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Abstract

We summarize conservative numerical schemes for the Keller-Segel system modelling
chemotaxis. The advantage of our schemes is that they satisfy the conservation of positiv-
ity and total mass. Both finite-difference and finite-element methods are considered. We also
report some numerical results, which will be of use in analysis of the Keller-Segel system.

§1. Introduction

This paper is concerned with conservative numerical schemes to the Keller-Segel
system of chemotaxis (cf. Keller and Segel [8]),

u—V-(Vu—uVv)=0 and kvy—Av+v—u=0,

where, as usual, u denotes the density of the cellular slime molds, v the concentration
of the chemical substance, and k£ > 0 the relaxation time. We consider the system in
a bounded domain 2 with the zero flux boundary condition. The solution u = u(z,t),
(m,t) € Q x [0, T), satisfies the conservation of the L' norm:

|u()]| 210 = u(0)| L1 (),
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which is a readily consequence of the conservation of positivity
uw(z,0)>0,Z00n Q = wu(z,t) >0in Q x (0,7T]
and the conservation of total mass

/Qu(x,t) dx = /Qu(x,O) dz (t €[0,7]).

Indeed, those conservation properties play an important role to study the Keller-Segel
system; See, for example, Horstmann [6], [7], and Suzuki [16]. Thus, those properties
are essential requirements, and it is desirable that numerical solutions preserve them,
when we solve the Keller-Segel system by numerical methods. In the present paper,
by a conservative numerical scheme, we mean a numerical scheme that satisfies the
discrete analogue of those analytical properties. Whereas those conservation properties
are simple to hold in a continuous problem, some difficulties arise in a discrete problem.
To illustrate those difficulties, we consider a linear convection-diffusion equation for the
function u = u(z,t) defined on [0, 1] x [0, 00),

(1.1) up = [ug — b(x,t)ul, ,

where b(z,t) > 0 denotes a given function. We assume that u(z,t) and b(x,t) are
periodic in x € [0,1] for all ¢ > 0. The standard explicit finite-difference approximation
to (1.1) is given as

n—+1 n n _ n n n n _1n n
w't g udy = 2w gy Oty — bty

2 2

T h? 2h

for 1 <i < N and n > 0, where ul' ~ u(ih,nt), b = b(ih,n7), h=1/N and 7 > 0. As
readily see, if

1 2
(1.2) T < §h2, h<— (ﬁ" = xlél[%,)i] b(a:,m’)) ,

then we have the conservation of non-negativity
(1.3) u >0 (1<i<N) = u"'>0(1<i<N).

(It should be noticed that the conservation of positivity cannot be expected to hold,
since we consider the explicit scheme.) However, if we apply this method to the Keller-
Segel system, the coefficient function b(z,t) corresponds to Vv(= v, ). Thus, we cannot
guarantee that (1.2) holds before computations, since we do not know a priori bound
for v,. We meet the same issue, if dealing with the implicit scheme. This means that
the conservation of positivity /non-negativity is not simple to hold in a discrete level.
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To overcome this issue, it is known that the upwind type approximation is of use. For
example, a simple upwind finite-difference approximation to (1.1) is given as

n+1 n n o _ n n n,n _ kKn n
Uu:- — U: . ui_l 2“’1 +UH_1 . b’L ui bi_lui_l

2 2

T a h? h

In this scheme, (1.3) is satisfied, if

h2

Therefore, in order to guarantee (1.3), we take a variable time increment 7,, subject
to (1.4) instead of the fixed time increment 7. In §2, we shall consider a simplified
Keller-Segel system (k = 0) in a unit circle and state a conservative finite-difference
scheme based on this idea. This conservative scheme is essentially the same as the one
described in our previous paper, Saito and Suzuki [15], where we treat the zero flux
boundary condition. Such a strategy could be extended to the finite-element method.
Thus we can deal with multidimensional cases and arbitrary shapes of domains. In
84, we shall review conservative finite-element schemes proposed by Saito [13] and [14].
As a matter of fact, application of the upwind technique to the finite-element method
usually destroys the conservation of total mass. To surmount this obstacle, we combine
our strategy for the finite-difference method with Baba-Tabata’s upwind finite-element
method that is proposed by Baba and Tabata [2]. Moreover, for finite-element schemes,
we could obtain convergence theorems with explicit convergence rates that will be also
recalled in §4. At this stage, we point out that the conservation of total mass is satisfied
by the standard finite-element method and this can be verified by taking the unity as
the test function. The important point, however, is that our finite-element schemes
satisfy both the positivity and mass conservation properties simultaneously.

