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Abstract

Non‐injective holomorphic self‐covers of a hyperbolic Riemann surface are rather mysteri‐
ous objects. Non‐trivial cases appear only when Riemann surfaces are of topologically infinite

type, and the theory of such Riemann surfaces is still in its infancy. The structure theorem

proved in our previous work gives a powerful tool to clarify the nature of topologically infinite

Riemann surfaces and we can investigate non‐injective holomorphic self‐covers as an agent.
In this paper, we recall the structure theorem with several typical examples, and then

explain two applications. First, we give a brief survey of the natural interpretation of the situ‐

ation from the viewpoint of the Teichmüller theory. Second, we give concentrated discussions

about the Denjoy‐Wolff phenomena.

§0. Preface

This paper is a supplemental version of our previous work [3]. In Sections 1 and

2, we deal with holomorphic self‐covers f of Riemann surfaces R and holomorphic self‐

embeddings f^{*} of the Teichmüller spaces T(R) induced by f . We focus on the structure

theorem of non‐injective self‐covers and its application to the Teichmüller spaces. Since

the detailed arguments and proofs have been given in the original paper [3], we try
to supply more examples and commentaries in these sections rather than making the

arguments self‐contained.
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On the other hand, the contents of Section 3 are new, which provide arguments
around the Denjoy‐Wolff theorem on Riemann surfaces. Proofs are given for all state‐

ments. Although the structure theorem is not applied until we consider the dynamics
of holomorphic non‐injective self‐covers (Theorem 3.8), the arguments on Denjoy‐Wolff

points and absorbing domains have their own interests and provide the background of

our work.

§1. Structure theorem

Throughout this paper, we always assume that a Riemann surface R admits a

hyperbolic metric and has a non‐cyclic fundamental group. Then R is represented
as the quotient space \triangle/ $\Gamma$ of the unit disk \triangle\subset \mathbb{C} by a non‐elementary torsion‐free

Fuchsian group  $\Gamma$ . Covering is always meant to be unlimited and unbranched unless we

specifically mention otherwise.

We start with reviewing the structure theorem for non‐injective holomorphic self‐

covers of a Riemann surface, which has been given in [3]. Similar results have appeared
in Jørgensen, Marden and Pommerenke [6], Beardon [1] and McMullen and Sullivan [9].

Theorem 1.1 (Structure theorem). Let  R be a Riemann surfa ce of topologically

infinite type,  $\pi$ : \triangle\rightarrow R a holomorphic universal cover, and  $\Gamma$\subset Aut() the covering

transfO rmation group for  $\pi$
,

which is a non‐elementary torsion‐fr ee Fuchsian group.

Suppose that there exists a non‐injective holomorphic self‐ cover  f:R\rightarrow R . Then the

following claims are satisfied.

1. There exists a conformal automorphism g\in \mathrm{A}\mathrm{u}\mathrm{t}() such that

f\mathrm{o} $\pi$= $\pi$ \mathrm{o}g.

The conjugate $\Gamma$_{1}=g^{-1} $\Gamma$ g properly contains  $\Gamma$
,

which is the covering transfO rmation

group forfo  $\pi$.

2. Set $\Gamma$_{n}=g^{-n} $\Gamma$ g^{n} for each n\in \mathbb{N} . They are the covering transfO rmation groups for

 f^{n}\circ $\pi$ and the following proper inclusion relations hold.

 $\Gamma$=$\Gamma$_{0}\neq\subset$\Gamma$_{1}\neq\subset. . . \neq\subset$\Gamma$_{n-1}\neq\subset$\Gamma$_{n}\neq\subset. . .

.

3. Set

$\Gamma$_{\infty}=\displaystyle \bigcup_{n=0}^{\infty}$\Gamma$_{n}.
Then $\Gamma$_{\infty} is discrete and torsion‐fr ee.

sequence \{$\Gamma$_{n}\}.
Actually it is the geometric limit of the
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4. The conformal automorphism g belongs to the normalizer of the Fuchsian group

$\Gamma$_{\infty} , that is,

g^{-1}$\Gamma$_{\infty}g=$\Gamma$_{\infty}.

