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On oscillatory solutions in ultradiscrete system
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Abstract

We discuss oscillatory solutions in ultradiscrete systems of linear and nonlinear equations.

Firstly, existence of oscillatory solutions is shown in the ultradiscrete system corresponding
to the second‐order linear difference equation. For the ultradiscrete SineGordon equation,
we construct oscillatory solutions which are considered to be a counterpart of the breather

solutions.

§1. Introduction

Ultradiscretization is a limiting procedure constructing a cellular automaton from

a given difference equation. To apply this procedure, we first transform a dependent
variable in a given equation x_{n} to a new variable X_{n} by

(1.1) x_{n}=e^{X_{n}/\in},

where  $\epsilon$>0 is a parameter. Then we take the limit  $\epsilon$\rightarrow+0 . As a result, multiplication,
division and addition for the original variables are replaced by addition, subtraction and

\displaystyle \max‐function for the new ones, respectively. However, it is not known how to cover vari‐

ables with nondefinite sign. Hence, a serious difficulty arises in ultradiscretization of the

trigonometric functions, which are often employed for describing oscillatory phenomena.
In this paper, we report one method to capture oscillatory phenomena in ultradiscrete

systems [1, 2]. We first discuss an ultradiscretization of a second‐order linear difference

equation and its solution in section 2. It is shown that behaviour of solutions in the

ultradiscrete system is classified by system parameters, as is in continuous systems.
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Moreover, we present an oscillatory solution whose origin is not the trigonometric func‐

tions. In section 3, we apply this result to a nonlinear system, the SineGordon (SG)
equation. We construct oscillatory solutions of the ultradiscrete SG equation. These

solutions are considered to be a counterpart of the breather solutions.

§2. Linear System

As is well known, the general solution of the second‐order linear differential equation

(2.1) \displaystyle \frac{d^{2}x}{dt^{2}}-( $\lambda$+ $\mu$)\frac{dx}{dt}+ $\lambda \mu$ x=0
is classified by constants  $\lambda$ and  $\mu$ :

(2.2)  x(t)=c_{1}e^{ $\lambda$ t}+c_{2}e^{ $\mu$ t} ( $\lambda$,  $\mu$\in \mathbb{R},  $\lambda$\neq $\mu$) ,

(2.3) x(t)=e^{ $\alpha$ t}(c_{1}\cos( $\beta$ t)+c_{2}\sin( $\beta$ t)) ( $\lambda$=$\mu$^{*}= $\alpha$+i $\beta$\in \mathbb{C}) .

We remark that (2.2) includes the case of  $\lambda$= $\mu$\in \mathbb{R} as its limit. Similarly, the general
solution of the second‐order linear difference equation

(2.4) x_{n+1}-( $\lambda$+ $\mu$)x_{n}+ $\lambda \mu$ x_{n-1}=0

is classified as

(2.5) x_{n}=c_{1}$\lambda$^{n}+c_{2}$\mu$^{n}

(2.6) x_{n}=c_{1}( $\alpha$+i $\beta$)^{n}+c_{2}( $\alpha$-i $\beta$)^{n}

( $\lambda$,  $\mu$\in \mathbb{R},  $\lambda$\neq $\mu$) ,

( $\lambda$=$\mu$^{*}= $\alpha$+i $\beta$\in \mathbb{C}) .

In both systems, essential behaviour of solutions is determined only by the values of

system parameters: exponentially growth (or decay) or oscillation.

