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Asymptotic Expansion of Solution to the
Nernst-Planck Drift-Diffusion Equation

By

Masakazu YAMAMOTO*

Abstract

We discuss the asymptotic profiles of the solution to the initial value problem for the
Nernst-Planck type drift-diffusion equation in R3. It was shown that the time global existence
and decay of the solutions to the equation with large initial data. Furthermore the second order
asymptotic expansion for the solution was already given. In this paper we show the asymptotic
expansion of the solution up to the higher terms as ¢t — oo.

§1. Introduction

We consider the large time behavior of the solution to the following drift-diffusion
equation arising in a model of the plasma dynamics:

Ou—Au+V-(uVy) =0, t>0, reR3
(1.1) A = —u, t>0, v €R3,
w(0, ) = up(z), T € R3.

Here, the unknown function u (¢, z) denotes the density of charges, and v (¢, z) stands for
the electric potential. The drift-diffusion equation describes the model for the dissipative
dynamics of carriers in a monopolar semiconductor device.

The drift-diffusion equation was first considered as the initial boundary value prob-
lem in a bounded domain (see, for example [2, 5, 8, 20] and references therein). In this
case, the global existence of the solution and its asymptotic stability to the correspond-
ing steady state solution was discussed. For the Cauchy problem (1.1), the result for the
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time local well-posedness was given. Moreover, the time global existence and the decay
of the solution have already been proved (for example, we refer to [15, 16, 17, 28]). The
first order asymptotic expansion of the solution was considered by Biler-Dolbeault [1]
and Kawashima-Kobayashi [12]. In [27], Ogawa and the author found out the second
order asymptotic expansion of the solution. In this result, the asymptotic expansion
of the solution contains the correction term. There are similar equations appearing in
the other context. For example, the incompressible fluid dynamics governed by the
Navier-Stokes equations (see [10, 11, 18]), and the Keller-Segel equation in a model of
the chemotaxis (see also [7, 13, 14, 21, 22, 23, 29, 30]). The asymptotic profiles of the
solution as t — oo was observed by Escobedo-Zuazua [4] for the convection diffusion
equation. For the Navier-Stokes equation, the asymptotic expansion of the solution was
considered by Carpio [3] and Fujigaki-Miyakawa [6]. The asymptotic profiles of the time
global solution to the Keller-Segel equation was given by Nagai-Syukuinn-Umesako [24],
Nagai-Yamada [25] and Nishihara [26]. Moreover, M.Kato [9] and Yamada [31] showed
the higher order asymptotic expansion of the solution to the following parabolic Keller-
Segel system:

Ou — Au+ V- (uVy) =0, t>0, reR",
(1.2) Op — A + 1) = u, t>0, reR",
u(0,z) = ug(z), ¥(0,2) =1o(x), xr € R"”,

where n > 1. In these results, there exists a logarithmic term appeared in the asymptotic
expansion if n is even. On the other hand, when n is odd, the asymptotic expansions
for (1.2) contains only algebraic decay rates.

Our aim here is to obtain the third order asymptotic expansion for the solution to
(1.1). Especially, by considering an asymptotic expansion of the solution, we shall bring
out the contrast between the Keller-Segel equation and our equation. Before stating
our result, we introduce the following integral equation:

(1.3) u(t) = e ug + /Ot Velt=9)A . (uV(=A) ") (s)ds,

1

where {e!®};>¢ is the heat semi-group and the operator (—A)~! is represented as

(=AY Hf(x) = L/ /) dy for feLP(R3), 1<p<3/2
Am Jgs |z — y|

The solution of (1.3) is called a mild solution to (1.1). It is known that the mild so-

lution u solves the original Cauchy problem (1.1) if u satisfies u € C ([0,T); LP(R™)) N

C ((0,T); W2P(R™)) N C* ((0,T); LP(R™)) for a proper exponent p. Hereafter, we ana-

lyze (1.3) to give the asymptotic expansion of the solution. Throughout this paper, we

always assume that ug € L3(R*) N L (R?), where LE(R?) := {f € LP(R%)|jz|"f €
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LP(R®)} for pu € R. Let G = G(t,x) be the heat kernel, that is, G(t,z) :=
(4mt) =3/ 2¢=12*/(4) and set the following notations:

moi= [ wldy, = [ ().
R3 R3
Then we define the functions Jo = Jo(t,z), V4 = Vi(t,x) and Vo = Vi(t, x) by

t
Jo(t, z) == / V=98 (GV(=A)71G)(s)ds,

(1.4) 0

Vi(t,x) := moG(t,x), Va(t,z):= —m-VG(t,x) +miJo(t,z).

