Self-similar blow-up for a chemotaxis system in higher dimensional domains

By

Yūki NAITO * and Takasi SENBA **

§1. Introduction and statement of main results

We consider solutions of a parabolic-elliptic system

(1.1)
$$\begin{cases} u_t = \nabla \cdot (\nabla u - u \nabla v) & \text{in } \Omega \times (0, T) \\ 0 = \Delta v + u & \text{in } \Omega \times (0, T), \end{cases}$$

where either $\Omega = \{x \in \mathbf{R}^N : |x| < L\}$ or $\Omega = \mathbf{R}^N$ with $N \ge 3$. In the former case, we assume $\partial u / \partial \nu - u \partial v / \partial \nu = 0$ and v = 0 on $\partial \Omega$, where ν denotes the outer unit normal vector. This system arises in the study of the motion of bacteria by chemotaxis as a simplification of the Keller-Segel model (see [16], [22]). Here, u and v represent the density of the bacteria and the concentration of the chemo-attractant, respectively. This system also has been used as a model for the evolution of self-attracting clusters (see [27], [28], [2]).

In this note we consider the blow-up rate of solutions to the system

(1.2)
$$\begin{cases} u_t = \nabla \cdot (\nabla u - u \nabla v) & \text{in } \Omega \times (0, T) \\ 0 = \Delta v + u & \text{in } \Omega \times (0, T) \\ \frac{\partial u}{\partial \nu} - u \frac{\partial v}{\partial \nu} = 0 \text{ and } v = 0 & \text{on } \partial \Omega \times (0, T) \\ u(x, 0) = u_0(|x|) & \text{in } \Omega, \end{cases}$$

Received Feburary 25, 2009. Revised July 31, 2009. Accepted August 7, 2009.

2000 Mathematics Subject Classification(s): 35K55, 35K57, 92C17.

^{*}Department of Mathematics, Faculty of Sciences, Ehime University, Matsuyama 790-8577, Japan. e-mail: ynaito@math.sci.ehime-u.ac.jp

^{**}Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan.

e-mail: senba@mns.kyutech.ac.jp

^{© 2009} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

where $\Omega = \{x \in \mathbf{R}^N : |x| < L\}$ with $N \ge 3$ and $0 < L < \infty$, and $u_0(r)$ is a nonnegative continuous function on [0, L]. We restrict ourselves to the study of radially symmetric solutions. It is known by [2] that the system (1.2) has a unique local classical solution (u, v). It is easy to see that u and v are positive for 0 < t < T, and that the conservation of the initial mass of u holds, that is,

(1.3)
$$\|u(\cdot, t)\|_1 = \|u_0(\cdot)\|_1 \quad \text{for } 0 < t < T,$$

where $\|\cdot\|_p$ denotes the standard $L^p(\Omega)$ norm for $1 \leq p \leq \infty$. A solution (u, v) is said to blow-up at $t = T < \infty$ if (u, v) is classical in $\Omega \times (0, T)$ and satisfies $\limsup_{t\to T} \|u(\cdot, t)\|_{\infty} = \infty$. A simple argument shows that if u blows up at a finite time t = T then

$$\liminf_{t \to T} (T-t) \| u(\cdot, t) \|_{\infty} > 0.$$

We say that the blow-up is of type I if u satisfies

$$\limsup_{t \to T} (T-t) \| u(\cdot, t) \|_{\infty} < \infty.$$

The blow-up is called type II if it is not type I. We note that self-similar solutions, given by (2.1) below, blow up in type I rate.

We briefly review some known results concerning blow-up behavior for (1.1) and related systems. In the case N = 2, Herrero and Velázquez [15] considered the system

(1.4)
$$\begin{cases} u_t = \nabla \cdot (\nabla u - u \nabla v) & \text{in } \Omega \times (0, T) \\ \tau v_t = \Delta v - v + u & \text{in } \Omega \times (0, T), \\ \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0 & \text{in } \partial \Omega \times (0, T), \end{cases}$$

together with initial conditions

$$u(x,0) = u_0(|x|)$$
 and $v(x,0) = v_0(|x|)$ for $x \in \Omega$,

where $\Omega = \{x \in \mathbf{R}^2 : |x| < L\}$ and $\tau > 0$. It was shown in [15] that (1.4) has radially symmetric solutions such that u develops a Dirac delta-type singularity at the origin in a finite time, and that u blows up in type II rate. See also [13], [14]. Senba and Suzuki [25] considered the system (1.4) in the case where Ω is a bounded smooth domain in \mathbf{R}^2 and $\tau = 0$ together with the initial condition $u(x, 0) = u_0(x)$ for $x \in \Omega$. Denote by T the maximal existence time of the solution to (1.4). It was shown in [25] that, if $T < \infty$, then the solution (u, v) of (1.4) satisfies

