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Global solvability for a chemotaxis system in \mathbb{R} 2

By

Toshitaka Nagai *

Abstract

We consider the Cauchy problem of a parabolic‐elliptic system in \mathbb{R}^{2}
,

which is a mathe‐

matical model of chemotaxis. Under a mild restriction on the initial data, we discuss the global
existence of nonnegative solutions to the Cauchy problem for the sub‐critical case, that is, the

total mass is less than 8 $\pi$.

§1. Introduction

We consider the Cauchy problem of the following parabolic‐elliptic system, which

is a mathematical model of chemotaxis in \mathbb{R}^{2} :

(1.1) \left\{\begin{array}{ll}
\partial_{t}u-\triangle u+\nabla\cdot(u\nabla $\psi$)=0, & t>0, x\in \mathbb{R}^{2},\\
-\triangle $\psi$=u, & t>0, x\in \mathbb{R}^{2},\\
u(0, x)=u_{0}(x) , & x\in \mathbb{R}^{2},
\end{array}\right.
where  $\psi$ is specified as

 $\psi$(t, x)=-- \displaystyle \frac{1}{2 $\pi$}\int_{\mathbb{R}^{2}}\log|x-y|u(t, y)dy.
Here u\geq 0 denotes the density of microorganisms and  $\psi$ the concentration of a chemoat‐

tractant secreted by themselves (see [11, 19]). The system is also a model of self‐

interacting particles in \mathbb{R}^{2}
,

where u is the density of particles in \mathbb{R}^{2} interacting with

themselves through the potential  $\psi$ (see [6, 32
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The total mass of u to the system (1.1) is conserved and given by M:=\displaystyle \int_{\mathbb{R}^{2}}u_{0}dy,
and plays an important role in the global solvability of solutions to (1.1). In fact,
there is a critical mass above which all solutions blow up in finite time under additional

assumptions (see [6, 8, 21 and below which they exist globally in time under certain

assumptions (see [5, 8]). The critical mass is actually given by  M=8 $\pi$ . In the critical

case  M=8 $\pi$ ,
in [5] the global existence of radial solutions to (1.1) was shown for initial

data with finite or infinite second moment, and in [7] the global existence of non‐radial

solutions for initial data with finite second moment. Related results for chemotaxis

models, see [12, 14, 15, 17, 25, 27, 28, 29, 30], and for models of self‐interacting particles,
see [2, 3, 4]. Many of these results for chemotaxis models also can be found in [16, 31].

In this paper we discuss the global existence of solutions in the sub‐critical case

 M<8 $\pi$ . The global existence of nonnegative weak solutions to (1.1) has been studied

by Blanchet‐Dolbeault‐Perthame [8] for the nonnegative initial data  u_{0}\in L^{1} satisfying

(1.2) u_{0}\log u_{0}, u_{0}|x|^{2}\in L^{1}

Here and in the sequel L^{p}:=L() is the Lebesgue space on \mathbb{R}^{2} for  1\leq p\leq\infty with

the usual norm \Vert \Vert_{p}:=\Vert \Vert_{Lp} . One of main tools in [8] is the free energy

F[u]=\displaystyle \int_{\mathbb{R}^{2}} ulogudx— \displaystyle \frac{1}{2}\int_{\mathbb{R}^{2}}u $\psi$ dx,
where the first term is the entropy and the second one a potential energy, which gives
useful a priori estimates for proving the global existence of weak solutions. Their method

to get a priori estimates strongly relies on the free energy inequality

F[u(t)]+\displaystyle \int_{0}^{t}\int_{\mathbb{R}^{2}}u|\nabla\log u-\nabla $\psi$|^{2}dxds\leq F[u_{0}],
the logarithmic Hardy‐Littlewood‐Sobolev inequality (see Lemma 2.4 in [8]) and the

second moment identity

(1.3) \displaystyle \int_{\mathbb{R}^{2}}u(t)|x|^{2}dx=\int_{\mathbb{R}^{2}}u_{0}|x|^{2}dx+4M(1-\frac{M}{8 $\pi$})t.
To get a priori estimates, they control \displaystyle \int_{\mathbb{R}^{2}}u|\log u|dx by the free energy and the second

moment of u . For this reason assumption (1.2) on the initial data u_{0} is essentially
needed in their proof of global existence.