By the definition, it is easy to observe that the following scaling relation holds for Vi, Jy

and Vs :

(1.5) Vi(t,z) = N*Vi (Nt Ax), Jo(t,z) = ATy (A\*t, Ax), Va(t,z) = A*Va (A%t Ax)

for any A > 0. In [27], it is shown the second order asymptotic expansion of the solution:
Namely, for the mild solution u of (1.1),

(1.6) ||u(t)—v1(1+t)—V2(1+t)|\p:o(t—%(l—%>—%) as t— 0o

for 1 < p < oo. The estimate (1.6) states that the second order asymptotic expansion of
the solution has only the algebraic decay rate. In the proof of this argument, we chose
the approximation of uV(—A)~1u by V1 V(—A)~1V; in order to obtain the asymptotic
expansion for the nonlinear term of (1.3). In this paper, we find out more detailed
approximation of uV(—A)~lu to obtain a higher order asymptotic expansion up to
third order for the solution. For this purpose, we introduce the following functions:

(1.7) Va(t,z) == —m?gAG(t,x) /RS y- (GV(=A)"' o+ JoV(=A)'G) (1, y)dy

and
Va(t, ) ¢=2Z+%‘T_2W/W(—l)l(—y)ﬁuo(y)dy
/ /ng VIVG(t, z) - (uV(=A) u(s,y)
— (Vi + Va)V(=A)" (Vi + Vo) (1 + s,3)) dyds
(1.9 + 2806(1.0) [y (@926 vy

— my /O t Vell=)2 . (7 - V) (GV(-A)T'G) (s)ds

_ 2/}1@(;/ VIVG(ta) - (- V)G V(—A)" (7 - V)E) (L y)dy

2m% 1
— =3 AG(L A+t @) R3y~(JoV(—A) Jo) (1, y)dy
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—I—mO/ RS (VG(t — s,z —y)+ (y- V)VG(t,x))

JoV(=A) TG+ GV (=A) 1) (s, y)dyds.
We should remark that V3 contains some extra terms. For instance, in the second term
on the right hand side of (1.8), the integrands y,;V10x(—A)~!V; (j # k) are vanishing.
For simplicity, we leave those terms. We denote that Vs and Vs satisfy the following
scaling relation:

(1.9) Va(t,z) = ANV (V% Az),  Va(t,x) = AV3 (A%, Az)  for any A > 0.

For the solution to (1.1) and the functions which are given by (1.4), (1.7) and (1.8), we
obtain the following estimate.

Theorem 1.1.  Assume that ug € Li(R3) N L°(R3) and luoll Linpee s suffi-
ciently small. Let u be the solution to (1.1), and Vi, Vs, Va, Vs be defined by (1.4), (1.7)
and (1.8). Then the following estimate holds:

[u(t) = Vi(1+1t) — Va(l+1t) —log(2+ t)V3(1 +t) — Va(1 + 1),

(1.10) =0 (7 #075)1) as £ oo

for 1 < p < oo. Moreover, Va(t) # 0 if Jgs wodz # 0.

We should notice that when the initial data satisfies the mass zero condition mg = 0,
the auxiliary term V3(t) vanishes. Theorem 1.1 states that the third order asymptotic
expansion of the solution to (1.1) contains the logarithmic terms if mg # 0 since the
integrand y - (GV(=A)"1Jy + JoV(—=A)71G)(1,y) does not vanish. In contrast, for
the solution to the three-dimensional Keller-Segel equation (1.2) with space-time decay
conditions, it has been already proved in [31] that the third order asymptotic expansions
never contain the logarithmic terms. This difference of asymptotic behavior between
the two systems appears from the structural differences of the nonlinear terms. Namely,
in those systems, the equations solved by 1 are different. As a result, we can obtain the
estimate ||V (t)|, = O (t_%(l_%)Jr%) for our equation (for the details, see Proposition
2.3 and Lemma 2.6 in Section 2). On the other hand, it is known that the estimate for
the other case, we have the faster decay rate ||V (t)|, = O (t_%(l_%)_%)

In this paper, we use the following notation. The convolution of functions f, g over
R3 is denoted by f * g. The Fourier transform and the Fourier inverse transform are
defined by FLf](€) 1= (27) %/ oy =€ f)du, F1f)(x) i= (2m) 32 [y €€ F(€)de.
For simplicity, we describe the Fourier transform by F[f](€) = [f]"(€) = f(£). We
denote by LP the Lebesgue space for 1 < p < co. The norm of LP(R3) is represented as
| - [lp- Let LP(R?) be the weighted LP space with [fllzz == (1 + [z[)* fll,. The set of
nonnegative integers represented as Z. Various constants are simply denoted by C.
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8§ 2. Preliminaries

Before proving Theorem 1.1, we prepare several lemmas and propositions. In order
to obtain an estimate for V¢ in (1.1) and some fractional integrals, we use the following

lemma.