Let us construct an ultradiscrete analogue of the difference equation

(2.7) x_{n+1}+bx_{n}+cx_{n-1}=0 (n\geq 0) ,

where b and c are constants [1]. We assume x_{n}\geq 0 for \forall n . We first consider the case

of b, c<0 . Setting

(2.8) b=-e^{B/\in}, c=-e^{C/\in}, x_{n}=e^{X_{n}/\in},

transposing the negative terms and taking the limit  $\epsilon$\rightarrow+0 ,
we have the ultradiscrete

system

(2.9) X_{n+1}=\displaystyle \max(X_{n}+B, X_{n-1}+C) .
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Solving (2.9) for given initial values X_{0} and X_{1} ,
we obtain solutions

(2.10) if 2B\geq C, X_{n}=\displaystyle \max(X_{1}+B, X_{0}+C)+(n-2)B,

(2.11) \mathrm{i}\mathrm{f}2B<C, X_{n}=\left\{\begin{array}{ll}
\max(X_{1}+B, X_{0}+C)+(k-1)C & (n=2k) ,\\
\max(X_{1}, X_{0}+B)+kC & (n=2k+1) .
\end{array}\right.
We have two types of solutions, a linear growth type (2.10) and an oscillating type

(2.11). Essential behaviour of solutions is again determined only by the values of system

parameters B and C . Typical behaviour of these solutions is shown in Figure 13.

We find in Figure 2 and 3 that the solution (2.11) actually describes an oscillatory

phenomenon.

Figure 1. An example of linear growth type solution. Values of the system parameter

and initial values are B=1, C=-1, X_{0}=1, X_{1}=-1.

We next study the case of b>0 and c<0 . Setting b=e^{B/\in}, c=-e^{C/\in}, x_{n}=

e^{X_{n}/\in}
, transposing the negative term and taking the limit  $\epsilon$\rightarrow+0 ,

we have

(2.12) \displaystyle \max(X_{n+1}, X_{n}+B)=X_{n-1}+C.

We again consider the initial value problem of (2.12). Here, we require existence and

uniqueness of the solution at each step. Then, we have the unique solution for n\geq 0

only in the case that 2B<C and X_{1} satisfies X_{0}+B<X_{1}<X_{0}+C-B for arbitrary

X_{0},

(2.13) X_{n}=\left\{\begin{array}{ll}
X_{0}+kC & (n=2k\geq 0) ,\\
X_{1}+kC & (n=2k+1\geq 1) ,
\end{array}\right.
which is an oscillatory type.
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Figure 2. An example of oscillating type
solution. Values of the system parameter

and initial values are B=-1, C=1,

X_{0}=1, X_{1}=-1.

Figure 2. An example of oscillating type
solution. Values of the system parameter

and initial values are B=-1, C=1,

X_{0}=1, X_{1}=-1.

Figure 2. An example of oscillating type
solution. Values of the system parameter

and initial values are B=-1, C=1,

X_{0}=1, X_{1}=-1.

Figure 3. An example of oscillating type
solution. Values of the system parameter

and initial values are B=-2, C=0,

X_{0}=1, X_{1}=-1.

In the case of b<0 and c>0 ,
we have the ultradiscrete system

(2.14) \displaystyle \max(X_{n+1}, X_{n-1}+C)=X_{n}+B.

Again we consider the initial value problem and require existence and uniqueness of

solution. The unique solution, which is a linear growth type,

(2.15) X_{n}=X_{1}+(n-1)B (n\geq 1)

exists only in the case of 2B>C and X_{1}>X_{0}+C-B.

Finally, in the case of b, c>0 ,
we have the ultradiscrete system

(2.16) \displaystyle \max(X_{n+1}, X_{n}+B, X_{n-1}+C)=-\infty,

whose solution is a trivial solution  X_{n}=-\infty for  n\geq 0.

The solution in the case b<0, c<0 has the richest structure among all the cases.

In order to clarify the origin of this solution, we derive it by taking the limit of a solution

of (2.7). The characteristic roots of (2.7) are

(2.17)  $\lambda$\displaystyle \pm=\frac{-b\pm\sqrt{b^{2}-4c}}{2}=\frac{e^{B/\in}\pm\sqrt{e^{2B/\in}+4e^{C/\in}}}{2},
where we put b=-e^{B/\in} and c=-e^{C/\in} . The general solution is given by

(2.18) x_{n}=a_{1}( $\epsilon$)$\lambda$_{+}^{n}+a_{2}( $\epsilon$)$\lambda$_{-}^{n},

where a_{1}( $\epsilon$) and a_{2}( $\epsilon$) do not depend on n . If 2B\geq C ,
we have

(2.19)  $\lambda$+\sim e^{B/\in}, $\lambda$_{-}\sim-e^{(C-B)/\in} ( $\epsilon$\rightarrow+0) .
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As a sufficient condition of x_{n}>0 ,
we assume a_{1}=e^{A_{1}/\in}, a_{2}=e^{A_{2}/\in} and A_{1}\gg A_{2}.