We note that the free energy F[u] is well‐defined for u\geq 0 satisfying

(1.4) u
, ulogu, u\log(1+|x|)\in L^{1},

because | $\psi$| is estimated by \log|x| for large |x| and \displaystyle \int_{\mathbb{R}^{2}}u $\psi$ dx is well‐defined. We also

remark that the condition u\log(1+|x|)\in L^{1} for u\in L_{loc}^{1} is necessary and sufficient
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for  $\psi$\in L_{loc}^{1} . Our aim in this paper is to establish the global solvability of nonnegative
solutions satisfying (1.4) for t>0 ,

under the following mild restriction on the initial

data u_{0}\in L^{1} :

(1.5) u_{0}\log(1+|x|)\in L^{1}

Our method to get a priori estimates of nonnegative solutions is quite different from

that in [8], because the second moment identity (1.3) is not useful in our situation.

We introduce the modified entropy \displaystyle \int_{\mathbb{R}^{2}}(1+u)\log(1+u)dx being nonnegative and the

following free energy

\displaystyle \int_{\mathbb{R}^{2}}(1+u)\log(1+u)dx-\frac{1}{2}\int_{\mathbb{R}^{2}}u $\psi$ dx
in place of \displaystyle \int_{\mathbb{R}^{2}} ulogudx and the free energy F[u] , respectively, and establish a priori
estimate of \displaystyle \int_{\mathbb{R}^{2}}(1+u)\log(1+u)dx whose proof is required a careful treatment because

 $\psi$(t)\not\in L^{p} for any  1\leq p\leq\infty . We remark that the following two properties

(i)  u
, ulogu, u\log(1+|x|)\in L^{1},

(ii) (1+u)\log(1+u) , u\log(1+|x|)\in L^{1}

are equivalent, and hence (ii) gives the well‐definedness of the free energy F[u].
We give some remarks on the following parabolic‐elliptic system in which the sign

of the nonlinear term \nabla\cdot(v\nabla $\psi$) of the first equation is opposite from that of \nabla\cdot(u\nabla $\psi$)
in (1.1):

(1.6) \left\{\begin{array}{ll}
\partial_{t}v-\triangle v-\nabla\cdot(v\nabla $\psi$)=0, & t>0, x\in \mathbb{R}^{2},\\
-\triangle $\psi$=v & t>0, x\in \mathbb{R}^{2}.
\end{array}\right.
For the nonnegative solutions of (1.6), we have

(1.7) \displaystyle \frac{1}{p}\frac{d}{dt}\int_{\mathbb{R}^{2}}v^{p}dx+\frac{4(p-1)}{p^{2}}\int_{\mathbb{R}^{2}}|\nabla v^{p/2}|^{2}dx+\frac{1}{p}\int_{\mathbb{R}^{2}}v^{p+1}dx=0,
where p>1 ,

which implies that \Vert v(t)\Vert_{L^{p}}\leq\Vert v(0)\Vert_{L^{p}} and

(1.8) \displaystyle \frac{d}{dt}\int_{\mathbb{R}^{2}}v^{p}dx+4(1-\frac{1}{p})\int_{\mathbb{R}^{2}}|\nabla v^{p/2}|^{2}dx\leq 0.
Once we get (1.8), techniques in the proof of Proposition 5.2 of [18] give

\Vert v(t)\Vert_{p}\leq Ct^{-1+1/p}, t>0,

where  1<p\leq\infty and  C is a constant depending only on p, \Vert v(0)\Vert_{1} . On the other hand,
for the nonnegative solutions of (1.1), we have (1.7) with the negative sign of the last
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term that does not give (1.8). Hence it is said that the system (1.6) is stable, but (1.1),
on the other hand, is not. A Lipschitz semigroup approach to the system (1.6) has been

done in [24]. A drift‐diffusion system that has (1.6) as a special case has been studied

in [22, 20].
In this paper, Section 2 is devoted to our main results (Theorem 2.1) on the unique‐

ness, global existence and regularity of nonnegative solutions to (1.1). In Section 3 local

existence is discussed. In Section 4 we give the outline of the proof of Theorem 2.1.