Lemma 2.1 (Hardy-Littlewood-Sobolev’s inequality). Let 1 < p < 3, 3/2 <

Py < 00 with p% = ]% — % Then, there exists a constant C' > 0 such that

IV(=2)" fllp. <Cliflly for any fe LP(R?).

Proof. For the proof of Lemma 2.1, see [32, p.86]. Hence, we omit the proof. O

Lemma 2.1 suggests that the estimate of Vi can be obtained by using the estimate
of u. Indeed, we see that ||V (t)|,. < Cllu(t)|, for 1 < p < 3, 3/2 < px < oo with
pi* = % — 1, since Vi) = —V(=A)"tu.

The following lemma is well-known for the estimates of the heat kernel.

Lemma 2.2. Let o, € Zi, l€eZy and 1 < p < oo. Then the heat kernel G
satisfies the following estimate:

1)_21+IBI—IaI
2

||xo‘8éVBG(t)||p < =305 for any t> 0.

Moreover, the functions V3 and V5 which are defined by (1.4) satisfy the following
equalities.

Proposition 2.3.  Let Vi and V5 be defined by (1.4). Let o € Z3 with |o] < 1
and 1 < p < oo. Then, ||[x*Vi(1)|, is bounded for k = 1,2, and the following equality
holds:

1

_3(1_1\_k=1_ |laf «@
lzVi(®)l, =t 20755 |22V, -

Moreover, ||[x*V(—A)"*Vi(1)|, is bounded for k = 1,2 when 2_3|a| < p < o0, and the

following equality is satisfied:

|29 (=) Vi(n)]|, = ¢ 207555 aov(-a) ()

.
Proof. The scaling argument (1.5) immediately gives the desired equalities. U
Next, we give the estimates for the moment of the solution to (1.1).

Proposition 2.4.  Let ug € L},(R*) N LY (R?) for m € Zy and |luo||z: are be
sufficiently small. Then, the solution u to (1.1) satisfies

le?u(t)], < C1+)-30-5)+

for any B € Z% with |3 <m and 1 < p < cc.
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Proof. The idea of the proof is the same as in Miyakawa [19]. Hence, we omit
it. O

Moreover, we also need the following second order asymptotic expansion.

Proposition 2.5. Under the same assumption as in Theorem 1.1, the solution
u to (1.1) satisfies the following estimate for any 1 < p < oco:

(2.1) lu(t) = Vi(1 + ) = Va(L +0)], < C(L + )" 2175) L log(2 4 1).
In order to prove Proposition 2.5, we prepare the following auxiliary lemma.

Lemma 2.6.  Assume that ug > 0 or ||ug||pinp~ is sufficiently small. Let u be
the solution to (1.1) and the function Vi be defined by (1.4). Then, for any 1 < p < oo,
there is a constant C > 0 such that

N|=

lu(t) = Va(L + 1), < C(1 +1)~30=5)~%,
For 3/2 < p < o0, the following estimate holds:
[V(=8) " ut) = V(=2)" Vil + 1), < C(1 + 1)~
Moreover, uV (—A)~tu satisfies

[uV(=A)ru(t) = ViV(=A) L+ )|, < O+ $)~2(1-5)-3

nojw

(1-3),

for1 <p < oo.

Proof. For the proof of Lemma 2.6, see also [12, 27]. We omit the details. O

Proof of Proposition 2.5. First, Lemma 2.6 and Proposition 2.3 immediately give the
uniformly boundedness of ||u(t) — Vi (1 +t) — Va(1 +t)||,. Indeed,

Ju(t) = Vi(L+8) = V2(1 + 8)[lp < [Ju®) = Vi1 +8)[lp + [[Va(L 4+ 0)l,
<o+t 2033 <0

Now we claim that u can be represented as

(2.2) w(t) =Vi(1+t) + Va(1 + ) + I, (t) + Io(t) + Is(t) — Iu(t),
where
I (t,x) :==ePug — Z vVPG(1 —l—t,x)/ (=) uo(y)dy,
181<1 R

t/2
Iy(t,x) ::/O /R3 (VG(t — s,z —y) — VG(1 + t,z))
(uV (=) u(s,y) — ViV(=A) V(1 + s, y))dyds,

Is(t,x) :== /t; Vel=92 . (uV(=A)tu(s) — ViV(=A) Vi (1 + 5))ds,
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1+t
I(t,x) := Vel H=92 (1, V(=A) "1V (s)ds
0
t
- / Velt=92 (V1 V(=A)"1V)(1 + s)ds.
0

Indeed, the nonlinear term on the right hand side of (1.3) is split into
t
/ Velt=92 . (uV (=A) " u)(s)ds
0

