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Self‐similar blow‐up for a chemotaxis system in

higher dimensional domains

By

YEki Naito * and Takasi Senba **

§1. Introduction and statement of main results

We consider solutions of a parabolic‐elliptic system

(1.1) \left\{\begin{array}{ll}
u_{t}=\nabla\cdot(\nabla u-u\nabla v) & \mathrm{i}\mathrm{n}  $\Omega$\times(0, T)\\
0=\triangle v+u & \mathrm{i}\mathrm{n} $\Omega$\times(0, T) ,
\end{array}\right.
where either  $\Omega$=\{x\in \mathrm{R}^{N} : |x|<L\} or  $\Omega$=\mathrm{R}^{N} with N\geq 3 . In the former case,

we assume \partial u/\partial v-u\partial v/\partial v=0 and v=0 on \partial $\Omega$ ,
where  v denotes the outer unit

normal vector. This system arises in the study of the motion of bacteria by chemotaxis

as a simplification of the Keller‐Segel model (see [16], [22]). Here, u and v represent

the density of the bacteria and the concentration of the chemo‐attractant, respectively.
This system also has been used as a model for the evolution of self‐attracting clusters

(see [27], [28], [2]).
In this note we consider the blow‐up rate of solutions to the system

(1.2) \left\{\begin{array}{ll}
u_{t}=\nabla\cdot(\nabla u-u\nabla v) & \mathrm{i}\mathrm{n}  $\Omega$\times(0, T)\\
0=\triangle v+u & \mathrm{i}\mathrm{n}  $\Omega$\times(0, T)\\
\frac{\partial u}{\partial v}-u\frac{\partial v}{\partial v}=0 \mathrm{a}\mathrm{n}\mathrm{d} v=0 & \mathrm{o}\mathrm{n} \partial $\Omega$\times(0, T)\\
u(x, 0)=u(X) & \mathrm{i}\mathrm{n}  $\Omega$,
\end{array}\right.
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where  $\Omega$=\{x\in \mathrm{R}^{N} : |x|<L\} with N\geq 3 and  0<L<\infty ,
and  u(r) is a nonnegative

continuous function on [0, L] . We restrict ourselves to the study of radially symmetric
solutions. It is known by [2] that the system (1.2) has a unique local classical solution

(u, v) . It is easy to see that u and v are positive for 0<t<T ,
and that the conservation

of the initial mass of u holds, that is,

(1.3) \Vert u(\cdot, t)\Vert_{1}=\Vert u_{0}(\cdot)\Vert_{1} for 0<t<T,

where \Vert \Vert_{p} denotes the standard L^{p}( $\Omega$) norm for  1\leq p\leq\infty . A solution (u, v)
is said to blow‐up at  t=T<\infty if (u, v) is classical in  $\Omega$\times(0, T) and satisfies

\displaystyle \lim\sup_{t\rightarrow T}\Vert u(\cdot, t)\Vert_{\infty}=\infty . A simple argument shows that if  u blows up at a finite

time t=T then

\displaystyle \lim_{t\rightarrow}\inf_{T}(T-t)\Vert u(\cdot, t)\Vert_{\infty}>0.
We say that the blow‐up is of type I if u satisfies

\displaystyle \lim_{t\rightarrow}\sup_{T}(T-t)\Vert u(\cdot, t)\Vert_{\infty}<\infty.
The blow‐up is called type II if it is not type I. We note that self‐similar solutions, given

by (2.1) below, blow up in type I rate.

We briefly review some known results concerning blow‐up behavior for (1.1) and

related systems. In the case N=2
,

Herrero and Velázquez [15] considered the system

(1.4) \left\{\begin{array}{ll}
u_{t}=\nabla\cdot(\nabla u-u\nabla v) & \mathrm{i}\mathrm{n}  $\Omega$\times(0, T)\\
 $\tau$ v_{t}=\triangle v-v+u & \mathrm{i}\mathrm{n}  $\Omega$\times(0, T) ,\\
\frac{\partial u}{\partial v}=\frac{\partial v}{\partial v}=0 & \mathrm{i}\mathrm{n} \partial $\Omega$\times(0, T) ,
\end{array}\right.
together with initial conditions

u(x, 0)=u(X) and v(x, 0)=v(X) for x\in $\Omega$,

where  $\Omega$=\{x\in \mathrm{R}^{2}:|x|<L\} and  $\tau$>0 . It was shown in [15] that (1.4) has radially

symmetric solutions such that u develops a Dirac delta‐type singularity at the origin in

a finite time, and that u blows up in type II rate. See also [13], [14]. Senba and Suzuki