The main contribution of this paper is described in §3 and §5. There, we shall
reports some numerical results obtained by our conservative numerical schemes and see
that numerical solutions remain bounded if the initial values are sufficiently small.

Before concluding this Introduction, we briefly discuss some other results that are
related to numerical methods for the Keller-Segel system. Nakaguchi and Yagi [11]
presented finite-element /Runge-Kutta discretizations for the Keller-Segel system with-
out any numerical results. They also established error estimates in the H'*¢ norm,
e € (0,1/2), for a sufficiently small 7', though they devoted little attention to con-
servation of the L' norm of approximate solutions. Marrocco [10] discussed mixed
finite-element approximations for the simplified Keller-Segel system and offered various
numerical examples, but a convergence analysis was not undertaken. The aim of Filbet
[3] is similar as ours. He proposed a finite-volume method for the simplified Keller-Segel
system, and his approximation of the “chemotaxis term” is essentially the same as ours.
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He also derived the L! conservation under some condition on the time increment and
proved the convergence of the finite-volume solution if the L' norm of an initial datum
is sufficiently small. On the contrary, we shall pose no assumption on the size of an
initial datum and obtain explicit error estimates.

§2. Conservative finite-difference method

In order to illustrate the idea of discretization, we consider the finite-difference
method to a simplified Keller-Segel system defined in R/(27Z) x [0, c0),

up — [uz — (¢(v))zul, =0, (z,t) € R/(27Z) x (0, 00),
(2.1) —Vgy +V =u, (z,t) € R/(27Z) x (0, 00),
ult—o =uo(z), x€R/(27Z),

where ¢ : [0,00) — R and ug > 0,%# 0 are given functions. Take a positive integer N
and set h = 27 /N. We introduce two kinds of grid points over [0, 27] as

1
xi:(i——)h (i=1,...,N), & =ih (i=0,...,N).

Grid points over [0, 00) are defined by
th=m1+- -+ (n=1,2,...),

where the time increment 7,, > 0 will be determined later. Then, we shall find
up & u(xg,t,) and o' & o(Z4,ty).

Set

n n n\T n n n\T
u" = (uf,...,uy)" and V"= (vy,...,vN)" .
For the time being, we suppose that u”~! and v"~! have been obtained and describe

schemes for solving u” and v" separately.

Scheme for solving u™ The key point is to introduce a reasonable approximation
of the flux F' = —u, + (¢(v)),u of u by applying upwind technique. We set

(2.2) pr = O _hgb(”?—l) (1<i<N), b=, .. .50)"

Further, we set

b = max{0,07} and b = max{0, —bl'}.

Obviously, b7 is an approximation of (¢(v)), at = x;. We note that F' is expressed as
F = —uy + [b]+u — [b]—u, where b = (¢(v)), and [b]+ = max{0,+b}. Hence, following a
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technique of upwind approximation, we may suppose that u;' and v}, ; are carried into
a point z; on flows b?’Jr and —b?jj, respectively. That is, a discrete flux F;* of u” at
r = &; is given by

Uity — U +
1 (3 7, n,— > —
= =TT i, (=0, N),
where we have defined as

n __ n n _ n n __ pn n N

uy =uy, Uny =uy, by =0y, by =07
Then our proposed scheme is
n+1 n Fn _— fpn

U, U i i—1 .

(2.3) 17_ L= — . (i=1,...,N),
n+1

or, equivalently,

(2.4) u;”rl = A1 (1+ hb?ﬁ)u?_l + [1 — Ar1(2+ h(b;”Jr + b?_))] ul

+/\n+1(1+hb?—|’—z)u?—l—la (Z: 179N)a

where A1 = a1 /b2
We introduce

_ ‘ _ T N
[blleo = max (5] (b= (b1,....ox)" €RY).

By Eqn (2.4), we have

h2
n < PR
On the other hand, Eqn (2.3) implies

N N
n+1 __ n
E u, = E (I

Therefore, if taking

eh?
2.5 Tnel =min 7, ——————
with 7 > 0 and ¢ € (0, 1], we have
™ l1n = [10®l1n,
where || - ||1,5 is the discrete L' norm defined as

N
lafin=> Juilh (W= (uy,...,un)" €RY).
=1
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Scheme for solving v”. We describe two methods. The first one is the finite-
difference method. That is, v is computed by

n __ n n _ n n __ n
Vg = VN, V-3 =Un_15 V] =Unpq (n>0),

where 47 = (uj',; +uj')/2. This implies a linear system for v, however the coefficient
matrix is not tri-diagonal.