(2.3) = /0 t Vell=92 . (uV(=A) " u(s) = ViV(=A) V(1 + 5)) ds

t
+/ Vel=9) (V1 V(=A) " V1) (1 + s)ds.
0

195

Applying the integration by parts, the integrand uV(—A)"tu — V1 V(=A)~1V; is van-

ishing. Hence, the right hand side of (2.3) is represented as

/t Vel =2 . (uV(=A)tu(s) = ViV(=A) V(1 +5)) ds
0

t/
:/ 2/ (VG(t— 5.2 — y) — VG +1.2))
0 R3

(uV(=A) (s, y) = ViV(=A) V(L + 8,y)) dyds

+ [ Vel (v (=A) " u(s,y) — ViV(=A)VA(L + 5, 9)) ds
t/2

and

/t Velt=9) (Vi V(=A) "1V (1 + s)ds

1+t
= Vel =92 (Vi V(=A) 1) (s)ds — I.(t)
0

=maJo(1 +t) — I4(t).

Substituting those equalities into (2.3), we obtain (2.2). In order to conclude the proof,
we confirm that ||7;(t)], < C(1 + t)_%(l_%)_% log(2 +t) for j = 1,2,3,4. It is well

known that

(2.4) 1L (@), < O+ 6305~
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We show the estimate for I5. By the mean-valued theorem, we see that

t/2
/ / / (1+s5)0,VG1+t—c(1+s),x—y)
R3
—A) " tu(s,y) = ViV(=A) Vi (1 + s,y))dodyds

t)2
/ //yVVG1+ta:—ay)
]R3

(=A)tu(s,y) = ViV(=A) Vi (1 + s,9))dodyds.

Thus, by the Hausdorff-Young inequality, Lemma 2.2, Propositions 2.3, 2.4 and Lemma
2.6, we obtain that

(2.5) IL2(8)]l, < Ot 3075 "L log(2 + 1),

Foranylgpgoo,let1§q<ooand1§r<3/2with%=
similar argument, we have the estimate for I3 that

% + % — 1. Then, by the

[£13(8) [l < / IVG(t = 8)[|r[uV(=A) " u(s) = ViV(=A) " Vi(1 + 5)||4ds
(2.6) H2

1

¢
gc/ (t — 8)—%(1—%)—%3—%(1—%)—%618 < o s(1-3)-1
t)2

Next, we show the estimate for I. Since the odd integrand GV (—A)~1G is vanishing,
we can split I into the following three parts,

1+t
Lu(t, ) =m? / Vel H=98 (GV(—A)~1G)(s)ds
0
t
— m3 / Velt=95 (GV(=A)1G)(1 + s)ds
0
1+t
—p{ [0S (GU(-8)1G) L+ s)ds
0

/ t Velt=92 (GV(-A)1G)(1 + s)ds}

—mo/ /]1%3 (VG1+t—s,x—y)— VGl +tzx))
(—A)'G)(1 4 s) — GV(=A)T'G)(s)) dyds

—m2 /Ht Vel =92 (GV(=A)'G) (1 +5) — GV(=A) ' G)(s)) ds

2
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Moreover, applying the mean-valued theorem, I, can be represented as

I4(t Ji)

—m2 / ( / Velr=94 . (GV(— A)_lG)(lJrs)ds) do

T=t+0o

(2.7) —l—mO/ /RB/ / (sO:VG(1+t—os,z—y)+ (y- V)VG(1+t,x —oy))
(—=A)'G)(s + p, y)dudodyds

1+t
—m? / / Vel H=92 . 9 (GV(=A)"1G)(s + p)dpds.

The first term on the right hand side of (2.7) is split into

:/1 V- (GV(-A) @)1+t + 0)do

do

T=t+0o

1‘+<7

/ / VAeHo=98 (GV(=A)1G)(1 + s)dsdo
t+o

+ / VeltHo=95 L A(GV(—A)G)(1 + 5)dsdo.
0 Jige

Hence, by Lemma 2.2 and the Hausdorff-Young inequality, we obtain that

12 (@)1,
<mo/ |V (GV(-A)'G) (1+t-|-0‘)||pdo'
L
+C / (t+o—3s) —3( 1—— —3 ||Gv 1G(1+8)||1d8d0
t+o
(2.8) e / (t+0—s) VAGY(=A)'G)(1 + )|, dsdo

1 +t—s) -3 _5)_%3||8S(GV(—A)_1G)(S-|-,u)||1duds
1+t “2073) 71 ||ya,(GV(~A)1G) (s + p)|, duds

+C

+
Q
\\\ \\

Ht/ (L+t—s)"20,(GV(-A)1G) (s + |, duds.
0

When p = oo, by employing the L>°-L! estimate for the Fourier transform, we obtain
the estimates of ||V - (GV(-=A)7'G) (1 +t+ O')HOO , [AGY(=A)T1G) (1 + s)||Oo and
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10:(GV(=A)1G)(s + ,u)”oo. Namely,

|AGY(-2)'G) (1 +5)|. = H]: [|§|2 3 o (1) [E—n|? L2€—<1+s)|n|2d,71 H

il
§C’H|§|2 o~ (LHs)lE—n* T Ui —(14-5>‘)|77|2al77
n|? 1
—(1+ 2
<C/ ﬂ/ |£|26—(1+S)|§—n|2d§dn
-~ JRs Ul R3
=C(1+s)" /2.