[25] considered the system (1.4) in the case where  $\Omega$ is a bounded smooth domain in

\mathrm{R}^{2} and  $\tau$=0 together with the initial condition u(x, 0)=u(x) for  x\in $\Omega$ . Denote

by  T the maximal existence time of the solution to (1.4). It was shown in [25] that, if

 T<\infty ,
then the solution (u, v) of (1.4) satisfies

(1.5) u(x, t)\displaystyle \rightarrow\sum_{q\in B}m(q)$\delta$_{q}+f
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in the sense of measures as t\rightarrow T
,

where B is the set of blow‐up points, $\delta$_{q} is the delta

function whose support is the point q\in\overline{ $\Omega$}, m(q) is the constant satisfying  m(q)\geq 8 $\pi$ if

 q\in $\Omega$ ,
and  m(q)\geq 4 $\pi$ if  q\in\partial $\Omega$ ,

and  f is a nonnegative function in L^{1}( $\Omega$)\cap C(\overline{ $\Omega$}\backslash B) .

Furthermore, Senba [24] showed that, if  $\Omega$=\{x\in \mathrm{R}^{2} : |x|<L\} ,
and if a radial solution

(u, v) blows up at  t=T<\infty ,
then (1.5) holds with \mathcal{B}=\{0\} and  m(0)=8 $\pi$ ,

and  u

blows up in type II rate. For nonradial case, see [26].
In the case N=3 ,

Herrero et al [11], [12] have investigated the blow‐up behavior

of solutions by using matched asymptotic expansions. In [12] they showed that (1.2)
has a sequence of self‐similar blow‐up solutions, and they in [11] showed the existence

of Burgers like blow‐up solutions which are not self‐similar. These solutions consist

of an imploding smoothed out shock wave that collapses into a Dirac mass when the

singularity is formed, and blow up in type II rate. Later, Brenner et al [4] investigated
the problem in the case 3\leq N\leq 9 by a numerical approach, and showed the existence

and stability of both self‐similar blow‐up solutions and Burgers like blow‐up solutions.

For a solution (u, v) to (1.2), putting

n(x, t)= $\Theta$ u(x,  $\Theta$ t) and  $\phi$(x, t)=- $\Theta$ v(x,  $\Theta$ t)

with  $\Theta$=1/\Vert u_{0}\Vert_{1} ,
we find that (n,  $\phi$) solves the problem

(1.6) \left\{\begin{array}{ll}
n_{t}=\nabla\cdot( $\Theta$\nabla n+n\nabla $\phi$) & \mathrm{i}\mathrm{n}  $\Omega$\times(0, T)\\
\triangle $\phi$=n & \mathrm{i}\mathrm{n}  $\Omega$\times(0, T)\\
 $\Theta$\frac{\partial n}{\partial v}+n\frac{\partial $\phi$}{\partial v}=0 \mathrm{a}\mathrm{n}\mathrm{d} v=0 & \mathrm{o}\mathrm{n} \partial $\Omega$\times(0, T)\\
n(x, 0)=n(x) & \mathrm{i}\mathrm{n}  $\Omega$,
\end{array}\right.
where n_{0}(x)=\ominus u(x) for  x\in $\Omega$ . Note that  n_{0} satisfies \Vert n_{0}\Vert_{1}=1 . Guerra and Peletier

[10] considered the problem (1.6) in the case 3\leq N\leq 9 . They in [10] characterize the

blow‐up behavior of solutions in terms of initial data, and showed that the solution

behaves like a self‐similar solution near the blow‐up point.
In this note, we consider the system (1.2) in the case 3\leq N\leq 9 ,

and derive criteria

of the blow‐up rate of solutions. In particular, we will identify an explicit class of initial

data for which the blow‐up is of type I rate.

To state our results, define U_{0} and V_{0} , respectively, by

(1.7) U_{0}(r)=\displaystyle \frac{1}{r^{N-2}}\int_{0}^{r}s^{N-1}u_{0}(s)ds for 0\leq r\leq L

and

(1.8) V_{0}(r)=\displaystyle \frac{U_{0}(r)}{r^{2}}=\frac{1}{r^{N}}\int_{0}^{r}s^{N-1}u_{0}(s)ds for 0\leq r\leq L.
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For the initial condition, we assume that

(1.9) V_{0}'(r)\leq 0 for 0\leq r\leq L,

where '=d/dr . It is easy to see that (1.9) holds if u_{0} satisfies

(1.10) u_{0}\in C^{1}[0, L] and u_{0}'(r)\leq 0 for 0\leq r\leq L.