Then

(2.20) x_{n}\sim e^{(A_{1}+nB)/\in} ( $\epsilon$\rightarrow+0)
and its ultradiscrete limit gives a growth type solution

(2.21) X_{n}=A_{1}+nB.

If 2B<C ,
we have

(2.22) $\lambda$_{+}\sim e^{C/2 $\epsilon$}, $\lambda$_{-}\sim-e^{C/2 $\epsilon$} ( $\epsilon$\rightarrow+0) .

Here we set a_{1}=e^{A_{1}/\in}+e^{A_{2}/\in} and a_{2}=e^{A_{2}/\in} ,
which is valid for our assumption x_{n}>0,

and further assume A_{1}<A_{2} . Then, in  $\epsilon$\rightarrow+0 ,
we have

x_{n}\sim(e^{A_{1}/\in}+e^{A_{2}/\in})e^{nC/2 $\epsilon$}+(-1)^{n}e^{A_{2}/\in}e^{nC/2 $\epsilon$}

\sim\{
(2.23) \sim\{

e^{(A_{2}+nC/2)/\in} (n : even),

(e^{A_{1}/\in}+2e^{A_{2}/\in})e^{nC/2 $\epsilon$} (n : even),
e^{A_{1}/\in}e^{nC/2 $\epsilon$} (n : odd),

e^{(A_{1}+nC/2)/\in} (n : odd).

Its ultradiscrete limit gives an oscillatory type solution

(2.24) X_{n}=\left\{\begin{array}{ll}
A_{2}+nC/2 & (n: \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}),\\
A_{1}+nC/2 & (n: \mathrm{o}\mathrm{d}\mathrm{d}).
\end{array}\right.
We comment that the origin of an oscillatory solution is not the trigonometric function.

A point constructing an oscillatory type solution is to consider a pair of the exponential
functions with positive and negative roots, respectively.

§3. Nonlinear System

We apply the result in the previous section to a nonlinear system [2]. We consider

the SG equation

(3.1) \displaystyle \frac{\partial^{2} $\varphi$}{\partial x\partial t}=\sin $\varphi$.
As is well known, the SG equation possesses the N‐soliton solution, which is usually
called the multi‐kink solution. The two‐soliton solution is written as

(3.2)  $\varphi$=4\displaystyle \tan^{-1}(\frac{e^{$\eta$_{1}}+e^{$\eta$_{2}}}{1-\frac{(p_{1}-p_{2})^{2}}{(p_{1}+p_{2})^{2}}e^{$\eta$_{1}+$\eta$_{2}}}) ,

(3.3) $\eta$_{j}:=p_{j}x+\displaystyle \frac{t}{p_{j}}+d_{j}.
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The breather solution, which describes an oscillatory phenomenon, is also a well‐known

special solution of (3.1). It is obtained as a specific case of (3.2). If we put p_{1}=a+ib,

p_{2}=aib (a, b\in \mathbb{R}) and d_{1}=d_{2}=d\in \mathbb{R} for simplicity, (3.2) is reduced to the breather

solution

(3.4)  $\varphi$=4\displaystyle \tan^{-1}(\frac{2e^{ax+\frac{at}{a^{2}+b^{2}}+d}\cos(bx-\frac{bt}{a^{2}+b^{2}}+d)}{1+\frac{b^{2}}{a^{2}}e^{2(ax+\frac{at}{a^{2}+b^{2}}+d)}})
If we further introduce new axes ( $\xi$, s) by