The other two estimates are given by the same calculation. Combining those arguments
and Lemma 2.1 with (2.8), we have that

Il <o 307 1 [ [ 30D (s ) s
1t
(2.9) +C’t_§(1__)_1 / (54 )% duds
1+t/ L4t 1/2(s+u)_%(1_%)_2dud8
<ot 3(-%)-1,
Summing up (2.4), (2.5), (2.6) and (2.9), we have the desired estimate. O

Proposition 2.5 gives the following estimates.

Corollary 2.7. Under the same assumption as in Proposition 2.5, V(—A) " u
satisfies the following estimate for 3/2 < p < oo:

(2.10) [|V(=A) "} (u(t) — Vi(1+ 1) = Va1 + )|, < C(1+6)2073) " F1og(2 + 1),
Moreover, the following estimate holds for 1 < p < oco:
||uV(—A)_1u(t) — (Vl + ‘@)V(—A)_l(vl + VQ)(l + t)”p

(2.11) v
<O+t 51752 10g(2 + ).

Proof. The estimate (2.10) is given by Lemma 2.1 and Proposition 2.5. Also,
Propositions 2.3, 2.4, 2.5 and the estimate (2.10) give the estimate (2.11). O

§3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. The following proposition is essential for
the proof.
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Proposition 3.1.  Under the same assumption as in Theorem 1.1, there exists
the function p = p(t,z) such that
u(t,z) = Vi(1+t,z) + Va(l+t,2) 4+ log(2 + t)Va(1 4+ t,2) + Va(1 + t,2) + p(t, x)

and ||p(t)|, = o (t 2(1—-)—1> as t— oo for 1<p<oo.

Proof. We split u into the following parts:

u(t, z)
=Vi(l+t,z)+ Va(l+t,x)

s T
oy AVEUIED [ puntay

]
20+ 8|=2 g

(3.1) / / y-V)VG(1+t, )
uV(=A)"tu(s,y) — (Vi + Vo) V(=A) (Vi + Vo) (1 + s,y)) dyds

+ / Vell=98 (Vi + Vo) V(=A) (Vi + Vo)) (1 + s)ds — m3Jo(1 + t, )
0
+ pl(tv .11) + p2(ta .I) + p3(ta x) - p4(t7 :I:)a
where V; and V5 are defined by (1.4), and
OIVPG(1 +t,x
pltia) imebug— 30 AEECELI [ Cp)Punydy

!
20+|B|<2 Al

t)2
2(t, ) / VG’ t—s,x—vy)— Z VAVG(1 +tax)(—y)ﬁ>
RS B1<1

uV(=A)u(s,y) — (Vi + Vo) V(=A) (Vi + Vo) (1 + 5,y)) dyds,

pa(t, ) = / o Vel =98 . (uV(=A)tu(s) — (Vi + Vo) V(=A) " (Vi + Va)(1 + s))ds,

= > VVG(1+tx)- / AB(—y)ﬂ(uV(—A)‘lu(s,y)

18]=1
— (Vi + Vo)V(=A) 1 (Vi + Vo) (1 + s,y)) dyds.

Indeed, the nonlinear term on the right hand side of (1.3) is represented as

/ t Vell=98 . (uV(=A) " u)(s)ds
0

(32) = /0 Vel =8 (uV(=A)Mu(s) — (Vi + Vo) V(=A) 7 (Vi + Vo) (1 + 5)) ds

t
+ / Velt=98 (V] + Vo )V(=A) " (Vy + Vo) (1 + s)ds.
0
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Applying the integration by parts, the integrand uV (—A) " tu— (V3 +V2)V(=A) (V1 +
V3) is vanishing. Hence, the first term on the right hand side of (3.2) is split into

/t Vel =98 (uV(=A)"tu(s) — (Vi + Vo) V(=A) "LV + Va) (1 + 5)) ds

=3 VVGA+t)- // —A) " (s, y)

181=1
— (Vi + Vo)V(=A) "1 (Vi + Vo) (1 + s,y))dyds
+ p2(t) + p3(t) — pa(t).