Our first result is the following.

Theorem 1.1. Let 3\leq N\leq 9 ,
and assume that (1.9) holds.

(i) Suppose U_{0} satisfies U_{0}(r)\leq 2 for0\leq r\leq L. Then a solution (u, v) of (1.2) does

not blow up in finite time.

(ii) Suppose that U_{0}(r)-2 has exactly one zero for 0\leq r<L and U_{0}(L)>2 . If a

solution (u, v) of (1.2) blows up in finite time, then the blow‐up is of type I.

It should be mentioned that more general criteria will be given in Theorem 3.1

below.

As a consequence of Theorem 1.1, we obtain the following corollary.

Corollary 1.2. Let 3\leq N\leq 9 ,
and assume that (1.9) holds. Suppose that U(r)

is increasing for0<r<L . If a solution (u, v) of (1.2) blows up in finite time, then the

blow‐up is of type I.

Note that U_{0} satisfies

(r^{N-1}U_{0}'(r))'=r^{N-1}(2u_{0}(r)+ru_{0}'(r)) for 0<r<L.

Assume that u_{0} satisfies (1.10) and

(1.11) ruÓ(r) + 2u(r) has at most one zero for 0\leq r\leq L.

Then one easily see that U_{0}'(r) has at most one zero for (0, L], and that U_{0}'(r)>0 for

0<r<r_{0} and U_{0}'(r)<0 for r_{0}<r\leq L if U_{0}'(r) has a zero at r_{0}\in(0, L) . Assume, in

addition, that

(1.12) \displaystyle \int_{0}^{L}s^{N-1}u_{0}(s)ds>2L^{N-2}
Then U_{0}(L)>2 and U_{0}(r)-2 has exactly one zero for 0\leq r<L . By Theorem 1.1 (ii)
we obtain the following:

Corollary 1.3. Let 3\leq N\leq 9 ,
and assume that u_{0} satisfies (1.10), (1.11) and

(1.12). If a solution of (1.2) blows up in finite time, then the blow‐up is of type I.
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We recall here some sufficient conditions for blow‐up in finite time by [2], [21].

Proposition 1.4. Let N\geq 3 . Assume that one of the following (\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i}) holds:

(i) U_{0}(L)>2N ;

(ii) U_{0}(L)\geq 4 and U_{0} satisfies, with some T_{0}>0,

(1.13) U_{0}(r)\displaystyle \geq\frac{4r^{2}}{2(N-2)T_{0}+r^{2}} for0\leq r\leq L ;

(iii) u_{0} satisfies

(1.14) \displaystyle \int_{|x|\leq L}|x|^{N}u_{0}(|x|)dx<(\frac{\Vert u_{0}\Vert_{1}^{(2N-2)/N}}{4(N-1)$\omega$_{N}})^{N/(N-2)},
where $\omega$_{N} is the surfa ce area of the unit sphere in \mathrm{R}^{N}.

Then a solution (u, v) of (1.2) blows up in finite time  t=T<\infty . Furthermore, in the

case (ii), the solution blows up at time  T with T\leq T_{0}.

The blow‐up of solutions was shown in the case (i) by Biler [3, Theorem 3]. We

can show the blow‐up of solutions in the case (ii) by the comparison argument, and in

the case (iii) by following the argument due to Nagai [21, Theorem 3.1]. For the proof
of Proposition 1.4, see [20].

As a consequence of Corollaries 1.2 and 1.3 and Proposition 1.4, we can show the

existence of solutions which blow up with type I rate. As a simple example, let  u_{0}(r)\equiv\ell
with \ell>2N/L . Then a solution (u, v) of (1.2) blows up in finite time with type I rate

by Corollary 1.2 and Proposition 1.4 (i). (See [10, Corollary 1.2].) For another example,
let u_{0}(r)=PG(r,  $\tau$) with  $\tau$>0 and \ell>0 ,

where G(r, t)=(4 $\pi$ t)^{-N/2}e^{-r^{2}/4t} is the heat

kernel. Then (1.10) and (1.11) hold, and it is easy to see that

\displaystyle \Vert u_{0}\Vert_{1}=$\omega$_{N}\int_{0}^{L}s^{N-1}u_{0}(s)ds\rightarrow\ell and \displaystyle \int_{|x|\leq L}|x|^{N}u_{0}(|x|)dx\rightarrow 0
as  $\tau$\rightarrow 0 . Combining Corollary 1.3 and Proposition 1.4 (iii), we obtain the following:

Corollary 1.5. Let 3\leq N\leq 9 ,
and let u_{0}(r)=PG(r,  $\tau$) with  $\tau$>0 and

\ell>2L^{N-2}$\omega$_{N} . Then there exists $\tau$_{0}>0 such that, if  $\tau$\in(0, $\tau$_{0} ], then a solution (u, v)
of (1.2) blows up in finite time with type I rate.