(1.5)
$$u(x,t) \rightharpoonup \sum_{q \in \mathcal{B}} m(q)\delta_q + f$$

in the sense of measures as $t \to T$, where \mathcal{B} is the set of blow-up points, δ_q is the delta function whose support is the point $q \in \overline{\Omega}$, m(q) is the constant satisfying $m(q) \ge 8\pi$ if $q \in \Omega$, and $m(q) \ge 4\pi$ if $q \in \partial\Omega$, and f is a nonnegative function in $L^1(\Omega) \cap C(\overline{\Omega} \setminus \mathcal{B})$. Furthermore, Senba [24] showed that, if $\Omega = \{x \in \mathbb{R}^2 : |x| < L\}$, and if a radial solution (u, v) blows up at $t = T < \infty$, then (1.5) holds with $\mathcal{B} = \{0\}$ and $m(0) = 8\pi$, and ublows up in type II rate. For nonradial case, see [26].

In the case N = 3, Herrero et al [11], [12] have investigated the blow-up behavior of solutions by using matched asymptotic expansions. In [12] they showed that (1.2) has a sequence of self-similar blow-up solutions, and they in [11] showed the existence of Burgers like blow-up solutions which are not self-similar. These solutions consist of an imploding smoothed out shock wave that collapses into a Dirac mass when the singularity is formed, and blow up in type II rate. Later, Brenner et al [4] investigated the problem in the case $3 \le N \le 9$ by a numerical approach, and showed the existence and stability of both self-similar blow-up solutions and Burgers like blow-up solutions.

For a solution (u, v) to (1.2), putting

$$n(x,t) = \Theta u(x,\Theta t)$$
 and $\phi(x,t) = -\Theta v(x,\Theta t)$

with $\Theta = 1/||u_0||_1$, we find that (n, ϕ) solves the problem

(1.6)
$$\begin{cases} n_t = \nabla \cdot (\Theta \nabla n + n \nabla \phi) & \text{in } \Omega \times (0, T) \\ \Delta \phi = n & \text{in } \Omega \times (0, T) \\ \Theta \frac{\partial n}{\partial \nu} + n \frac{\partial \phi}{\partial \nu} = 0 \text{ and } v = 0 & \text{on } \partial \Omega \times (0, T) \\ n(x, 0) = n_0(x) & \text{in } \Omega, \end{cases}$$

where $n_0(x) = \Theta u_0(|x|)$ for $x \in \Omega$. Note that n_0 satisfies $||n_0||_1 = 1$. Guerra and Peletier [10] considered the problem (1.6) in the case $3 \leq N \leq 9$. They in [10] characterize the blow-up behavior of solutions in terms of initial data, and showed that the solution behaves like a self-similar solution near the blow-up point.

In this note, we consider the system (1.2) in the case $3 \le N \le 9$, and derive criteria of the blow-up rate of solutions. In particular, we will identify an explicit class of initial data for which the blow-up is of type I rate.

To state our results, define U_0 and V_0 , respectively, by

(1.7)
$$U_0(r) = \frac{1}{r^{N-2}} \int_0^r s^{N-1} u_0(s) ds \quad \text{for } 0 \le r \le L$$

and

(1.8)
$$V_0(r) = \frac{U_0(r)}{r^2} = \frac{1}{r^N} \int_0^r s^{N-1} u_0(s) ds \quad \text{for } 0 \le r \le L.$$

For the initial condition, we assume that

(1.9)
$$V'_0(r) \le 0 \text{ for } 0 \le r \le L,$$

where ' = d/dr. It is easy to see that (1.9) holds if u_0 satisfies

(1.10)
$$u_0 \in C^1[0, L] \text{ and } u'_0(r) \le 0 \text{ for } 0 \le r \le L.$$

Our first result is the following.

Theorem 1.1. Let $3 \le N \le 9$, and assume that (1.9) holds.

- (i) Suppose U_0 satisfies $U_0(r) \le 2$ for $0 \le r \le L$. Then a solution (u, v) of (1.2) does not blow up in finite time.
- (ii) Suppose that $U_0(r) 2$ has exactly one zero for $0 \le r < L$ and $U_0(L) > 2$. If a solution (u, v) of (1.2) blows up in finite time, then the blow-up is of type I.

It should be mentioned that more general criteria will be given in Theorem 3.1 below.

As a consequence of Theorem 1.1, we obtain the following corollary.

Corollary 1.2. Let $3 \le N \le 9$, and assume that (1.9) holds. Suppose that $U_0(r)$ is increasing for 0 < r < L. If a solution (u, v) of (1.2) blows up in finite time, then the blow-up is of type I.