§2. Main results

In order to mention our main result, we define mild solutions of (1.1).

Definition 2.1. For the initial data u_{0}\in L^{1} satisfying (1.5), a function u on

[0, T)\times \mathbb{R}^{2} is said to be a mild solution of (1.1) on [0, T ) if

(i) u\in C([0, T);L^{1})\cap C((0, T);L^{4/3}) , \displaystyle \sup_{0<t<T}t^{1/4}\Vert u(t)\Vert_{4/3}<\infty,
(ii) \displaystyle \sup_{0<t<T}\Vert u(t)\log(1+|x|)\Vert_{1}<\infty,

(iii) u satisfies the integral equation

(2.1) u(t)=e^{t\triangle}u_{0}-\displaystyle \int_{0}^{t}\nabla\cdot e^{(t-s)\triangle}(u(s)\nabla $\psi$(s))ds, 0<t<T,

where e^{t\triangle} is the heat semigroup defined by

(e^{t\triangle}f)(x)=\displaystyle \int_{\mathbb{R}^{2}}G(t, x-y)f(y)dy, G(t, x)=\frac{1}{4 $\pi$ t}\exp(-\frac{|x|^{2}}{4t}) .

A function u on [0, \infty ) \times \mathbb{R}^{2} is a global mild solution of (1.1) if u is a mild solution of

(1.1) on [0, T) for any 0<T<\infty.

Remark. The free energy is well‐defined for nonnegative mild solutions to (1.1),
because (1+u(t))\log(1+u(t))\in L^{1} is satisfied for each t>0 by u(t)\in L^{1}\cap L^{4/3} ,

and

hence (1.4).

In what follows, we use the following notation.

\partial_{x}^{ $\alpha$}=\underline{\partial^{| $\alpha$|}}  $\alpha$=($\alpha$_{1}, $\alpha$_{2})\in \mathbb{Z}_{+}^{2}, | $\alpha$|=$\alpha$_{1}+$\alpha$_{2}, \mathbb{Z}_{+}=\mathbb{N}\cup\{0\}.
\partial x_{1}^{$\alpha$_{1}}\partial x_{2}^{$\alpha$_{2}}

�

Our main theorem is mentioned as follows.
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Theorem 2.2. Assume that u_{0}\in L^{1} is nonnegative and satisfies (1.5). If the

initial data satisfies

\displaystyle \int_{\mathbb{R}^{2}}u_{0}dx<8 $\pi$,
then there exists uniquely a nonnegative global mild solution u of (1.1) with initial data

u_{0} . Moreover, u and  $\psi$ satisfy the following:

(i) \displaystyle \int_{\mathbb{R}^{2}}u(t)dx=\int_{\mathbb{R}^{2}}u_{0}dx fort>0.

(ii) For all 1<q\leq\infty,

u\in C((0, \infty);L^{q}) ,

(iii) For all 1<q<\infty, n\geq 0,  $\alpha$\in \mathbb{Z}_{+}^{2},

\displaystyle \lim_{t\rightarrow+0}t^{1-1/q}\Vert u(t)\Vert_{q}=0.

\partial_{t}^{n}\partial_{x}^{ $\alpha$}u\in C((0, \infty);L^{q}) .

(iv) For all n\geq 0 ,
and for all  2<q<\infty in case of | $\alpha$|=0 and for all  1<q<\infty in

case of | $\alpha$|\geq 1,
\partial_{t}^{n}\partial_{x}^{ $\alpha$}(\nabla $\psi$)\in C((0, \infty);L^{q}) .