We note that, in Corollary 1.5, the initial function u_{0} converges to a Dirac delta

function in the sense of measure as  $\tau$\rightarrow 0 . Thus this corollary suggests that self‐similar

blow‐up may be seen even if initial function is close to a Dirac delta function.
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Next, we consider the local blow‐up profile of solutions to (1.2). Assume that V_{0},
defined by (1.8), satisfies

(1.15) (V_{0})_{rr}+\displaystyle \frac{N+1}{r}(V_{0})_{r}+N(V_{0})^{2}+rV_{0}(V_{0})_{r}\geq 0 for 0\leq r\leq L.

Guerra and Peletier [10] showed that, when N\geq 3 and (1.9) and (1.15) hold, any type I

blow‐up solution behaves like a self‐similar solution near the singularity x=0.

Our result is the following.

Theorem 1.6. Let 3\leq N\leq 9 ,
and assume that (1.9) and (1.15) hold. If a

solution (u, v) of (1.2) blows up in finite time, then the blow‐up is of type I.

Remark. Define the average density function V by

(1.16) V(r, t)=\displaystyle \frac{1}{r^{N}}\int_{0}^{r}s^{N-1}u(s, t)ds for 0\leq r\leq L, 0\leq t<T.

It was shown by Guerra and Peletier [10, Theorem 2.3] that when N\geq 3 and (1.9) and

(1.15) hold, if a solution (u, v) blows up in finite time t=T with type I rate, then V

satisfies

(1.17) \displaystyle \lim_{t\rightarrow T}(T-t)V( $\rho$\sqrt{T-t}, t)= $\Phi$( $\rho$)/$\rho$^{2}
uniformly on compact set | $\rho$|\leq C for every C>0 ,

where  $\Phi$ is a certain positive function.

Combining with Theorem 1.6, we find that when  3\leq N\leq 9 and (1.9) and(1.15) hold, if

a solution (u, v) blows up in finite time, then (1.17) holds. Note here that the condition

(1.15) ensures that V_{t}\geq 0 for all 0<t<T. (See (3.6) below.) It is still an open

problem whether (1.17) holds for type I blow‐up solutions without the condition (1.15).

We note that similar results hold for the well‐studied problem for semilinear heat

equation

(1.18) \left\{\begin{array}{ll}
u_{t}-\triangle u=u^{p} & \mathrm{i}\mathrm{n}  $\Omega$\times(0, T) ,\\
u=0 & \mathrm{o}\mathrm{n}\partial $\Omega$\times(0, T) ,\\
u(x, 0)=u(X) & \mathrm{i}\mathrm{n}  $\Omega$,
\end{array}\right.
where p>1,  $\Omega$=\{x\in \mathrm{R}^{N} : |x|<L\} ,

and u(r) is nonnegative and nonincreasing for

0\leq r\leq L . A simple comparison argument shows that any blow‐up solution satisfies

\displaystyle \lim_{t\rightarrow}\inf_{T}(T-t)^{1/(p-1)}\Vert u(\cdot, t)\Vert_{\infty}>0.
Assume that u_{0}=u(x) satisfies

(1.19) \triangle u_{0}+u_{0}^{p}\geq 0 in  $\Omega$.
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By the maximum principle, the condition (1.19) implies that u_{t}\geq 0 for all 0<t<

T . Friedman and McLeod [6] showed that, if (1.19) holds, then any blow‐up solution

satisfies

(1.20) \displaystyle \lim_{t\rightarrow}\sup_{T}(T-t)^{1/(p-1)}\Vert u(\cdot, t)\Vert_{\infty}<\infty.
Bebernes and Eberly showed in [1] that, under the condition (1.19), finite time blow‐up
solutions are asymptotically self‐similar. Precisely, any solution u of (1.18) which blows

up in finite time t=T satisfies

\displaystyle \lim_{t\rightarrow T}(T-t)^{1/(p-1)}u((T-t)^{1/2}y, t)= $\kappa$
uniformly on compact set |y|\leq C for every C>0 with  $\kappa$=(p-1)^{-1/(p-1)} . It should be

mentioned that Matos [19] later showed that any blow‐up solution which satisfies (1.20)
is asymptotically self‐similar in the supercritical case without the condition (1.19). For

the precise characterization of the behavior of blow‐up solutions to (1.18), we refer to

Giga and Kohn [7, 8, 9] in the subcritical case and Matano and Merle [17, 18] in the

supercritical case.