Note that U_0 satisfies

$$(r^{N-1}U'_0(r))' = r^{N-1}(2u_0(r) + ru'_0(r))$$
 for $0 < r < L$.

Assume that u_0 satisfies (1.10) and

(1.11) $ru'_0(r) + 2u_0(r)$ has at most one zero for $0 \le r \le L$.

Then one easily see that $U'_0(r)$ has at most one zero for (0, L], and that $U'_0(r) > 0$ for $0 < r < r_0$ and $U'_0(r) < 0$ for $r_0 < r \le L$ if $U'_0(r)$ has a zero at $r_0 \in (0, L)$. Assume, in addition, that

(1.12)
$$\int_0^L s^{N-1} u_0(s) ds > 2L^{N-2}.$$

Then $U_0(L) > 2$ and $U_0(r) - 2$ has exactly one zero for $0 \le r < L$. By Theorem 1.1 (ii) we obtain the following:

Corollary 1.3. Let $3 \le N \le 9$, and assume that u_0 satisfies (1.10), (1.11) and (1.12). If a solution of (1.2) blows up in finite time, then the blow-up is of type I.

We recall here some sufficient conditions for blow-up in finite time by [2], [21].

Proposition 1.4. Let $N \ge 3$. Assume that one of the following (i)-(iii) holds: (i) $U_0(L) > 2N$;

(ii) $U_0(L) \ge 4$ and U_0 satisfies, with some $T_0 > 0$,

(1.13)
$$U_0(r) \ge \frac{4r^2}{2(N-2)T_0 + r^2} \quad for \ 0 \le r \le L;$$

(iii) u_0 satisfies

(1.14)
$$\int_{|x| \le L} |x|^N u_0(|x|) dx < \left(\frac{\|u_0\|_1^{(2N-2)/N}}{4(N-1)\omega_N}\right)^{N/(N-2)},$$

where ω_N is the surface area of the unit sphere in \mathbf{R}^N .

Then a solution (u, v) of (1.2) blows up in finite time $t = T < \infty$. Furthermore, in the case (ii), the solution blows up at time T with $T \leq T_0$.

The blow-up of solutions was shown in the case (i) by Biler [3, Theorem 3]. We can show the blow-up of solutions in the case (ii) by the comparison argument, and in the case (iii) by following the argument due to Nagai [21, Theorem 3.1]. For the proof of Proposition 1.4, see [20].

As a consequence of Corollaries 1.2 and 1.3 and Proposition 1.4, we can show the existence of solutions which blow up with type I rate. As a simple example, let $u_0(r) \equiv \ell$ with $\ell > 2N/L$. Then a solution (u, v) of (1.2) blows up in finite time with type I rate by Corollary 1.2 and Proposition 1.4 (i). (See [10, Corollary 1.2].) For another example, let $u_0(r) = \ell G(r, \tau)$ with $\tau > 0$ and $\ell > 0$, where $G(r, t) = (4\pi t)^{-N/2} e^{-r^2/4t}$ is the heat kernel. Then (1.10) and (1.11) hold, and it is easy to see that

$$||u_0||_1 = \omega_N \int_0^L s^{N-1} u_0(s) ds \to \ell \text{ and } \int_{|x| \le L} |x|^N u_0(|x|) dx \to 0$$

as $\tau \to 0$. Combining Corollary 1.3 and Proposition 1.4 (iii), we obtain the following:

Corollary 1.5. Let $3 \leq N \leq 9$, and let $u_0(r) = \ell G(r,\tau)$ with $\tau > 0$ and $\ell > 2L^{N-2}\omega_N$. Then there exists $\tau_0 > 0$ such that, if $\tau \in (0,\tau_0]$, then a solution (u,v) of (1.2) blows up in finite time with type I rate.

We note that, in Corollary 1.5, the initial function u_0 converges to a Dirac delta function in the sense of measure as $\tau \to 0$. Thus this corollary suggests that self-similar blow-up may be seen even if initial function is close to a Dirac delta function.

Next, we consider the local blow-up profile of solutions to (1.2). Assume that V_0 , defined by (1.8), satisfies

(1.15)
$$(V_0)_{rr} + \frac{N+1}{r} (V_0)_r + N(V_0)^2 + rV_0(V_0)_r \ge 0 \text{ for } 0 \le r \le L.$$

Guerra and Peletier [10] showed that, when $N \ge 3$ and (1.9) and (1.15) hold, any type I blow-up solution behaves like a self-similar solution near the singularity x = 0.

Our result is the following.