Combining (1.3) and (3.2) with this equality, we obtain (3.1). Next we consider the
following term on the right hand side of (3.1):

/t Vel =2 (Vy + Vo) V(=A) "L (Vi + VR)) (1 + s)ds — m3Jo(1 + t)
{ / Vell=)2 . (GV(=A)T'G) (1 + s)ds — m3Jo(1 + t)}

—mO/ V=2 (13- V) (GV(=A)"'G) (1 + 5)ds

(3.3)
4 / V92 (17 - V)G V(~A) " (i - V)G) (1 + s)ds
0
+mi / t Velt =92 (JoV(=A)"1Jo) (1 + s)ds
0
+m / Vell=)2  (GV(=A) 1o + JoV(=A)1G) (1 + s)ds — ps (1),
0
where

ps(t, ) :=m3 /Ot Velt=9)A . (M- V)GV (=A) 1o + JoV(=A)Hm - V)G) (1 + s)ds.

Now, we give the expansion for the right hand side of (3.3). First, we expand the
fifth term on the right hand side of (3.3). Since the odd integrands GV (—A)~1Jy +
JoV(—A)71G and y; (GO (—A) "1 Jy + JoOk(—A)G) (j # k) are vanishing, the fifth
term on the right hand side of (3.3) is written as follows:

m3 / V=98 (GV(—A) My + JoV(—A)1G) (1 + s)ds

=m —8,x—y) — A z)(—y)P
- 0/ [ (veu > VIVG(La) ()’

181<1
A(GV(=A) " o+ JoV(=A)IG) (1 + s, y)dyds

—m} / | / (y- VIVG(t2) - (GV(=8)"o + JoV(=A)TG) (1+5,y)dyds
0 JR3
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=m3 /Ot 5 (VG(t— s, T—y)— Y VBVG(t,x)(—y)B)

1B1<1

(GV(=A)" o + JoV(=A)'G) (s, y)dyds

3 t
- %AG@J)/ / y- (GV(=A)" o+ JoV(=A)'G) (1 + s, y)dyds
R3

+m0/ RS VG’ t—s,x—y)— Z VBVG(t,x)(—y)B)
|81<1

(GV(=A) o+ JoV(=A)T'G) (1 + s,y)
—(GV(=A) "o + JoV(=A)'G)(s,y))dyds

1+t
—mo/ . (VG +t—s,z—y)+ (y- V)VG(1 +t,x))

(GV(=A) "o + JoV(=A)'G) (s, y)dyds

14t
AG 1+t / / (GV(=A) " o+ oV (=A)G) (1 + 5, y)dyds
RB

+ P6( ),

where

=mg /Ot /RS (VG(t —s,x—y)— Z VBVG(t,x)(_y)ﬁ>

1BI<1
((GV(=A) o+ JoV(=A)'G) (1 + s,y)
— (GV(=A) "y + JoV(=A) G (s, y))dyds

—I—mo/ (VG(t — s,z —y)+ (y- V)VG(t,x))
Rs
GV (—=A) " o + JoV(—A)'G) (s, y)dyds
1+t
—mo/ /R3 (VG1+t—s,z—y)+ (y-V)VG(1 +t,2))
(=A) Mo+ JoV(=A)T'G) (s,y)dyds

AG t,x / / (GV(=A)" o+ JoV(=A)'G) (1 + 5,y)dyds
]R3

201

1+t
+ ?OAG(l + t,x)/ / y- (GV(=A)" o+ JoV(=A)'G) (1 + s, y)dyds.
0 R3
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By the scaling argument for G and (1.5), the second term on the right hand side of (3.4)

satisfies
1+t
/ / y- (GV(=A)" o + JoV(=A)'G) (1 + s, y)dyds

R3

1+t

:/ (1—|—3)_5/2/ (1+s)"12y

0 R3

H(GV(=2)" o + JoV(=A)THG) (1, (1 + )~ 2y)dyds

1+t
—/ (1+s)—1ds/ 0+ (GV(=A) o + JoV(—A)"1G) (Ln)dn,
0 R3

where we put 7 := (1 + s)_l/ 2y in the second equality. Substituting this relation into
(3.4), the fifth term on the right hand side of (3.3) is represented as follows:

my / Vell=)2  (GV(=A) Vo + JoV(-=A)1G) (1 + s)ds

—mo/lth/R3 VGl+t—s,z—y)+ (y-V)VG(1 +t, z))
(GV(=A) 1o + JoV(=A)T'G) (s, y)dyds
—OAG(l +t,x)log(2 +t) /RS y- (GV(=A) "o+ JoV(-A)T'G) (1,y)dy
+ ps(t, ).
Similarly, the other terms on the right hand side of (3.3) are expanded as

ma /t Vell=9)4 . (GV(=A)'G) (1 + s)ds — mgJo(1 +t)
0
= Z0AG(+1a) [ (GI(-8)C) (1, y)dy + polt ),
R3
mo/ Vell=)2 . (- V) (GV(~-A)'G) (1 + s)ds
’ 1+t
= mo/ Vel T=94 . (13, V) (GV(=A)T'G) (s)ds + ps(t, ),
36 , 7°
/0 Vel=94 . ((m - V)G V(=A) " (m - V)G) (1 + s)ds
=-2 /Rs(y V)VG(A +t,a) - ((7- V)GV(=A)7 (11 - V)G) (1, y)dy + po(t, @),
mg /t Vell=92  (JoV(=A)"1J0) (1 + s)ds
0