This note is organized as follows: In Section 2, we will show the existence of a

sequence of self‐similar solutions to (1.1) with  $\Omega$=\mathrm{R}^{N} . In Section 3, we derive criteria

of the blow‐up rate of solutions, and give the proof of Theorems 1.1 and 1.6.

§2. Backward self‐similar solutions

The proof of Theorems 1.1 and 1.6 are based on the study of the properties of

backward self‐similar solutions to the system (1.1) with  $\Omega$=\mathrm{R}^{N} . The system (1.1)
with  $\Omega$=\mathrm{R}^{N} is invariant under the scaling

(u, v)\mapsto(u_{ $\lambda$}, v_{ $\lambda$})=($\lambda$^{2}u( $\lambda$ x, $\lambda$^{2}t), v( $\lambda$ x, $\lambda$^{2}t))

for  $\lambda$>0 . A solution (u, v) is called self‐ similar if (u, v)=(u_{ $\lambda$}, v_{ $\lambda$}) for each  $\lambda$>0 ,
and

is called backward if (u, v) is defined for all t<0 . By the transformation in the time, \mathrm{a}

backward self‐similar solution has the form

(2.1) u(x, t)=\displaystyle \frac{1}{T-t} $\phi$(x/\sqrt{T-t}) and v(x, t)= $\psi$(x/\sqrt{T-t})

for x\in \mathrm{R}^{N} and t<T ,
where ( $\phi$,  $\psi$) satisfies

(2.2) \left\{\begin{array}{ll}
\triangle $\phi$-\nabla\cdot( $\phi$(\frac{x}{2}+\nabla $\psi$))+\frac{N-2}{2} $\phi$=0, & x\in \mathrm{R}^{N}\\
0=\triangle $\psi$+ $\phi$, & x\in \mathrm{R}^{N}.
\end{array}\right.
We will obtain the existence of a sequence of self‐similar solutions to (2.2) together with

the properties of solutions. For the proof, see [20].
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Theorem 2.1. Let 3\leq N\leq 9 . Then the system (2.2) has radially symmetric
solutions \{($\phi$_{j}, $\psi$_{j})\}_{j=1}^{\infty} such that $\phi$_{j}(r)>0 forr\geq 0 and $\phi$_{j}(0)\rightarrow\infty as  j\rightarrow\infty . For

each  j=1 , 2, . .

., define

(2.3) $\Phi$_{j}(r)=\displaystyle \frac{1}{r^{N-2}}\int_{0}^{r}s^{N-1}$\phi$_{j}(s)ds, r>0.
Then $\Phi$_{j}(r)-2 has exactly 2j zeros on (0, \infty) and no zeros on (R_{0}, \infty) with R_{0}=

2\sqrt{N-1} . Furthermore, there exists a sequence \{$\alpha$_{j}\}_{j=1}^{\infty} satisfy ing 0<\cdots<$\alpha$_{j+1}<
$\alpha$_{j}<\cdots<$\alpha$_{1} and $\alpha$_{j}\rightarrow 0 as  j\rightarrow\infty such that the following (i) and (ii) hold.

(i) For any constant  c>0,

\displaystyle \inf_{0<r<c$\alpha$_{j}}\frac{$\Phi$_{j}(r)}{r^{2}}\rightarrow\infty as  j\rightarrow\infty.

(ii) For any  $\epsilon$>0 ,
there exist a constant c_{0}=c_{0}( $\epsilon$)>0 and an integer j_{0}=j_{0}( $\epsilon$)\in \mathrm{N}

such that if j\geq j_{0} then

\displaystyle \sup_{r\geq c_{0}$\alpha$_{j}}|$\Phi$_{j}(r)-2|< $\epsilon$ and \displaystyle \sup_{r\geq c_{0}$\alpha$_{j}}|r$\Phi$_{j}'(r)|< $\epsilon$.
Remark. For each fixed r>0 ,

we have

(2.4) r^{2}$\phi$_{j}(r)\rightarrow 2(N-2) as j\rightarrow\infty.

In fact, it follows from (2.3) that

r^{2}$\phi$_{j}(r)=(N-2)$\Phi$_{j}(r)+r$\Phi$_{j}'(r) for r>0.