The second method makes use of the discrete Fourier series. Thus, if u” is expressed
by the discrete Fourier series as

N/2—1

1
0l = 540 + Z (ay cos kZ; + by sinkz;) + 5 @N/2 €8 (N/2)&ny2) ,
k=1
N— N-—
Z s (kz;), Z sin (kZ;) ,
:O :
then v is obtained by
a L1 1 a
n _ %0 vy G e N/2 ] -
Vi =5 + kz::l 72 (ar, cos k&; + by sin k&;) + 3 1"’—N2/4 cos ((N/2)Zn/2)

where N is assumed to be even. The Fourier coefficients {a} and {by} are computed
by FFT (e.g. Ooura [12] etc.) readily and efficiently.

Remark.  In this section, we have considered only the explicit time discreization.
However, the implicit time discretizations are also available. In fact, in [15], we proposed
the conservative finite difference/implicit-6-scheme for a simplified Keller-Segel system
in an interval [0, 1] under the zero-flux boundary condition

Uy — (0(v))gu =0, v, =0 (x=0,1),

and proved the conservation of the L' norm. An application of our conservative scheme
to tumor angiogenesis model is reported in Kubo et al. [9].

§ 3. Numerical results (1D case)

We follow the notation of the previous section and continue to consider (2.1).
Throughout this section, we suppose ¢(v) = Av with a constant A > 0. Then, as is
well-known, (2.1) admits a unique classical solution which is global in time. We are
interested in whether the solution converges to a non-trivial stationary solution. Below,
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we report some results of numerical experiments by using the finite-difference scheme
(2.3) with the time increment control (2.5).
With a positive parameter a, we take the following four initial functions:

(3.1) up(x) = (a — %) w;(z) + % (1=1,2,3),
(3.2) uo(z) = ;? min{z, 27 — x}(2 + sin(3x)),

where

) 1/@2k) (Tk <2 < 9K) o
wile) = 0 (otherwise) (k= 21/16),

1/(4r) (k<2 <3k, bk <z < TkK)

wa(z) = 0 (otherwise) =2
_ YUk (ksz<3k dv<e<6r)
ws(z) = 0 (otherwise) e =2m®)

Then, we have a = |[u®||; 5, and thus a = |[u™||;;, for n > 1.

Results are displayed in Fig. 1-4 where A = 5, h = 27/256, 7 = h/2 and ¢ = 0.9. We
see from these figures that a numerical solution converges to the non-trivial stationary
solution if « is sufficiently large. Moreover, by comparing Fig. 2 (iv) with Fig. 3 (iv),
we observe that the shape of a nontrivial stationary solution depends on that of an
initial function. On the other hand, the numerical solution decays to the trivial solution
u=«a/(2r) if a is small.

In order to check that finite-difference solutions converge to stationary solutions,
we observe

[u” —

5, =
See Fig. 5. In each case, we observe that logd,, = —Cit, + Cs for a sufficiently large ¢,
with some positive constants C; and Cy. This implies that §,, decays to zero exponen-
tially.

§4. Conservative finite-element method

This section is devoted to a brief review of conservative finite-element methods
presented in Saito [13] and [14]. In order to avoid an unessential difficulty, we restrict
our consideration to a polygonal domain Q in R?. We consider a variant of the Keller-
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Figure 2. Behavior of the solution u” of (2.3) with (3.1) and wa(x).
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(i)

Figure 4. Behavior of the solution u™ of (2.3) with (3.2).
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Segel system,

(uy — V- (D,Vu—uVep(v))=0 in Q x (0,7),

kvy — DyAv + kyv — kou=0 in Q x (0,7,
(4.1) Ou/0v =0, Ov/Ov=0 on 00 x (0,7,
Uly—o = up on £,

\ U|t=0 =779 On Q.