Theorem 1.6. Let $3 \le N \le 9$, and assume that (1.9) and (1.15) hold. If a solution (u, v) of (1.2) blows up in finite time, then the blow-up is of type I.

Remark. Define the average density function V by

(1.16)
$$V(r,t) = \frac{1}{r^N} \int_0^r s^{N-1} u(s,t) ds \quad \text{for } 0 \le r \le L, \ 0 \le t < T$$

It was shown by Guerra and Peletier [10, Theorem 2.3] that when $N \ge 3$ and (1.9) and (1.15) hold, if a solution (u, v) blows up in finite time t = T with type I rate, then V satisfies

(1.17)
$$\lim_{t \to T} (T-t)V(\rho\sqrt{T-t}, t) = \Phi(\rho)/\rho^2$$

uniformly on compact set $|\rho| \leq C$ for every C > 0, where Φ is a certain positive function. Combining with Theorem 1.6, we find that when $3 \leq N \leq 9$ and (1.9) and(1.15) hold, if a solution (u, v) blows up in finite time, then (1.17) holds. Note here that the condition (1.15) ensures that $V_t \geq 0$ for all 0 < t < T. (See (3.6) below.) It is still an open problem whether (1.17) holds for type I blow-up solutions without the condition (1.15).

We note that similar results hold for the well-studied problem for semilinear heat equation

(1.18)
$$\begin{cases} u_t - \Delta u = u^p & \text{in } \Omega \times (0, T), \\ u = 0 & \text{on } \partial \Omega \times (0, T), \\ u(x, 0) = u_0(|x|) & \text{in } \Omega, \end{cases}$$

where p > 1, $\Omega = \{x \in \mathbf{R}^N : |x| < L\}$, and $u_0(r)$ is nonnegative and nonincreasing for $0 \le r \le L$. A simple comparison argument shows that any blow-up solution satisfies

$$\liminf_{t \to T} (T-t)^{1/(p-1)} \| u(\cdot, t) \|_{\infty} > 0.$$

Assume that $u_0 = u_0(|x|)$ satisfies

(1.19)
$$\Delta u_0 + u_0^p \ge 0 \qquad \text{in } \Omega$$

By the maximum principle, the condition (1.19) implies that $u_t \ge 0$ for all 0 < t < T. Friedman and McLeod [6] showed that, if (1.19) holds, then any blow-up solution satisfies

(1.20)
$$\limsup_{t \to T} (T-t)^{1/(p-1)} \| u(\cdot,t) \|_{\infty} < \infty.$$

Bebernes and Eberly showed in [1] that, under the condition (1.19), finite time blow-up solutions are asymptotically self-similar. Precisely, any solution u of (1.18) which blows up in finite time t = T satisfies

$$\lim_{t \to T} (T-t)^{1/(p-1)} u((T-t)^{1/2}y, t) = \kappa$$

uniformly on compact set $|y| \leq C$ for every C > 0 with $\kappa = (p-1)^{-1/(p-1)}$. It should be mentioned that Matos [19] later showed that any blow-up solution which satisfies (1.20) is asymptotically self-similar in the supercritical case without the condition (1.19). For the precise characterization of the behavior of blow-up solutions to (1.18), we refer to Giga and Kohn [7, 8, 9] in the subcritical case and Matano and Merle [17, 18] in the supercritical case.

This note is organized as follows: In Section 2, we will show the existence of a sequence of self-similar solutions to (1.1) with $\Omega = \mathbf{R}^N$. In Section 3, we derive criteria of the blow-up rate of solutions, and give the proof of Theorems 1.1 and 1.6.

§ 2. Backward self-similar solutions

The proof of Theorems 1.1 and 1.6 are based on the study of the properties of backward self-similar solutions to the system (1.1) with $\Omega = \mathbf{R}^N$. The system (1.1) with $\Omega = \mathbf{R}^N$ is invariant under the scaling

$$(u,v) \mapsto (u_{\lambda}, v_{\lambda}) = (\lambda^2 u(\lambda x, \lambda^2 t), v(\lambda x, \lambda^2 t))$$

for $\lambda > 0$. A solution (u, v) is called *self-similar* if $(u, v) = (u_{\lambda}, v_{\lambda})$ for each $\lambda > 0$, and is called *backward* if (u, v) is defined for all t < 0. By the transformation in the time, a backward self-similar solution has the form

(2.1)
$$u(x,t) = \frac{1}{T-t}\phi(x/\sqrt{T-t}) \text{ and } v(x,t) = \psi(x/\sqrt{T-t})$$

for $x \in \mathbf{R}^N$ and t < T, where (ϕ, ψ) satisfies

(2.2)
$$\begin{cases} \Delta \phi - \nabla \cdot \left(\phi \left(\frac{x}{2} + \nabla \psi \right) \right) + \frac{N-2}{2} \phi = 0, \quad x \in \mathbf{R}^{N} \\ 0 = \Delta \psi + \phi, \qquad \qquad x \in \mathbf{R}^{N}. \end{cases}$$

We will obtain the existence of a sequence of self-similar solutions to (2.2) together with the properties of solutions. For the proof, see [20].