Since (ii) holds and $\alpha$_{j}\rightarrow 0 as  j\rightarrow\infty ,
we obtain (2.4).

The existence of self‐similar solutions was already shown by [11, 4, 23]. It seems,

however, that the properties on the location of zeros and properties (i) and (ii) are new,

and these properties play an important role in the proof of the theorems.

§3. Proof of Theorems 1.1 and 1.6 (sketch)

We restrict our attention to radially symmetric solutions to (1.2) of the form  u=

u(r, t) and v=v(r, t) , r=|x| ,
and consider the system

(3.1) \left\{\begin{array}{ll}
r^{N-1}u_{t}=(r^{N-1}u_{r})_{r}-(r^{N-1}uv_{r})_{r}, & 0<r<L, 0<t<T,\\
0=(r^{N-1}v_{r})_{r}+r^{N-1}u, & 0<r<L, 0<t<T,\\
u_{r}(0, t)=u_{r}(L, t)-u(L, t)v_{r}(L, t)=0, & 0<t<T,\\
v_{r}(0, t)=v(L, t)=0, & 0<t<T,\\
u(r, 0)=u_{0}(r) , & 0\leq r\leq L.
\end{array}\right.
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Put

M=\displaystyle \int_{0}^{L}r^{N-1}u_{0}(r)dr.
Then, by the third formula in (3.1), it follows that

(3.2) \displaystyle \int_{0}^{L}r^{N-1}u(r, t)dr=M for 0\leq t<T.

Put û by

û (r, t)=\displaystyle \int_{0}^{r}s^{N-1}u(s, t)ds=-r^{N-1}v_{r}(r, t) .

Here we have used the second formula in (3.1). Then the system (3.1) can be reduced

to a single equation

\^{u} t=r^{N-1}(r^{1-N}\hat{u}_{r})_{r}+r^{1-N}\hat{u}\hat{u}_{r}.
Define

(3.3) U(r, t)=r^{2-N}\displaystyle \hat{u}(r, t)=\frac{1}{r^{N-2}}\int_{0}^{r}s^{N-1}u(s, t)ds.
Then U satisfies

(3.4) U_{t}=U_{rr}+\displaystyle \frac{N-3}{r}U_{r}-\frac{2(N-2)}{r^{2}}U+\frac{(N-2)U^{2}+rUU_{r}}{r^{2}}
for 0<r<L, 0<t<T and

U(0, t)=\displaystyle \lim_{r\rightarrow 0}U(r, t)=0 and U(L, t)=ML^{2-N} for 0\leq t<T.

Note here that, by using l�Hospital�s rule, we obtain

(3.5) \displaystyle \lim_{r\rightarrow 0}\frac{U(r,t)}{r^{2}}=\lim_{r\rightarrow 0}\frac{\int_{0}^{r}s^{N-1}u(s,t)ds}{r^{N}}=\frac{u(0,t)}{N} for 0<t<T.

Put V(r, t)=U(r, t)/r^{2} . Then V satisfies

(3.6) V_{t}=V_{rr}+\displaystyle \frac{N+1}{r}V_{r}+NV^{2}+rVV_{r} for 0<r<L, 0<t<T

and V(L, t)=ML^{-N} for 0<t<T . We will show here that

(3.7) V_{r}(0, t)=\displaystyle \lim_{r\rightarrow 0}V_{r}(r, t)=0 for 0<t<T.

In fact,

V_{r}(r, t)=\displaystyle \frac{1}{r}(u(r, t)-Nr^{-N}\int_{0}^{r}s^{N-1}u(s, t)ds)

=\displaystyle \frac{u(r,t)-u(0,t)}{r}-N\frac{\int_{0}^{r}s^{N-1}(u(s,t)-u(0,t))ds}{r^{N+1}}.
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By using l�Hospital�s rule, we obtain

\displaystyle \lim_{r\rightarrow 0}\frac{\int_{0}^{r}s^{N-1}(u(s,t)-u(0,t))ds}{r^{N+1}}=\frac{1}{N+1}\lim_{r\rightarrow 0}\frac{u(r,t)-u(0,t)}{r}=\frac{u_{r}(0,t)}{N+1}.
Since u_{r}(0, t)=0 for 0\leq t<T ,

we obtain (3.7).
Let ($\phi$_{j}, $\psi$_{j}) be a radially symmetric solutions of (2.2) obtained in Theorem 2.1,

and put $\Phi$_{j} by (2.3). Take T>0 ,
and put

(3.8) U_{j}(r, t)=$\Phi$_{j}(r/\displaystyle \sqrt{T-t})=\frac{1}{r^{N-2}(T-t)}\int_{0}^{r}s^{N-1}$\phi$_{j}(s/\sqrt{T-t})ds
for 0\leq r\leq L, 0\leq t<T . Then U=U_{j} solves (3.4) and

U_{j}(0, t)=0 and U_{j}(L, t)=$\Phi$_{j}(L/\sqrt{T-t}) for 0<t<T.