Here, u = u(z,t) and v = v(x,t) are unknown functions defined in Q x [0,7] to be
solved; v is the outer unit normal vector to 02 and 9/0v is the differentiation along v;
D, Dy, k, ki, ko, T are positive constants; ¢ : [0,00) — R denotes a smooth function;
uo(x),vo(x) are initial functions which are assumed to be non-negative and not to be
identically zero. We also consider a simplified version of Keller-Segel system,

ur — V- (DyVu — AuVo) =0 in Q x (0,7),
—DyAv+ kv —kou=0 in Q x (0,7,
Ou/Ov =0, Ov/ov=0 on 0Q x (0,7,
Ul=0 =up on Q,

(4.2)

where A is a positive constant.
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(ii) P;: boundary node

(i) P;: interior node

Figure 6. The shaded region represents the barycentoric domain D; corresponding to a
node P;. (G is the barycentor of an element J;, and R; is the midpoint of an edge.)

Below, we use the standard Sobolev spaces (cf. [1]). We set W™P = W"P(Q),
H™ =Wm2, LP = LP(Q), || [lmp = I - lwmr, |- [, = || -[[L» for m € Nand p € [1, 00].
The standard inner product in L? is denoted by (-, -);

First, we recall a weak formulation of (4.1): Find v € C1([0,T] : H!) and v €
CY([0,T] : H') such that

| (dz(f) ’X> + (D Vu(t), Vx) + b(v(t), u(t), x) = 0 (x € HY),

(43) 3 (kdzgt),x> +(DyVo(t), Vx) + (kv(t) — kau(t),x) =0 (x € HY),

( 4(0) = uo, v(0) = vo,

where

b(v,u,x) = — /Q uVo(v) - Vx dx.
Let {4} = {Zn}no be a regular family of triangulations .7, of
1. J, is a set of closed triangles (elements) J, and Q = U{J | J € T}
2. any two elements of .7}, meet only in entire common faces or sides or in vertices;
3. there exists a positive constant ~; such that
hy <mips YJ € T € {Tn}n,

where h; and p; stand for the diameters of the circumscribed and inscribed circles

of J, respectively.
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As the granularity parameter, we have employed h = max{hs| J € Z,}. Let {P;} ¥,
be the set of all vertices of .73, N = N}, being a positive integer. With P;, we associate
b; € C () such that é; is an affine function on each J € 9, and qui(Pj) = 0;;, where
d;; denotes Kronecker’s delta. We define as

X, = the vector space spanned by {¢;} N,

and regard it as a closed subspace of H'. We also consider the space X}, which is
equipped with the topology induced from L?, and express it using the same symbol X},.
The Lagrange interpolation operator corresponding to .7}, is denoted by 7 : C(Q) —
Xn;

N
ThX = ZX(Pi)Qgi (x € C(Q)).

We introduce the barycentric domain D; corresponding to a node P; by examples;
See Fig. 6. Let ¢, € L™ be the characteristic function of D;. We introduce the vector
space X, spanned by {¢,} . The operator Mj, : X;, — X} is defined as

N
Muxn =) xn(P)d;  (xn € Xn),
i=1
which is called the lumping operator. We put
(’Uh,Xh)h = (thh,MhXh) ('Uh,Xh € Xh)

Thereby, (-, -)2/2 is equivalent to || - ||2 on Xp.
As an approximation of the trilinear form b(v, u, x), we take

N

br (v, xn) = Y xn(P) Y {un(P)B(v) — un(P))B;; (v)}

i=1 JEA;
(v e CQ), un, xn € Xn),
where
A; ={P; | P; and P; share an edge};
55(7)) :/ [VTné(v) - vzl dS  ([a]+ = max{0, £a});
I'ij= 8sz NoDy;

vij = the outer unit normal vector to I';; with respect to D;.

We note that, since V,¢(v) is a constant vector in each J, ﬁ;(v) can be expressed as

BEw) =" meas (TF) - [(Vmno())]; -], .

Jesy?
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where S,il’j = {J € J| P;,P; € J}; meas (Ty}) is the length of T'};, and I'/}; v} are
restrictions of I';;, v;; to J, respectively.