2mi
= - ZLAG(L + ) / Y+ (JoV(=A)""o)(L,y)dy + pro(t, ),
R
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where
pr(t, ) :=m? t VGt — s,z —y) — VAVG(1 +t,z)(—y)’
o) s=md [ ] > )
. ((GV(—A)_lG)(l +5,9) — (GV(=A)"1G) (s, y)) dyds

o @ ((1 +t)1/2 _ t1/2) AG(I —|—t, {I,') /]R3 Y- (GV(—A)_IG)(l,y)dy

—mg(Jo(1+1t) — Jo(t)),

ps(t, ) :==mg /O Velt=9)2 (7. V) (GV(=A)"1G)(1 + s)ds
—my /Ht Vel Tt=98 . (17, . V) (GV(-A)"1G)(s)ds,

po(t,x) := /Ot /R3 (VG(t —8,x—y)— Z VAVG(1 + t,x)(—y)ﬁ>

BI<1
(M- V)GV (=A) " m - V)G) (1 + s,y)dyds
+2(1 + t)—1/2/ (y- VIVG(L+t,2)- ((m-V)GV(=A)" (m- V)G) (1,y)dy,

RS

p1o(t, x) :zmé /Ot /R3 (VG’(t —s8,xr—y) — Z V’BVG(I +t,x)(—y)ﬁ>

81<1
(JoV(=A)"1To) (1 + s,y)dyds

2 4
%(1 + ) V2AG( + 1, 2) /R v (oV(=A)"100) (1, y)dy.

Combining (3.3), (3.5) and (3.6) with (3.1), we obtain
u(t) =Vi(14t) + Vo(1 +t) +log(2 + t)Va(1 +t) + V(1 + 1)
+ p1(t) + p2(t) + p3(t) — pa(t) — ps(t) + ps(t) + pr(t) — ps(t) + po(t) + p10(D).

Now, we put p(t) := (p1 + p2 + p3 — pa — ps + pe + pr — ps + po + p1o)(t). In order to
conclude the proof, we should confirm that {px(¢)}2, satisfy the following estimate:

3

(3.7) lpe ()l = 0 (t_i(l—%)—1> as t—oo for 1<p< oo
The estimate for p;(t) is well known that

. 1) llp =0 73051} as t— .
(33) o (®)l,

In order to show the estimate (3.7) for pa(t), we introduce the auxiliary function R(t) > 0
such that limy .o R(t) = co and R(t) = o(t}/?) ast — oco. By the mean-valued
theorem, we can represent ps(t) as

(3.9) pa2(t,x) = —pa1(t, ) + p2a(t, ) + p2s(t, ),
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where

t/2 1
p21(t, x) ::/ /RS/ (1+s5)0,VG1+t—o(l+s),x—y)
uV(=8) " u(s,y) = (Vi + Vo) V(=A) (Vi + Va) (1 + 5,y))dodyds,

t/2
pa2(t, x) / /y|<R(t)/ y-V)?2VG(1 +t,z—oy)(l—o)
uV(=A)" u(s,y) — (Vi + Vo) V(=A) 7 (Vi + Vo) (1 + 5,y))dodyds,

t)2
x) = T —y) — p z)(—y)?
paalta) i= [ /y|>R(t)(VG(1”’ )= 3 VIEa-+a) )

. (uV(—A)_lu(s, y) — (Vi + Vo)V(=A) (Vi + Vo) (1 + s, y)) dyds.

We employ the Hausdorff-Young inequality, Propositions 2.3, 2.4 and Corollary 2.7 to
have that

oz (Olp + 122 (), < Ct~3073)7% (log(2 + 1) + R(1)) .
Since R(t) = o (t}/2) as t — oo, we obtain that

(3.10) 21l + o2 (@)l = 0 (17 2073)71) as 1 o0,

We check that po3 satisfies ||p23(t)|, = o (t_%(l_%)_l) as t — 0o0. By the mean-valued
theorem, po3(t) can be represented as follows:

t/2
p23(t, ) / / (/ (y-V)VG(1+t,z —oy)do — (y-V)VG(l-I—t,a:))
ly|>R(t)
uV(=A) " u(s,y) — (Vi + V2)V(=A) " (Vi + Vo) (1 + 5, y))dyds.
By Propositions 2.3, 2.4 and Corollary 2.7, we see that
[ [ v -) uls,) = (4 V) V=8) 04+ 1)1 45| dyds < .
0o JR3