By the similar argument as in (3.5) we obtain

(3.9) \displaystyle \lim_{r\rightarrow 0}\frac{U_{j}(r,t)}{r^{2}}=\frac{$\phi$_{j}(0)}{N(T-t)} for 0<t<T.

Put V_{j}(r, t)=U_{j}(r, t)/r^{2} . Then V=V_{j} solves (3.6) and

(V_{j})_{r}(0, t)=0 and V_{j}(L, t)=$\Phi$_{j}(L/\sqrt{T-t})L^{-2} for 0<t<T.

By using the zero number properties of solutions for linear parabolic equations [5],
we will derive criteria of the blow‐up rate of solutions to (1.2) in terms of the function

U defined by (3.3). We obtain Theorems 1.1 and 1.6 as a consequence of the following
result.

Theorem 3.1. Let 3\leq N\leq 9 ,
and assume that (1.9) holds. Let (u, v) be a

radially symmetric solution of (1.2) for0\leq t<T ,
and define U by (3.3).

(i) Assume that there exist t_{0}\in[0, T) and r_{0}\in(0, L] such that

U(r, t_{0})\leq 2 for0\leq r\leq r_{0} and U(r_{0}, t)\leq 2 for t0\leq t<T.

Then the solution (u, v) does not blow up at t=T.

(ii) Assume that there exist t_{0}\in[0, T) and r_{0}\in(0, L] such that U(r, t_{0})-2 has exactly
one zero for0\leq r\leq r_{0} and U(r_{0}, t)>2 for t0\leq t<T . If the solution (u, v) blows

up at  t=T<\infty then the blow‐up is of type  I.

It is clear that U_{0} ,
defined by (1.7), satisfies U_{0}(r)=U(r, 0) for 0\leq r\leq L . By the

property (3.2) we see that U(L, t)=U(L) for 0\leq t<T . Then, by applying Theorem

3.1 with r_{0}=L and t_{0}=0 ,
we obtain Theorem 1.1 immediately.
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Proof of Theorem 1.6. Assume that (u, v) blows up at  t=T<\infty . By Theorem

3.1 (i) we have \{r\in(0, L) : U(r, t)>2\}\neq\emptyset for any  0\leq t<T . It is easy to see

that there exist t_{0}\in(0, T) and r_{0}\in(0, L) such that U(r_{0}, t_{0})>2 and U(r, t_{0})-2 has

exactly one zero for 0<r<r_{0} . Note that the condition (1.15) ensures that V_{t}\geq 0 for

all t\in(0, T) . Then U(r_{0}, t) is nondecreasing in t\in(t_{0}, T) ,
and hence U(r_{0}, t)>2 for

t_{0}\leq t<T . By Theorem 3.1 (ii), the blow‐up is of type I. \square 

We will give a sketch of the proof of Theorem 3.1. For the detail, see [20].

Proof of Theorem 3.1. (Sketch). (i) By using the comparison argument, we may

assume that U(r, t)<2 for 0\leq r<r_{0} and t_{0}<t\leq T . Take \hat{T}>T ,
and define \hat{U}_{j} by

\displaystyle \hat{U}_{j}(r, t)=$\Phi$_{j}(\frac{r}{\sqrt{\hat{T}-t}}) for 0\leq r\leq L, t_{0}\leq t<\hat{T},

where \{$\Phi$_{j}\}_{j=1}^{\infty} is a sequence of function obtained in Theorem 2.1. By using the prop‐

erties in Theorem 2.1, we will find that there exists j_{0}\in \mathrm{N} such that, if j=j_{0} ,
then

(3.10) \hat{U}_{j}(r, t_{0})>U(r, t_{0}) for 0<r\leq r_{0},

and

(3.11) \hat{U}_{j}(r_{0}, t)>U(r_{0}, t) for t_{0}\leq t\leq T.