Theorem 2.1. Let $3 \le N \le 9$. Then the system (2.2) has radially symmetric solutions $\{(\phi_j, \psi_j)\}_{j=1}^{\infty}$ such that $\phi_j(r) > 0$ for $r \ge 0$ and $\phi_j(0) \to \infty$ as $j \to \infty$. For each $j = 1, 2, \ldots$, define

(2.3)
$$\Phi_j(r) = \frac{1}{r^{N-2}} \int_0^r s^{N-1} \phi_j(s) ds, \quad r > 0.$$

Then $\Phi_j(r) - 2$ has exactly 2j zeros on $(0, \infty)$ and no zeros on (R_0, ∞) with $R_0 = 2\sqrt{N-1}$. Furthermore, there exists a sequence $\{\alpha_j\}_{j=1}^{\infty}$ satisfying $0 < \cdots < \alpha_{j+1} < \alpha_j < \cdots < \alpha_1$ and $\alpha_j \to 0$ as $j \to \infty$ such that the following (i) and (ii) hold.

(i) For any constant c > 0,

$$\inf_{0 < r < c\alpha_j} \frac{\Phi_j(r)}{r^2} \to \infty \quad as \ j \to \infty.$$

(ii) For any $\varepsilon > 0$, there exist a constant $c_0 = c_0(\varepsilon) > 0$ and an integer $j_0 = j_0(\varepsilon) \in \mathbf{N}$ such that if $j \ge j_0$ then

$$\sup_{r \ge c_0 \alpha_j} |\Phi_j(r) - 2| < \varepsilon \quad and \quad \sup_{r \ge c_0 \alpha_j} |r \Phi_j'(r)| < \varepsilon.$$

Remark. For each fixed r > 0, we have

(2.4)
$$r^2 \phi_j(r) \to 2(N-2) \text{ as } j \to \infty.$$

In fact, it follows from (2.3) that

$$r^2 \phi_j(r) = (N-2)\Phi_j(r) + r\Phi'_j(r)$$
 for $r > 0$.

Since (ii) holds and $\alpha_j \to 0$ as $j \to \infty$, we obtain (2.4).

The existence of self-similar solutions was already shown by [11, 4, 23]. It seems, however, that the properties on the location of zeros and properties (i) and (ii) are new, and these properties play an important role in the proof of the theorems.

§3. Proof of Theorems 1.1 and 1.6 (sketch)

We restrict our attention to radially symmetric solutions to (1.2) of the form u = u(r,t) and v = v(r,t), r = |x|, and consider the system

$$(3.1) \qquad \begin{cases} r^{N-1}u_t = (r^{N-1}u_r)_r - (r^{N-1}uv_r)_r, & 0 < r < L, \ 0 < t < T, \\ 0 = (r^{N-1}v_r)_r + r^{N-1}u, & 0 < r < L, \ 0 < t < T, \\ u_r(0,t) = u_r(L,t) - u(L,t)v_r(L,t) = 0, & 0 < t < T, \\ v_r(0,t) = v(L,t) = 0, & 0 < t < T, \\ u(r,0) = u_0(r), & 0 \le r \le L. \end{cases}$$

Put

$$M = \int_0^L r^{N-1} u_0(r) dr$$

Then, by the third formula in (3.1), it follows that

(3.2)
$$\int_0^L r^{N-1} u(r,t) dr = M \quad \text{for } 0 \le t < T.$$

Put \hat{u} by

$$\hat{u}(r,t) = \int_0^r s^{N-1} u(s,t) ds = -r^{N-1} v_r(r,t).$$

Here we have used the second formula in (3.1). Then the system (3.1) can be reduced to a single equation

$$\hat{u}_t = r^{N-1} (r^{1-N} \hat{u}_r)_r + r^{1-N} \hat{u} \hat{u}_r.$$

Define

(3.3)
$$U(r,t) = r^{2-N}\hat{u}(r,t) = \frac{1}{r^{N-2}} \int_0^r s^{N-1} u(s,t) ds.$$

Then U satisfies

(3.4)
$$U_t = U_{rr} + \frac{N-3}{r}U_r - \frac{2(N-2)}{r^2}U + \frac{(N-2)U^2 + rUU_r}{r^2}$$

for 0 < r < L, 0 < t < T and

$$U(0,t) = \lim_{r \to 0} U(r,t) = 0$$
 and $U(L,t) = ML^{2-N}$ for $0 \le t < T$.