(v) u is a classical solution of (1.1) on (0, \infty)\times \mathbb{R}^{2}.

§3. Local existence

In order to get the local existence of solutions to (1.1), we first consider the following

Cauchy problem:

(3.1) \left\{\begin{array}{ll}
\partial_{t}u-\triangle u+\nabla\cdot(u(\nabla N*u))=0, & t>0, x\in \mathbb{R}^{2},\\
u(0, x)=u_{0}(x) , & x\in \mathbb{R}^{2},
\end{array}\right.
where

N(x)=-\displaystyle \frac{1}{2 $\pi$}\log|x|, (\nabla N*u)(t, x)=-\frac{1}{2 $\pi$}\int_{\mathbb{R}^{2}}\frac{x-y}{|x-y|^{2}}u(t, y)dy.
Definition 3.1. Given u_{0}\in L^{1} ,

a function u on [0, T ) \times \mathbb{R}^{2} is a mild solution of

the Cauchy problem (3.1) if u satisfies

u\displaystyle \in C([0, T);L^{1})\cap C((0, T);L^{4/3}) , \sup_{0<t<T}t^{1/4}\Vert u(t)\Vert_{4/3}<\infty,

u(t)=e^{t\triangle}u_{0}-\displaystyle \int_{0}^{t}\nabla\cdot e^{(t-s)\triangle}(u(s)(\nabla N*u)(s))ds, 0<t<T.
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We remark that the equation of (3.1) is rather similar to the vorticity equation in

\mathbb{R}^{2}

\left\{\begin{array}{l}
\partial_{t} $\omega$=\triangle $\omega$-\nabla\cdot( $\omega$(\nabla^{\perp}N* $\omega$ t>0, x\in \mathbb{R}^{2},\\
\nabla^{\perp}N(x)=\frac{1}{2 $\pi$}\frac{(x_{2},-x_{1})}{|x|^{2}}, x=(x_{1}, x_{2}) ,
\end{array}\right.
where \nabla^{\perp}N* $\omega$ is the velocity field of the Navier‐Stokes equation for an incompressible
fluid in \mathbb{R}^{2}

,
which satisfies \nabla (\nabla^{\perp}N* $\omega$)=0 . For the global existence, uniqueness

and regularity of solutions to the Cauchy problem of the the vorticity equation in \mathbb{R}^{2},
for example, see Giga‐Miyakawa‐Osada [23], Ben‐Artzi [1], Kato [18] and Brezis [9].
To obtain the local existence, uniqueness and regularity of solutions to (3.1), we apply
the methods used in Kato [18] and Brezis [9] for the vorticity equation in \mathbb{R}^{2} to our

equation.

Proposition 3.1. Given u_{0}\in L^{1} ,
there exists T>0 such that the Cauchy problem

(3.1) has a unique mild solution u . Moreover u satisfies the following:

(i) For all1 <q\leq\infty,

u\in C((0, T);L^{q}) ,

(ii) For all 1<q<\infty, n\geq 0,  $\alpha$\in \mathbb{Z}_{+}^{2},

\displaystyle \lim_{t\rightarrow+0}t^{1-1/q}\Vert u(t)\Vert_{q}=0.

\partial_{t}^{n}\partial_{x}^{ $\alpha$}u\in C((0, T);L^{q}) .

(iii) For all n\geq 0 ,
and for all  2<q<\infty in case of | $\alpha$|=0 and for all  1<q<\infty in

case of | $\alpha$|\geq 1,
\partial_{t}^{n}\partial_{x}^{ $\alpha$}(\nabla N*u)\in C((0, T);L^{q}) .

(iv) u is a classical solution of \partial_{t}u=\triangle u-\nabla\cdot(u(\nabla N*u)) on (0, T)\times \mathbb{R}^{2}.