(3.5)  $\xi$=x+t, s=x-t

and put a^{2}+b^{2}=1 for simplicity, (3.4) is deformed into a well‐known form,

(3.6)  $\varphi$=4\displaystyle \tan^{-1}(|\frac{a}{b}| sech (a $\xi$-\displaystyle \log|\frac{a}{b}|)\cos(bs))
An integrable discrete analogue of (3.1) is given by Hirota [3]

(3.7) \displaystyle \sin(\frac{$\phi$_{n+1}^{m+1}+$\phi$_{n-1}^{m-1}-$\phi$_{n+1}^{m-1}-$\phi$_{n-1}^{m+1}}{4})=$\delta$^{2}\sin(\frac{$\phi$_{n+1}^{m+1}+$\phi$_{n-1}^{m-1}+$\phi$_{n+1}^{m-1}+$\phi$_{n-1}^{m+1}}{4})
through the bilinearizing technique. In order to construct an ultradiscrete analogue
of the SG equation, coworkers and two of the authors (S.I and J.S) proposed another

discrete SG equation [4]

(3.8) \left|\begin{array}{lllll}
(1- & $\delta$^{2})u_{n-1}^{m-1} & -1(1+ & $\delta$^{2})/u_{n-1}^{m+1} & -1\\
(1+ & $\delta$^{2})/u_{n+1}^{m-1} & -1(1- & $\delta$^{2})u_{n+1}^{m+1} & -1
\end{array}\right|=0.
If we introduce a new variable f_{j}^{t} by

(3.9) u_{n}^{m}=\displaystyle \frac{f_{n+1}^{m+1}f_{n-1}^{m-1}}{f_{n+1}^{m-1}f_{n-1}^{m+1}},
(3.8) is reduced to the trilinear form

(3.10) \left|\begin{array}{llll}
(1- & $\delta$^{2})f_{n-2}^{m-2} & f_{n-2}^{m}(1+ & $\delta$^{2})f_{n-2}^{m+2}\\
 & -f_{n}^{m}2 & f_{n}^{m} & f_{n}^{m+2}\\
(1+ & $\delta$^{2})f_{n+2}^{m-2} & f_{n+2}^{m}(1- & $\delta$^{2})f_{n+2}^{m+2}
\end{array}\right|=0.
For the purpose of ultradiscretization, setting

(3.11)  $\delta$=\tanh(L/2 $\epsilon$) , f_{n}^{m}=e^{F_{n}^{7m}/\in}, u_{n}^{m}=e^{U_{n}^{m}/\in}
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and taking the limit  $\epsilon$\rightarrow+0 ,
we have an ultradiscrete analogue of the SG (udSG)

equation for U_{n}^{m}

\displaystyle \max[-|L|+U_{n+1}^{m+1}+U_{n-1}^{m-1}, |L|-U_{n+1}^{m-1}, |L|-U_{n-1}^{m+1}]
(3.12) =\displaystyle \max[|L|-U_{n+1}^{m-1}-U_{n-1}^{m+1}, U_{n+1}^{m+1}, U_{n-1}^{m-1}]
from (3.8) and for F_{n}^{m}

\displaystyle \max[-|L|+F_{n+2}^{m+2}+F_{n}^{m}+F_{n-2}^{m-2}, |L|+F_{n+2}^{m-2}+F_{n}^{m+2}+F_{n-2}^{m},
|L|+F_{n+2}^{m}+F_{n}^{m-2}+F_{n-2}^{m+2}]

=\displaystyle \max[|L|+F_{n+2}^{m-2}+F_{n}^{m}+F_{n-2}^{m+2}, F_{n+2}^{m+2}+F_{n}^{m-2}+F_{n-2}^{m},
(3.13) F_{n+2}^{m}+F_{n}^{m+2}+F_{n-2}^{m-2}]
from (3.10) and the relation between F_{n}^{m} and U_{n}^{m}

(3.14) U_{n}^{m}=F_{n+1}^{m+1}+F_{n-1}^{m-1}-F_{n+1}^{m-1}-F_{n-1}^{m+1}

from (3.9). Refer to [4] for more details about the udSG equation and its soliton

solutions.