Although this is a direct application of Baba and Tabata’s scheme (cf. [2]), we
briefly state its derivation in a formal manner:

b(v,u,x) = / V (uVo(v)) xn dx (integration by parts)
Q
N
~ SulP) [ V@) da (= xn ~ Myxs)
i=1 i
N
= th(Pi) Z / uVo(v) - vi; dS (divergence theorem)
i=1 je; YL

Q

N
> waP) Y /F Vo) vy dS (8(0) = md(v))

JEA;
N
~ > xn(P) ) / upVmpd(v) - vi; dS (umup = up = Mpup).
i=1 jen; YT

The last integral, however, does not make a sense, since the value of uy, is not defined
on I';;. Then, the last integral is approximated by considering the upwind nodal points

as follows:

| wImo(w) vy ds = [ @Tmo) valeds - [ @(Tm(0) - v)-dS

ij i Lj
Thus, we obtain by (v, up, xn) as an approximation b(v, u, x).

~~ ’u,h(PZ)ﬁ:_(’U) - uh(Pj)ﬁ'L; (U)

The time variable is discretized as
lpn=T1+T2+ "+ Tn, Tn > 0.
Then, we consider the finite-element scheme to obtain an approximation (u}, v}') of the

solution (u(ty),v(t,)) of (4.1): Find {u}},>0 C Xp and {v} },>0 C X, such that

((u? — e
(h—h, Xh) + (D VUl Vxn) + by (0)H ul, xn) =0
h

Tn

n n—1
V), — U
) 3 (PR ) (D, + o R =0
n h
(Xh S Xh7 n Z 1)7

0 _ 0 _

Here ug, and vg, denote suitable approximations of ug and vg. A typical choice is
uon, = Truo and vop, = TRYe. The first and second equations of (4.4) are linear systems
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for uy and v} In fact, substituting x5 = (51 into (4.4), we have

up(Py) — up ™ (P)

Tn

N
mi+ 3 {Duay; + bij(0p~)}up(P)) =0,
j=1

(£) al
7 m; + Z Dvaz‘j + (klU}?(PZ) — kQU'Z(Pz)) m; = 0’
Jj=1

where
m; = the area of D;; a;; = (qugj, ngi); bij(w) = bh(w,q?)j,q?)i).
Thus, if we set

u" = (up(Pr),... ,uZ(PN))T, vt = (vp (Py),.. .,’U;LL(PN))T,
A =a;j], B" =[b;j(vy)], M =diag[m,...,mn],

then (4.4) is expressed as
M+ 7, DyA+7,B" ] u" = Mu™ 1,

[(1 + T”’“l) M + T—"DUA} NV VLTV

k k k

We recall that a;; = b;;(w) = 0 when P; and P; share no edge.
On the other hand, our finite-element scheme to (4.2) is as follows: Find {u} },>0 C
X, and {vp }n>0 C X}, such that

up — ! 1
(hT—h,Xh> + (DuVuy, Vxn) + bp(vy ™" uy, xn) =
n h

(4.5)

(Do Vo1, Vxn) 4 (krop ' = koull xi)n =0 (xn € X, n > 1),
0
Uy, = UQh,

where we have set ¢(v) = lv.

Remark.  The semi-implicit time discretization employed in (4.4) and (4.5) is
closely related to the reproduction of Lyapunov’s property, which is another important
feature of the system (4.1) and (4.2). For further details and other methods of time
discretization, we refer to Saito and Suzuki [15].

Our finite-element solutions enjoy fine conservative properties. Below we recall only
the statement of theorems and we refer to Saito [13] and [14] for the complete proof.
The first one is related to the discrete version of the conservation of total mass.
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Theorem 4.1 (Conservation of total mass).  Let {(u},v}')}n>0 C Xp be a solu-
tion of (4.4) or (4.5). Then, we have (u},1)n, = (uon, 1)y for n > 0.

The second one is related to the well-posedness of our schemes including the discrete
version of conservation of positivity. To state it, we set

Kp = }ngl KJ (kg = the minimal perpendicular length of .J).
€Tn

Theorem 4.2 (Well-posedness and conservation of positivity).  Suppose that {7}, }
is of acute type, i.e., each J € F is an acute or a right triangle. Assume that
Uoh, Vo € Xp are mnom-negative and is not identically constant. Take 7 > 0 and
e € (0,1]. Then, (4.4) or (4.5) with a time step-size control

U )
Tp = Min< 7, —
A Vrnod(vy ™) lloo

admits a unique solution {(uy,v}')tn>0 C Xp such that uy >0 for n > 1.

Combining this with Theorem 4.1, we immediately obtain

Theorem 4.3 (Conservation of the L' norm).  Let {(u},v?)}n>0 C Xp be a so-
lution of (4.4) or (4.5) as in Theorem 4.2. Then, we have |[u}|1 = ||uonll1 for n > 0.