For the nonnegative initial data u_{0}\in L^{1} satisfying (1.5), we have the following.

Proposition 3.2. Assume that u_{0}\in L^{1} is nonnegative on \mathbb{R}^{2} and satisfy (1.5).
Then the solution u of (3.1) with the initial data u_{0} mentioned in Proposition 3.1

satisfies the following:

(i) u is nonengative on (0, T)\times \mathbb{R}^{2}.

(ii) \displaystyle \int_{\mathbb{R}^{2}}u(t)dx=\int_{\mathbb{R}^{2}}u_{0}dx for 0<t<T.

(iii) \displaystyle \sup_{0<t<T}\Vert u(t)\log(1+|x|)\Vert_{1}<\infty.
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By Propositions 3.1 and 3.2, for the nonnegative solution u of (3.1) with the non‐

negative initial data u_{0}\in L^{1} satisfying (1.5), we see that  $\psi$(t):=(N*u)(t) is in

L_{loc}^{1}(\mathbb{R}^{2}) for any 0<t<T because of the assertion (iii) of Proposition 3.2, and that

u is a solution of (1.1) because \nabla $\psi$=\nabla N*u and -\triangle $\psi$=u . Therefore we have the

following.

Proposition 3.3. Assume that u_{0}\in L^{1} is nonnegative on \mathbb{R}^{2} and satisfy (1.5).
Then there exists T>0 such that the Cauchy problem (1.1) has a unique nonnegative
mild solution u on [0, T). Moreover, this solution satisfies the conservation of mass ((\mathrm{i}\mathrm{i})
of Proposition 3.2) and regularity ((i)(iii) of Proposition 3.1), and is a classical solution

of the equations of (1.1) on (0, T)\times \mathbb{R}^{2}.

§4. Global existence

We show that the solution u obtained in Proposition 3.3 can be continued to the

time interval [0, \infty ). For simplicity, we may assume (1+u_{0})\log(1+u_{0})\in L^{1} by

considering t_{0}\in(0, T) and u(t) as the initial time and the initial data, respectively,
because (1+u(t_{0}))\log(1+u(t_{0}))\in L^{1} by virtue of u(t_{0})\in L^{q} for any 1\leq q\leq\infty.
To show the global existence of solutions, we need a priori estimates for the solution of

(1.1). The core of the proof is to establish the following entropy estimate

\displaystyle \int_{\mathbb{R}^{2}}(1+u(t))\log(1+u(t))dx\leq C(u_{0}, T) (0<t<T) .

Here and in the sequel, C(u_{0}, T) is a positive constant depending on \displaystyle \int_{\mathbb{R}^{2}}(1+u_{0})\log(1+
u)dx, \displaystyle \int_{\mathbb{R}^{2}}u_{0}\log(1+|x|)dx, T.

Proposition 4.1. Assume \displaystyle \int_{\mathbb{R}^{2}}u_{0}dx<8 $\pi$ . Then

\displaystyle \int_{\mathbb{R}^{2}}(1+u(t))\log(1+u(t))dx\leq C(u_{0}, T) (0<t<T) ,

\displaystyle \int_{0}^{T}\int_{\mathbb{R}^{2}}\frac{|\nabla u|^{2}}{1+u}dxdt\leq C(u_{0}, T) ,

\displaystyle \int_{0}^{T}\int_{\mathbb{R}^{2}}u^{2}dxdt\leq C(u_{0}, T) .

Once we get the a priori estimates above, we can obtain a priori estimates on

\Vert u(t)\Vert_{p}(1<p\leq\infty) , \Vert\partial_{x}^{ $\alpha$}u(t)\Vert_{2} (| $\alpha$|\leq 2) , \Vert\partial_{t}u(t)\Vert_{2}.