Note here that, by using l'Hospital's rule, we obtain

(3.5)
$$\lim_{r \to 0} \frac{U(r,t)}{r^2} = \lim_{r \to 0} \frac{\int_0^r s^{N-1} u(s,t) ds}{r^N} = \frac{u(0,t)}{N} \quad \text{for } 0 < t < T.$$

Put $V(r,t) = U(r,t)/r^2$. Then V satisfies

(3.6)
$$V_t = V_{rr} + \frac{N+1}{r}V_r + NV^2 + rVV_r \quad \text{for } 0 < r < L, 0 < t < T$$

and $V(L,t) = ML^{-N}$ for 0 < t < T. We will show here that

(3.7)
$$V_r(0,t) = \lim_{r \to 0} V_r(r,t) = 0 \quad \text{for } 0 < t < T.$$

In fact,

$$V_r(r,t) = \frac{1}{r} \left(u(r,t) - Nr^{-N} \int_0^r s^{N-1} u(s,t) ds \right)$$
$$= \frac{u(r,t) - u(0,t)}{r} - N \frac{\int_0^r s^{N-1} (u(s,t) - u(0,t)) ds}{r^{N+1}}.$$

By using l'Hospital's rule, we obtain

$$\lim_{r \to 0} \frac{\int_0^r s^{N-1} (u(s,t) - u(0,t)) ds}{r^{N+1}} = \frac{1}{N+1} \lim_{r \to 0} \frac{u(r,t) - u(0,t)}{r} = \frac{u_r(0,t)}{N+1}$$

Since $u_r(0,t) = 0$ for $0 \le t < T$, we obtain (3.7).

Let (ϕ_j, ψ_j) be a radially symmetric solutions of (2.2) obtained in Theorem 2.1, and put Φ_j by (2.3). Take T > 0, and put

(3.8)
$$U_j(r,t) = \Phi_j(r/\sqrt{T-t}) = \frac{1}{r^{N-2}(T-t)} \int_0^r s^{N-1} \phi_j(s/\sqrt{T-t}) ds$$

for $0 \le r \le L$, $0 \le t < T$. Then $U = U_j$ solves (3.4) and

$$U_j(0,t) = 0$$
 and $U_j(L,t) = \Phi_j(L/\sqrt{T-t})$ for $0 < t < T$.

By the similar argument as in (3.5) we obtain

(3.9)
$$\lim_{r \to 0} \frac{U_j(r,t)}{r^2} = \frac{\phi_j(0)}{N(T-t)} \quad \text{for } 0 < t < T.$$

Put $V_j(r,t) = U_j(r,t)/r^2$. Then $V = V_j$ solves (3.6) and

$$(V_j)_r(0,t) = 0$$
 and $V_j(L,t) = \Phi_j(L/\sqrt{T-t})L^{-2}$ for $0 < t < T$.

By using the zero number properties of solutions for linear parabolic equations [5], we will derive criteria of the blow-up rate of solutions to (1.2) in terms of the function U defined by (3.3). We obtain Theorems 1.1 and 1.6 as a consequence of the following result.

Theorem 3.1. Let $3 \le N \le 9$, and assume that (1.9) holds. Let (u, v) be a radially symmetric solution of (1.2) for $0 \le t < T$, and define U by (3.3).

(i) Assume that there exist $t_0 \in [0,T)$ and $r_0 \in (0,L]$ such that

$$U(r, t_0) \le 2$$
 for $0 \le r \le r_0$ and $U(r_0, t) \le 2$ for $t_0 \le t < T$.

Then the solution (u, v) does not blow up at t = T.

(ii) Assume that there exist $t_0 \in [0,T)$ and $r_0 \in (0,L]$ such that $U(r,t_0) - 2$ has exactly one zero for $0 \le r \le r_0$ and $U(r_0,t) > 2$ for $t_0 \le t < T$. If the solution (u,v) blows up at $t = T < \infty$ then the blow-up is of type I.

It is clear that U_0 , defined by (1.7), satisfies $U_0(r) = U(r, 0)$ for $0 \le r \le L$. By the property (3.2) we see that $U(L,t) = U_0(L)$ for $0 \le t < T$. Then, by applying Theorem 3.1 with $r_0 = L$ and $t_0 = 0$, we obtain Theorem 1.1 immediately.