Remark.  There is a constant ¢, > 0 such that 7,, > min{7, ¢, }. Thus, 7,, never
converges to zero as n increases, and therefore the algorithm always works. Conse-
quently, u} actually exists for all n > 1.

To state a convergence result, we make the following condition:

(R) Elliptic regularity. There exists p € (2,00) such that the following holds true: For
any p € (1,u) and f € LP(Q), the linear elliptic problem

—Av+v=f in (, 8—U:O on 0f2
ov

admits a unique solution v € W?2? that satisfies

[vll2.p < Cllflp
with a constant C' = C(p,Q2) > 0.
Remark.  When Q is a convex polygon, (R) is satisfied (cf. Grisvard [5]).

For the sake of simplicity, we consider only (4.2) and (4.5).
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Theorem 4.4 (Error estimates).  Suppose that {7} is of acute type and of in-
verse property; there exists a positive constant o such that

voh < hy VJ e I e{%}.
Assume that (4.2) admits a unique solution (u,v) satisfying
(4.6) ue€ C([0,T]: W?P), wu, € C([0,T): WHPYnC?([0,T] : LP)
for some p>2, 0 € (0,1] . Moreover, let ugp, € Xj, be chosen as
luo — uonllp < coph' 277,

with a constant agp = g p(ug) > 0. Then, there exist positive constants ho, o and Cy
independent of h and T such that we have the error estimate

(4.7) sup_(Ju(tn) = ufllp + [0(ta) = 0f [1,00) < Co(h*~2/P 477
0<t, <T

for h € (0,ho) and 7 € (0,70), where {(u},v}})}n>0 C Xy, is the solution of (4.5) as in
Theorem 4.2.

Remark.  Under the regularity assumption (4.6), we set

[[ur(t) — ui(s)]|
arp = sup |[u(t)llzp, azp= sup [lw(t)l,,, aszp= sup -
t€[0,T) t€[0,T t,s€[0,T) |t — s

Then, the constant Cj in (4.7) can be taken as
Co=C(T + 1)(ap,p + a%’p + a%p + asp) exp [C'(1 + ozip)T] ,
where C' and C' are positive constants that depend only on Q, k, A, v;’s, ho and 7.

Remark.  If we consider a bounded domain € C R? with the sufficiently smooth
boundary 02 and take a regular family of (curved) triangulations {7, },, which ezactly
fit the boundary:

Then, we can refine (4.7) and obtain

sup  (lu(tn) — upllp + llo(tn) — vi l1,00) < Co(h+77).

0<t,<T

Remark.  Concerning (4.1) and (4.4), we have a convergence result of the form
(4.7); we refer to Saito [14].
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§5. Numerical results (2D case)

In this section, we report some results of numerical experiments by conservative
finite-element schemes (4.4) and (4.5).

We assume that Q C R? is a unit square: Q = (0,1)%2. We take 7}, as a uniform
mesh composed of 2¢? congruent right-angle triangles for ¢ € N; each side of € is divided
into £ intervals of the same length. Then each small square is decomposed into two equal
triangles by a diagonal. Then we have h = v/2¢~!. Further, we set a = |Juop ||

First, we consider the simplified system (4.2) and its finite-element approximation
(4.5), where ¢(v) = \v, D,, = D,, =1 and A = k; = ko = 1. Fig. 7 shows the behavior
of the solution u} of (4.5) with o = 6.2: (i) the initial function has one peak and it is
located near a corner; (ii) it moves to the corner; (iii, iv) it is smoothed and becomes a
flat surface. On the other hand, the result when a = 7.6 is illustrated in Fig. 8 where a
larger and sharper peak is produced at the corner. We compare the magnitude of those
two solutions in Fig. 9 where the shapes of log(1 + u}) are displayed.