By these a priori estimates, we can establish that the solution u can be continued to

[0, \infty) .
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As we mentioned in the introduction, the proof of the a priori estimates above is

required a careful treatment on the behavior of the solution  $\psi$ . To our aim we split the

derivation of the crucial a priori estimates into two parts, namely, exterior regions and

interior regions.
The a priori estimates in exterior regions can be obtained by the smallness of the

solution  u for sufficiently large |x| . For the solution u
,

let

H_{ext}(t;R)=\displaystyle \int_{|x|\geq R}((1+u(t))\log(1+u(t))-u(t))dx.
Proposition 4.2. There exists a sufficiently large constant R_{0} depending only on

T and \Vert u_{0}\Vert_{1} such that for all R\geq R_{0},

\displaystyle \sup_{0\leq t<T}H_{ext}(t;R)+\int_{0}^{T}\int_{|x|\geq R}\frac{|\nabla u|^{2}}{1+u}dxdt\leq 2H_{ext}(0;R)+C(\Vert u_{0}\Vert_{1})T,
\displaystyle \int_{0}^{T}\int_{|x|\geq R}u^{2}dxdt\leq C(\Vert u_{0}\Vert_{1})H_{ext}(0;R)+C(\Vert u_{0}\Vert_{1})T,

where C(u) is a positive constant depending only on \Vert u_{0}\Vert_{1}.

This proposition can be obtained by showing the following inequality: There is a

sufficiently large natural number N such that for all n\geq N,

jr \mathrm{j}
\displaystyle \frac{d}{dt}\int_{\mathbb{R}^{2}}((1+u(t))\log(1+u(t))-u(t))$\Phi$_{n}dx+\frac{1}{2}\int_{\mathbb{R}^{2}}\frac{|\nabla u(t)|^{2}}{1+u(t)}$\Phi$_{n}dx

(4.1)

\displaystyle \leq C\int_{\mathbb{R}^{2}}u(t)$\Phi$_{n}dx+2^{-2n}\{C(\Vert u_{0}\Vert_{1})+C(\Vert $\psi$(t)\Vert_{BMO})\},
where $\Phi$_{n}\in C_{0}^{\infty}(\mathbb{R}^{2}) is such that

$\Phi$_{n}(x)=\left\{\begin{array}{ll}
1 & (2^{n}\leq|x|\leq 2^{n+1}) ,\\
\mathrm{l}\mathrm{e}\mathrm{s}\mathrm{s} \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t} 1, \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e} & (2^{n-1}<|x|<2^{n}, 2^{n+1}<|x|<2^{n+2}) ,\\
0 & (|x|\leq 2^{n-1}, |x|\geq 2^{n+2}) ,
\end{array}\right.
1\displaystyle \leq\sum_{n=1}^{\infty}$\Phi$_{n}(x)\leq 2(|x|\geq 2) ,

and \Vert $\psi$(t)\Vert_{BMO} is the BMO‐norm of  $\psi$(t) . Using the following inequality

\Vert $\psi$(t)\Vert_{BMO}\leq C\Vert u(t)\Vert_{1}=C\Vert u_{0}\Vert_{1}

in (4.1) and summing up the resulting inequalities with respect to n,\mathrm{w}\mathrm{e} establish the

proof of the proposition. We remark that the assumption \displaystyle \int_{\mathbb{R}^{2}}u_{0}dx<8 $\pi$ is not used to

prove this proposition.
We next give the entropy estimate in the interior region \{|x|\leq 4R_{0}\} with R_{0} in

Proposition 4.2.
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Proposition 4.3. There exists a constant C(u_{0}, T) such that

\displaystyle \int_{|x|\leq 4R_{0}}(1+u(t))\log(1+u(t))dx\leq C(u_{0}, T) (0<t<T) .