Thus, we obtain that

23 (t)]p, <Ct 3075 [uV(—
loas ()] / /y|>R(t) yl[uV (~A)u(s,y)
(3.11) — (Vi + Va)V(=A) " (Vi + Vo) (1 + s, 9)|dyds

—ot 3 _%)_10(1) =0 (t_i( _%)_1> as t — oo,

since R(t) — oo as t — oco. We confirm the estimate (3.7) for p3(t) and pys(t). By
Propositions 2.3, 2.4 and Corollary 2.7, we obtain the desired estimate

(3.12) los@lly + los(®)llp =0 (1 2079)71) as ¢ — o,
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Applying the mean-valued theorem yields the estimates (3.7) for pg(t), ..., p1o(t):

(3.13) los(®)llp + -+ + lpro(®)ll, = 0 (173075)71).

Finally, we check the estimate (3.7) for p5(¢). Now, we remember the definition of ps5(t):
ps(t) := m2 /Ot Vel =8 (- V)GV (=A) LT + JoV(=A) L (m - V)G) (1 + s)ds.
By integrating by parts we see that
/RB (M- V)GV (=A) " o + JoV(=A) 1w - V)G) (1 + s, y)dy = 0.
In addition, since Jj is even in y, the integrands

y; (7 V)GO(=A) " o + JoOk(=A) " (11 - V)G) (1 + 8,9), j,k=1,2,3

are odd in y. Hence ps5(t) is represented as

palt.a) =m3 [ t (V6 -s.0—5) = 3 vPvato-)’)

1Bl<1

(- V)GV(=A) g + JoV(=A) (- V)G) (1 + s, y)dyds.
Thus by the mean-valued theorem, we have the estimate (3.7) for ps():
(3.14) los(t)llp = o (¢~ 20=5)71).
As a result, the desired estimate (3.7) follow from (3.8), (3.10)-(3.14). O

To complete the proof of Theorem 1.1, we confirm that the logarithmic term ‘73(15)
in (1.10) does not vanish if mg := [ uody # 0. We remember the definition of Va(t):

~ 3
‘/B(ta .’L‘) = - mOCO

AG(t,z), Cy:= /RS y- (GV(=A)"' o+ JoV(-A)'G) (1,y)dy,

where Jy is defined by (1.4). We should check that Cy # 0. By Perseval’s equality, the
constant Cy is represented as

Co = /R Gy (€ V(=) o(Ly)]" (€)dg
(3.15) + [ © - VA em) €

_ /R 3 (4 _ #) e L1, )" (€)de.
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Since the odd integrand e~ ¢ * is vanishing, we have that

[To(1,2)]" (€)
= [ waa-ap- [ 1661 -9 (-2 6] (inds
— e o~ (1—9) (€ —s|n— Zi_ne—snz s
(3.16) _/0 (i€)e— =9l ./Rge ¢l < 1 g

:_/ & ST el 2ol 256 m g g
o Jrs |7l

_ _/ £ ?27 — €12 —2sn|? (256 — 1) dnds.
o Jrs |nl

Substituting (3.16) into (3.15), and applying the mean-valued theorem, we obtain that

! £:0 o2
Co= _4/ // o 2617 —2s|n|?+2s¢- "dndéds
0 R3 xR3 |77|
_|_/1 // £-n —2|¢|*—2s|n|? ( 2s&-m 1)d ded
e e - nd&ds
0 R3 xR3 |4f|2|77|2
1
:_4/ // £ ) —2|£— n| —s(2— )|”|2dnd§ds
R3 x R3 |77|
+2/ // / _QW_2S|"|2+2"§"’dad77d€ds.
rsxks Jo |E[2n[2 |77|2

We now calculate the first term on the right hand side of (3.17). We put ¢ := § — 57,
since the odd integrand is vanishing, we have that

/1 //]R3><R3 5|n|77 =8I0 dydeds
(3.18) ///RBXRg C+|772|727 =215 (2= ) gpicds

On the other hand, we show the upper bound for the second term on the right hand

side of (3.17):
1 s 2
(€M) _aje2—2sln*+20¢
e s 7SN dodndEds

/ //]R?»><R3/ [€12[nl?

(319) / // / _2|£__ - —%)MlszdT]dde
R3 xXR3
:/ // / 6—2|C| - 28_%)|n|2d0'd77dCd8.
0 R3xR3 JO

(3.17)
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Substituting (3.18) and (3.19) into (3.17), we see that Cy < 0. Thus, we conclude the
proof of Theorem 1.1. O
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