3500 - 3500 -

2800 - | 2800 -
i

2100 - | 2100 -

1400 -

1400 -~

700 - 700 -~

(if) ¢, = 0.002229

1400 1400

(iii) ¢, = 0.016673 (iv) t, = 0.333343

Figure 7. Behavior of the solution uy of (4.5) with o = 6.2. (¢ =100; 7 = h/2; ¢ = 0.9;
D,=D,=X =k =k =1; ¢(v) =)

According to Gajewski and Zacharias [4], if ||uo; < 27 and Q = (0,1)?, the full
system (4.1) admits a unique time-global solution such that [|u(t)||cc < ¢(t), where
t — c(t) denotes a nondecreasing finite function. Our result, Fig. 7, supports that this
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3500 3500 -
2800 2800
2100 2100
1400 1400 -

700

(ii) ¢, = 0.003335

1400 - 1400

(iii) ¢, = 0.006667 (iv) t,, = 1.000003

Figure 8. Behavior of the solution u} of @ = 7.6. (¢ = 100; 7 = h/2; ¢ = 0.9;
D,=D,=X=ki =kos=1; ¢(v) =)

& =MW s O N ® ©

(i) a =6.2; (ii) a = 7.6;
t, = 0.333343 t, = 1.000003

Figure 9. Shape of log(1 + u}), where u} is the solution of (4.5). (¢ = 100; 7 = h/2;
=09 D,=D,=A=k; =ky=1; ¢(v) =)
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analytical result is still valid for the the simplified system.

1000 1000

800 - 800

1000 18000 [
800 15000
12000 |-
9000 -
6000 |-

3000 -

(iii) ¢, = 0.008364 (iv) t,, = 0.011000

Figure 10. Behavior of the solution u}' of (4.4) with k = 0.1 (¢(v) = 5v%; D, = D, = 1,
k1 =0.1; ko =0.01; £ =128; 7 = h/2; e = 0.9; a = 50)

Finally, we consider the full system (4.1) and its finite element approximation (4.4),
where ¢(v) = 5v?, D,, = D, = 1, k; = 0.1 and ko = 0.01. Fig. 10 shows the behavior
of the solution u} of (4.4) with ||ugn|[1 = 50 and k& = 0.1: (i) the initial function has
three peaks; (ii, iii, iv) they gather and produce a single peak. On the other hand,
Fig. 11 shows the behavior of uj with the same initial function and another value of k&
(k = 0.001). In this case, each peak becomes higher and shaper individually. Especially,
they do not gather. The difference of the relaxation time k£ causes such an interesting
phenomena.

§6. Concluding remarks

We have reviewed conservative finite-difference and finite-element methods applied
to the Keller-Segel systems and reported some new numerical results. In §3, we consid-
ered a simplified Keller-Segel system in a unit circle and gave some numerical results
which show that the solution converges to the non-trivial stationary solution if ||ugp||1
is sufficiently large. Moreover, we observed that the shape of a nontrivial stationary
solution depends on that of an initial function, and the solution decays to the trivial
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2000 -~ 2000 -~
1500 1500
1000 - 1000 -

500 - 500 -

3000 - 9000 -

2500 7500
2000 6000
1500 4500
1000 - 3000 -

500 - 1500 -~

(iii) ¢, = 0.001347

Figure 11. Behavior of the solution u}' of (4.4) with k£ = 0.001 (¢(v) = 5v?; D,, = D,, =
1, k1 =0.1; ko = 0.01; £ = 128; 7 = h/2; ¢ = 0.9; ||uon||1 = 50)

solution if ||ugp||1 is small. Furthermore, in §5, we gave some numerical examples for
2D cases and showed that highly concentrated solutions are captured successfully. Our
numerical results support analytical results of Gajewski and Zacharias [4] concerning
global and bounded solutions. Thus, while the solution remains bounded if ||ugp|1 is
small, the solution produce a larger and sharper peak if ||ugp|/; is large. However, we
cannot see that whether the solution blows up in finite time. Indeed, our finite-element
solution never blows up in finite time, since its L' norm is exactly preserved. With
this connection, we consider the same situation as Fig. 7 and plot in Fig. 12 the value
of log||[u}|lec for a = |lupnl|1 = 6.2,6.4,...,8.0. We observe from those figures that
a numerical solution grows faster than exponential functions in a short time interval
[0,¢*]. The behavior after that (¢ > t*) depends on cases. When £ = 60, every solution
decays exponentially. On the other hand, when ¢ = 120, solutions corresponding to
6.2 < a < 7.4 decay exponentially and other solutions grow exponentially. We infer
from this observation that the fixed space mesh is inadequate to capture the blow up
phenomenon and application of some new devices, for example, adaptive mesh refine-
ment based on a posteriori analysis, is required. They are left here as future study.
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Figure 12. t,, vs. log ||u}} || for several values of a. (7 =h/2;e=0.9; D, =D, =\ =
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