To prove this proposition, we introduce

H_{int}(t;R)=\displaystyle \int_{\mathbb{R}^{2}}((1+u(t))\log(1+u(t))-u(t))$\Psi$_{R}dx-\frac{1}{2}\int_{\mathbb{R}^{2}}u(t) $\psi$(t)$\Psi$_{R}dx,
where $\Psi$_{R}\in C_{0}^{\infty}(\mathbb{R}^{2}) is such that

$\Psi$_{R}(x)=\left\{\begin{array}{ll}
1 & (|x|\leq R) ,\\
\mathrm{l}\mathrm{e}\mathrm{s}\mathrm{s} \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t} 1, \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e} & (R<|x|<2R) ,\\
0 & (|x|\geq 2R) .
\end{array}\right.
Taking R=4R_{0} and integrating by parts, we deduce the following differential inequality:

\displaystyle \frac{d}{dt}H_{int}(t;4R_{0})\leq\int_{\mathbb{R}^{2}}(1+u(t))\log(1+u(t))$\Psi$_{4R_{0}}dx+F(t) ,

where F(t) consists of the integrals of functions u(t) , \nabla u(t) ,  $\psi$(t) , \nabla $\psi$(t) , \partial_{t} $\psi$(t) on the

annulus region \{4R_{0}\leq|x|\leq 8R_{0}\}. F(t) is estimated as

|\displaystyle \int_{0}^{T}F(t)dt|\leq C(u_{0}, T) ,

using estimates on u and  $\psi$ in \{4R_{0}\leq|x|\leq 8R_{0}\} that are obtained by Proposition 4.2.

Applying Young�s inequality to get

(1+u)\displaystyle \log(1+u)\leq\frac{1}{a}\{(1+u)\log(1+u)-u-\frac{1}{2}u $\psi$\}+\frac{1}{a}u+\frac{1-}{a}
a

\displaystyle \exp(\frac{| $\psi$|}{2(1-a)})
for 0<a<1 ,

we have

\displaystyle \frac{d}{dt}H_{int}(t;4R_{0})\leq\frac{1}{a}H_{int}(t;4R_{0})+\frac{1}{a}\int_{\mathbb{R}^{2}}u(t)$\Psi$_{4R_{0}}dx
(4.2)

+\displaystyle \frac{1-}{a}a \int_{\mathbb{R}^{2}}\exp(\frac{| $\psi$(t)|}{2(1-a)})$\Psi$_{4R_{0}}dx+F(t) .

To estimate the last second term in the right‐hand side of (4.2), we need the fol‐

lowing lemma, which is a consequence of the Brezis‐Merle inequality ([10]) under zero‐

Dirichlet boundary conditions.

Lemma 4.1. Let  $\Omega$\subset \mathbb{R}^{2} be a bounded domain with smooth boundary. For

g\in L^{2}() ,
let w\in H^{2}() satisfy -\triangle w=g in  $\Omega$ . If \Vert g\Vert_{L^{1}( $\Omega$)}<4 $\pi$ ,

then

\displaystyle \int_{ $\Omega$}\exp(|w|)dx\leq\frac{4$\pi$^{2}}{4 $\pi$-\Vert g\Vert_{L^{1}( $\Omega$)}} diam()
2

\displaystyle \exp(\sup_{\partial $\Omega$}|w|) .
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We apply this lemma as follows. Since  $\psi$(t) satisfies

-\displaystyle \triangle(\frac{ $\psi$(t)}{2(1-a)})=\frac{u(t)}{2(1-a)} in \{|x|<8R_{0}\},

and \displaystyle \sup_{|x|=8R_{0}}| $\psi$(t)|\leq C(u_{0}, T)(0<t<T) , taking 0<a<1 such as a<(8 $\pi$-
\Vert u_{0}\Vert_{1})/(8 $\pi$) ,

that is,

\displaystyle \frac{1}{2(1-a)}\Vert u(t)\Vert_{1}=\frac{1}{2(1-a)}\Vert u_{0}\Vert_{1}<4 $\pi$,
by Lemma 4.1, we have

\displaystyle \int_{\mathbb{R}^{2}}\exp(\frac{| $\psi$(t)|}{2(1-a)})$\Psi$_{4R_{0}}dx\leq C(u_{0}, T) .

Hence, by (4.2) we establish the proof of Proposition 4.3.
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