—-1
o A




BILINEARIZATION OF DISCRETE SOLITON EQUATIONS 71

n 1\" a1
) =ap(l+r)" e T LB 1+ — | e ’“lk)t.
(5 5) sol(c ) (1 ) (I+rk)t 5 1 - (1+
k
where g, (B are arbitrary constants and ry are parameters (k=1,...,N).

The Lotka-Volterra equation is reduced from the Backlund transformation of the
2DTL equation (2.11). Let us impose a reduction condition for 7,(m) and go,in) (m)
given in eqs.(2.13) and (2.16), respectively:

n n—+1
(5.6) T(m+1) = 11 (m), o™ (m+1) = "™ (m),

The condition (5.6) is achieved by putting

(5.7) b = —b,  qp =~
11—k
b
or
1
(5.8) pe=0b14+7rK), q =0 (1 + —) .
Tk
Then eq.(2.11) is rewritten as
(59) (Dm + b) Tn * Thn+1 = b Tn+2Tn—1-

Noticing that b can be normalized to be 1 without loss of generality, we obtain the
bilinear equation (5.2) and its Casorati determinant solution (5.4) and (5.5).

§5.2. Non-autonomous Discrete Lotka-Volterra Equation

The discrete Lotka-Volterra equation[5, 6] can be derived by discretizing the inde-
pendent variable x in the Bécklund transformation of 2DTL equation, which implies
that it can be formulated as the reduction from the discrete 2DTL equation itself. The
reduction procedure works well also for the non-autonomous case without auxiliary 7
functions, as shown below.

We consider the non-autonomous discrete 2DTL equation (2.10) with [ =1, m =
my,n=3=8,a;=ai(ly), by, = —b1(mq):

(1 +abp)mn(l+1,m+ 1) (l,m) — 7 (L + 1,m) 7, (I,m + 1)

(5.10)
= aibyTnr1(l,m+ D)1 (I + 1,m),

where the 7 function is given by

n n+1 n+N—1
pi U Y
n +1 n+N—1
T :

n 1 N-—1
o A
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-1 m—1

(n)(l m) =agpy H (14 a;p) H (1—b;p, )

(5.11) e e
+ Bray H 1+ aiqk) H (1—bjq,").
i=lg Jj=mgo
We impose the reduction condition,
(5.12) Tn(l,m+1) & 7 (l ()7 (n+1)
. n\t ~ In4l 7m)a P ( am+1) = P (lam)a
which is achieved by putting
1

(5.13) b =1, pr=14+7r,, q=1+—.

Tk
Then gogfn) is written as

-1 n l—1
n 1 i
(514) @) = ar@+m)" [ O +ai +airi) + B (1 + _> 11 (1 +a; + a_) .

T T
i=lo k7 iz, k

Now suppressing m-dependence and writing 7,,(I,m) = 7., the bilinear equation (5.10)
is reduced to
l -l
(515) (1 + al) 'IL—l_i-]iTl T’IZL+17-’IlL—|-1 =ap T, L—|—2 +1
from which we obtain the non-autonomous discrete Lotka-Volterra equation

14a okt 14 avl, 44

’IL

5.16 )
( ) 1+a1 v 14+ al+1vl+1

through the dependent variable transformation

l +1
Th4+2Th
(5.17) ol = o2 nol
g l
Tn Tn—i—l

Eq.(5.16) is equivalent to the generalization of the discrete Lotka-Volterra equation in
[4, 18, 19, 20]. Further generalization of eq.(5.16) is proposed in [18] which corresponds
to de-autonomization of n. This equation is derived from the non-autonomous dis-
crete potential KAV equation (3.35) through the change of coordinates and the Miura

transformation.

References

[1] Discrete Differential Geometry, eds. by A.I. Bobenko, P. Schréder, J.M. Sullivan and G.M.
Ziegler (Birkhouster, 2008).



BILINEARIZATION OF DISCRETE SOLITON EQUATIONS 73

[2] R. Hirota, J. Phys. Soc. Jpn. 43(1977) 1424.

[3] R. Hirota, J. Phys. Soc. Jpn. 50(1981) 3785.

[4] R. Hirota, J. Phys. Soc. Jpn. 66 (1997) 283.

[5] R. Hirota and S. Tsujimoto, RIMS Kokyuroku, Kyoto University 868 (1994) 31. (in
Japanese)

[6] R. Hirota and S. Tsujimoto, J. Phys. Soc. Jpn. 64 (1995) 3125.

[7] K. Kajiwara and J. Satsuma, J. Phys. Soc. Jpn. 60(1991), 3986.

[8] K. Kajiwara and A. Mukaihira, J. Phys. A: Math. Gen. 38 (2005) 6363.

[9] K. Kajiwara and Y. Ohta, J. Phys. Soc. Jpn. 77(2008) 054004.

[10] N. Matsuura, Book of Abstracts, DMHF2007: COE Conf. Development of Dynamic Math-
ematics with High Functionality (Kyushu University, 2007) p. 93.

[11] T. Miwa, Proc. Japan Acad. Ser. A Math. Sci. 58(1982) 9.

[12] A. Mukaihira and S. Tsujimoto, J. Phys. A: Math. Gen. 37(2004) 4557.

[13] A. Mukaihira and S. Tsujimoto, J. Phys. A: Math. Gen. 39 (2006) 779.

[14] A. Nagai, T. Tokihiro, J. Satsuma, R. Willox, and K. Kajiwara, Phys. Lett. A234(1997)
301.

[15] F. Nijhoff and H. Capel, Acta. Appl. Math. 39(1995) 133.

[16] Y. Ohta, R. Hirota, S. Tsujimoto and T. Imai, J. Phys. Soc. Jpn. 62(1993) 1872.

[17] Y. Ohta, K. Kajiwara, J. Matsukidaira and J. Satsuma, J. Math. Phys. 34(1993) 5190.

[18] V.P. Spiridonov, S. Tsujimoto, A.S. Zhedanov, Comm. Math. Phys. 272(2007) 139.

[19] V.P. Spiridonov, S. Tsujimoto, A.S. Zhedanov, Methods Appl. Anal. 2(1995) 369.

[20] V.P. Spiridonov and A.S. Zhedanov, J. Phys. A: Math. Gen. 30(1997) 8727.

[21] S. Tsujimoto, Publ. Res. Inst. Math. Sci. 38(2002) 113.

[22] S. Tsujimoto, Determinant solutions of the nonautonomous discrete Toda equation as-
sociated with the deautonomized discrete KP hierarchy, to appear in J. Syst. Sci. &
Complexity (2009).

[23] R. Willox, T. Tokihiro and J. Satsuma, J. Math. Phys. 38(1997) 6455.