Put V and \hat{V}_{j} by

V(r, t)=\displaystyle \frac{U(r,t)}{r^{2}} and \displaystyle \hat{V}_{j}(r, t)=\frac{\hat{U}_{j}(r,t)}{r^{2}},
respectively. Then V and \hat{V} solve (3.6) and satisfy V_{r}(0, t)=\hat{V}_{r}(0, t)=0 for t_{0}\leq t<T.

It follows from (3.10) and (3. 11) that

\hat{V}_{j}(r, t_{0})>V(r, t_{0}) for 0\leq r\leq r_{0} and \hat{V}_{j}(r_{0}, t)>V(r_{0}, t) for t_{0}\leq t<T.

Then, by the maximum principle, we obtain V(r, t)<\hat{V}_{j}(r, t) for 0\leq r\leq r_{0}, t_{0}\leq t<T.

From (3.5) and (3.9) we see that

\displaystyle \lim_{r\rightarrow 0}V(r, t)=\lim_{r\rightarrow 0}\frac{U(r,t)}{r^{2}}=\frac{u(0,t)}{N} and \displaystyle \lim_{r\rightarrow 0}\hat{V}_{j}(r, t)=\lim_{r\rightarrow 0}\frac{\hat{U}_{j}(r,t)}{r^{2}}=\frac{$\phi$_{j}(0)}{N(\hat{T}-t)}.
This implies that u(0, t)<$\phi$_{j}(0)/(\hat{T}-t) for t_{0}\leq t<T<\hat{T} . Note that (1.9) implies

u(0, t)=\Vert u(\cdot, t)\Vert_{\infty} . Then \displaystyle \sup_{0\leq t<T}\Vert u(\cdot, t)\Vert_{\infty}<\infty ,
and hence (u, v) does not blow up

at t=T.
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(ii) For a continuous function  $\psi$ defined on an interval  J ,
we define the zero number

of the function  $\psi$ on  J by \mathcal{Z}_{J}[ $\psi$]=\#\{r\in J :  $\psi$(r)=0\} . We will find that \mathcal{Z}_{[0,r_{0}]}[U(, t)-
2]=1 for t_{0}\leq t<T ,

and we may assume that T-t_{0}>0 is small enough so that

(3.12) \displaystyle \frac{r_{0}}{\sqrt{T-t_{0}}}>R_{0},
where R_{0} is the constant which appears in Theorem 2.1.

Define U_{j} by (3.8) for j=1 , 2, . . .. First we show that, for each j=1 , 2, . .

.,

(3.13) U_{j}(r_{0}, t)<U(r_{0}, t) for t_{0}\leq t<T.

Since $\Phi$_{j}(r)-2 has exactly 2j zeros on (0, R_{0} ] and no zeros on (R_{0}, \infty) by Theorem

2.1, we see that that $\Phi$_{j}(r)<2 for r>R_{0} . From (3.12) we obtain U_{j}(r_{0}, t)<2 for

t_{0}\leq t<T . Since U(r_{0}, t)>2 for t_{0}\leq t<T ,
we obtain (3.13).

By using the properties in Theorem 2.1, we will find that there exists j_{0}\in \mathrm{N} such

that, if j\geq j_{0} ,
then U_{j}(r, t_{0})-U(r, t_{0}) has exactly one zero for 0\leq r<r_{0} . Put V and

V_{j} by V(r, t)=U(r, t)/r^{2} and V_{j}(r, t)=U(r, t)/r^{2} , respectively. Then \mathcal{Z}_{[0,r_{0}]}[V_{j}(, t_{0})-
V t_{0})]=1 . By the zero number property, we obtain \mathcal{Z}_{[0,r_{0}]}[V_{j}(, t)-V t)]=1 for

t_{0}<t<T . We denote by \tilde{r}(t) a unique zero of V_{j}(r, t)-V(r, t) . Then \tilde{r}(t)\in(0, r_{0}) for

t_{0}\leq t<T ,
and V(r, t)<V_{j}(r, t) for 0\leq r<\tilde{r}(t) . From (3.5) and (3.9) we obtain, for

each t\in[t_{0}, T),

\displaystyle \lim_{r\rightarrow 0}V(r, t)=\lim_{r\rightarrow 0}\frac{U(r,t)}{r^{2}}=\frac{u(0,t)}{N} and \displaystyle \lim_{r\rightarrow 0}V_{j}(r, t)=\lim_{r\rightarrow 0}\frac{U_{j}(r,t)}{r^{2}}=\frac{$\phi$_{j}(0)}{N(T-t)}.
Then it follows that (T-t)u(0, t)\leq$\phi$_{j}(0) for t_{0}\leq t<T . This implies that the blow‐up
is of type I. \square 
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