Proof of Theorem 1.6. Assume that (u, v) blows up at $t = T < \infty$. By Theorem 3.1 (i) we have $\{r \in (0, L) : U(r, t) > 2\} \neq \emptyset$ for any $0 \le t < T$. It is easy to see that there exist $t_0 \in (0, T)$ and $r_0 \in (0, L)$ such that $U(r_0, t_0) > 2$ and $U(r, t_0) - 2$ has exactly one zero for $0 < r < r_0$. Note that the condition (1.15) ensures that $V_t \ge 0$ for all $t \in (0, T)$. Then $U(r_0, t)$ is nondecreasing in $t \in (t_0, T)$, and hence $U(r_0, t) > 2$ for $t_0 \le t < T$. By Theorem 3.1 (ii), the blow-up is of type I.

We will give a sketch of the proof of Theorem 3.1. For the detail, see [20].

Proof of Theorem 3.1. (Sketch). (i) By using the comparison argument, we may assume that U(r,t) < 2 for $0 \le r < r_0$ and $t_0 < t \le T$. Take $\hat{T} > T$, and define \hat{U}_j by

$$\hat{U}_j(r,t) = \Phi_j\left(\frac{r}{\sqrt{\hat{T}-t}}\right) \quad \text{for } 0 \le r \le L, t_0 \le t < \hat{T},$$

where $\{\Phi_j\}_{j=1}^{\infty}$ is a sequence of function obtained in Theorem 2.1. By using the properties in Theorem 2.1, we will find that there exists $j_0 \in \mathbf{N}$ such that, if $j = j_0$, then

(3.10)
$$\hat{U}_j(r, t_0) > U(r, t_0) \text{ for } 0 < r \le r_0,$$

and

(3.11)
$$\hat{U}_i(r_0, t) > U(r_0, t) \text{ for } t_0 \le t \le T.$$

Put V and \hat{V}_j by

$$V(r,t) = \frac{U(r,t)}{r^2}$$
 and $\hat{V}_j(r,t) = \frac{\hat{U}_j(r,t)}{r^2}$,

respectively. Then V and \hat{V} solve (3.6) and satisfy $V_r(0,t) = \hat{V}_r(0,t) = 0$ for $t_0 \leq t < T$. It follows from (3.10) and (3.11) that

$$\hat{V}_j(r,t_0) > V(r,t_0)$$
 for $0 \le r \le r_0$ and $\hat{V}_j(r_0,t) > V(r_0,t)$ for $t_0 \le t < T$.

Then, by the maximum principle, we obtain $V(r,t) < \hat{V}_j(r,t)$ for $0 \le r \le r_0, t_0 \le t < T$. From (3.5) and (3.9) we see that

$$\lim_{r \to 0} V(r,t) = \lim_{r \to 0} \frac{U(r,t)}{r^2} = \frac{u(0,t)}{N} \quad \text{and} \quad \lim_{r \to 0} \hat{V}_j(r,t) = \lim_{r \to 0} \frac{\hat{U}_j(r,t)}{r^2} = \frac{\phi_j(0)}{N(\hat{T}-t)}.$$

This implies that $u(0,t) < \phi_j(0)/(\hat{T}-t)$ for $t_0 \le t < T < \hat{T}$. Note that (1.9) implies $u(0,t) = ||u(\cdot,t)||_{\infty}$. Then $\sup_{0 \le t < T} ||u(\cdot,t)||_{\infty} < \infty$, and hence (u,v) does not blow up at t = T.

(ii) For a continuous function ψ defined on an interval J, we define the zero number of the function ψ on J by $\mathcal{Z}_J[\psi] = \#\{r \in J : \psi(r) = 0\}$. We will find that $\mathcal{Z}_{[0,r_0]}[U(\cdot,t)-2] = 1$ for $t_0 \leq t < T$, and we may assume that $T - t_0 > 0$ is small enough so that

(3.12)
$$\frac{r_0}{\sqrt{T - t_0}} > R_0$$

where R_0 is the constant which appears in Theorem 2.1.

Define U_j by (3.8) for $j = 1, 2, \ldots$ First we show that, for each $j = 1, 2, \ldots$,

(3.13)
$$U_j(r_0, t) < U(r_0, t) \text{ for } t_0 \le t < T.$$

Since $\Phi_j(r) - 2$ has exactly 2j zeros on $(0, R_0]$ and no zeros on (R_0, ∞) by Theorem 2.1, we see that that $\Phi_j(r) < 2$ for $r > R_0$. From (3.12) we obtain $U_j(r_0, t) < 2$ for $t_0 \le t < T$. Since $U(r_0, t) > 2$ for $t_0 \le t < T$, we obtain (3.13).