For the purpose of our discussion, we consider the two‐soliton solution of (3.10),

(3.15) f_{n}^{m}=1+a_{1}x_{1}+a_{2}x_{2}+a_{1}a_{2}b_{12}x_{1}x_{2},

(3.16) x_{j} :=p_{j^{n}}q_{j^{m}},

(3.17) b_{jk} :=\displaystyle \frac{(p_{j^{2}}-p_{k^{2}})^{2}}{((p_{j}p_{k})^{2}-1)^{2}},
where p_{j}, q_{j} are parameters satisfying the dispersion relation

(3.18) $\delta$^{2}(p_{j^{2}}+1)(q_{j^{2}}+1)=(p_{j^{2}}-1)(q_{j^{2}}-1)

and a_{j} �s are arbitrary phase constants. Let us construct a 2‐periodic solution. If we set

(3.19) p_{2}=-p_{1}, q_{2}=q_{1}, a_{1}=$\alpha$_{1}+$\alpha$_{2}, a_{2}=$\alpha$_{2},

then (3.15) is reduced to

(3.20) f_{n}^{m}=\left\{\begin{array}{ll}
1+($\alpha$_{1}+2$\alpha$_{2})x_{1} & (n: \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}),\\
1+$\alpha$_{1}x_{1} & (n: \mathrm{o}\mathrm{d}\mathrm{d}).
\end{array}\right.
In order to ultradiscretize (3.20), we put

(3.21) p_{1}=e^{P_{1}/\in}, q_{1}=e^{Q_{1}/\in}, $\alpha$_{1}=e^{A_{1}/\in}, $\alpha$_{2}=e^{A_{2}/\in} (A_{1}<A_{2})
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and take the limit  $\epsilon$\rightarrow+0 . Then we have the ultradiscrete analogue of (3.20),

(3.22) F_{n}^{m}=\{ \displaystyle \max(0, P_{1}n+Q_{1}m+A_{2}) (n : even),

\displaystyle \max(0, P_{1}n+Q_{1}m+A_{1}) (n : odd),

where P_{1} and Q_{1} satisfy the dispersion relation

(3.23) |P_{1}+Q_{1}|=|L|+|P_{1}-Q_{1}|.

We have a solution of (3.12) by substituting (3.22) into (3.14). In order to exaggerate
its periodic behaviour, we introduce new independent variables (k, l) by

(3.24) n=k-l, m=k+l

and consider a specific case P=Q=|L|/2.
Tables 1, 2 show behaviour of U_{n}^{m} for various values of parameters A_{1}, A_{2} . In both

cases, the solutions describe localized pulses oscillating in period 2 for l . This behaviour

is similar to that of the breather solution.

-2 -1 0 1 2 3 \rightarrow k

l : even . . . 001000

l:\mathrm{o}\mathrm{d}\mathrm{d} . . . 002100

Table 1. Behaviour of oscillatory solution. L=2, P_{1}=Q_{1}=1, A_{1}=-1, A_{2}=0.

. . . -4 -3 -2 -1 0 1 2 3 . . . \rightarrow k

l: even . . . 00011000

l:\mathrm{o}\mathrm{d}\mathrm{d} . . . 00100100

Table 2. Behaviour of oscillatory solution. L=2, P_{1}=Q_{1}=1, A_{1}=-1, A_{2}=3.

We can construct the oscillatory solutions with richer structure by starting from

the four‐soliton solution. Refer to [2] for details of these solutions.

§4. Concluding Remarks

We have given the ultradiscrete analogue of the second‐order linear equation. The

solutions of the ultradiscrete system are classified to two types, linear growth and oscil‐

lating types. This classification depends only on the values of system parameters. We
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have also given oscillating solutions of the udSG equation. They are considered to be a

counterpart of the breather solutions. We comment that these solutions are essentially

2‐periodic ones due to its construction.
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