By using the properties in Theorem 2.1, we will find that there exists $j_0 \in \mathbf{N}$ such that, if $j \geq j_0$, then $U_j(r,t_0) - U(r,t_0)$ has exactly one zero for $0 \leq r < r_0$. Put V and V_j by $V(r,t) = U(r,t)/r^2$ and $V_j(r,t) = U(r,t)/r^2$, respectively. Then $\mathcal{Z}_{[0,r_0]}[V_j(\cdot,t_0) - V(\cdot,t_0)] = 1$. By the zero number property, we obtain $\mathcal{Z}_{[0,r_0]}[V_j(\cdot,t) - V(\cdot,t)] = 1$ for $t_0 < t < T$. We denote by $\tilde{r}(t)$ a unique zero of $V_j(r,t) - V(r,t)$. Then $\tilde{r}(t) \in (0,r_0)$ for $t_0 \leq t < T$, and $V(r,t) < V_j(r,t)$ for $0 \leq r < \tilde{r}(t)$. From (3.5) and (3.9) we obtain, for each $t \in [t_0, T)$,

$$\lim_{r \to 0} V(r,t) = \lim_{r \to 0} \frac{U(r,t)}{r^2} = \frac{u(0,t)}{N} \quad \text{and} \quad \lim_{r \to 0} V_j(r,t) = \lim_{r \to 0} \frac{U_j(r,t)}{r^2} = \frac{\phi_j(0)}{N(T-t)}$$

Then it follows that $(T-t)u(0,t) \le \phi_j(0)$ for $t_0 \le t < T$. This implies that the blow-up is of type I.

References

- [1] J. Bebernes and D. Eberly, A description of self-similar blow-up for dimensions $n \ge 3$, Ann. Inst. H. Poincare Anal. Non Lineaire 5 (1988) 1–21.
- [2] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles I, Colloq. Math. 66 (1994) 319–334.
- [3] P. Biler, D. Hilhorst, and T. Nadzieja, Existence and nonexistence of solutions for a model gravitational of particles II, Colloq. Math. 67 (1994) 297-308.
- [4] M.P. Brenner, P. Constantin, L.P. Kadanoff, A. Schenkel, S.C. Venkataramani, Diffusion, attraction and collapse, Nonlinearity 12 (1999) 1071–1098.
- [5] X.-Y. Chen, P. Polačik, Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball, J. Reine Angew. Math. 472 (1996), 17–51.
- [6] A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985) 425–447.

- Y. Giga and R. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985) 297–319.
- [8] Y. Giga and R. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36 (1987) 1–40.
- Y. Giga and R. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989) 845–884.
- [10] I. A. Guerra and M. A. Peletier, Self-similar blow-up for a diffusion-attraction problem, Nonlinearity 17 (2004) 2137–2162.
- [11] M.A. Herrero, E. Medina, J. J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity 10 (1997) 1739–1754.
- [12] M.A. Herrero, E. Medina, and J.J.L. Velázquez, Self-similar blowup for a reaction-diffusion system, Journal of Computational and Applied Mathematics 97 (1998) 99-119.
- [13] M. A. Herrero and J.J.L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann. 306 (1996) 583–623.
- [14] M. A. Herrero and J.J.L. Velázquez, Chemotactic collapse for theKeller-Segel model, J. Math. Biol. 35 (1996) 177–194.
- [15] M. A. Herrero and J.J.L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997) 633–683.
- [16] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970) 399–415.
- [17] H. Matano and F. Merle, On nonexistence of type II blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math. 57 (2004) 1494–1541.
- [18] H. Matano and F. Merle, Classification of type I and type II behaviors for a supercritical nonlinear heat equation, J. Funct. Anal. 256 (2009) 992–1064.
- [19] J. Matos, Convergence of blow-up solutions of nonlinear heat equations in the supercritical case, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 1197–1227.
- [20] Y. Naito and T. Senba, Blow-up behavior of solutions to a chemotaxis system on higher dimensional domains, preprint.
- [21] T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl. 5 (1995) 581-601.
- [22] V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol. 42 (1973) 63–105.
- [23] T. Senba, Blowup behavior of radial solutions Jäger-Luckhaus system in high dimensional domains, Funkcial Ekvac. 48 (2005) 247–271.
- [24] T. Senba, Type II blowup of solutions to a simplified Keller-Segel system in two dimensional domains, Nonlinear Anal. 66 (2007) 1817–1839.
- [25] T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology, Adv. Differential Equations 6 (2001) 21–50.
- [26] T. Suzuki, Free energy and self-interacting particles, Birkhauser Boston, Inc., Boston, MA, 2005.
- [27] G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal. 119 (1992) 355–391.
- [28] G. Wolansky, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity, J. Anal. Math. 59 (1992) 251–272.