Let R_{\infty}=\triangle/$\Gamma$_{\infty} and g_{\infty} the conformal automorphism of R_{\infty} induced by g . Then

g_{\infty} is of infinite order and R_{\infty} is of topologically infinite type.

5. Let f_{\infty} : R\rightarrow R_{\infty} be the holomorphic cover corresponding to the inclusion relation

 $\Gamma$\subset$\Gamma$_{\infty} . Then it satisfies

g_{\infty}\circ f_{\infty}=f_{\infty}\circ f.

Summing up, the following diagram commutes:

\triangle \rightarrow^{g} \triangle

\downarrow $\pi$ \downarrow $\pi$
 R \rightarrow^{f} R

\downarrow f\infty \downarrow f\infty
 R_{\infty}\rightarrow^{g_{\infty}}R_{\infty}

6. Let  $\Gamma$=\langle $\Gamma$,  g\rangle be the Fuchsian group generated by  $\Gamma$ and  g . Then it is represented
as a semi‐direct product  $\Gamma$=$\Gamma$_{\infty}\rangle\triangleleft\langle g\rangle . The quotient  R_{\infty}/\langle g_{\infty}\rangle of  R_{\infty} by the cyclic

group of the conformal automorphism g_{\infty} is the Riemann surfa ce \hat{R}=\triangle/\hat{ $\Gamma$}.

7. Suppose that there are a holomorphic cover \underline{f} : R\rightarrow \mathrm{R} and a biholomorphic auto‐

morphism \underline{g}:\underline{R}\rightarrow \mathrm{R} of a Riemann surfa ce \underline{R} satisfy ing \underline{g}\circ\underline{f}=\underline{f} of. Then there

is a holomorphic cover \hat{f} : R_{\infty}\rightarrow \mathrm{R} such that \underline{g}\circ\hat{f}=\hat{f}\circ g_{\infty}.

R \rightarrow^{f} R

\downarrow f\infty \downarrow f\infty
 R_{\infty}\rightarrow^{g_{\infty}}R_{\infty}

\downarrow\hat{f} \downarrow\hat{f}
\mathrm{R} \rightarrow^{\underline {}g} \mathrm{R}

In other words, f_{\infty} : R\rightarrow R_{\infty} is the nearest holomorphic cover fr om R among such

\underline{f}:R\rightarrow \mathrm{R} as above.
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We should show that there do exist non‐injective holomorphic self‐covers of Rie‐

mann surfaces. The following theorem answers this, since there are Riemann surfaces

of topologically infinite type admitting conformal automorphisms of infinite order.

Theorem 1.2 (Existence of holomorphic self‐cover). For every Riemann surfa ce

\mathrm{R} of topologically infinite type with a conformal automorphism \underline{g}:\underline{R}\rightarrow \mathrm{R} of infinite

order, there exist a holomorphic cover \underline{f} : R\rightarrow \mathrm{R} and a non‐injective holomorphic

self‐ cover f : R\rightarrow R such that \underline{g}\circ\underline{f}=\underline{f}\circ f.

We can characterize R_{\infty} and \hat{R} in the structure theorem from the dynamical view‐

point.

Definition 1.3. The grand orbit of x\in R under f is the set of all points x'\in R

such that f^{n}(x)=f^{m}(x') for some n\geq 0 and m\geq 0 . The small orbit of x\in R under

f is the set of all points x'\in R such that f^{n}(x)=f^{n}(x') for some n\geq 0.

Proposition 1.4. The quotient space R/\sim f by the small orbit equivalence re‐

lation forf is coincident with the Riemann surfa ce R_{\infty}=\triangle/$\Gamma$_{\infty} . The quotient space

R/\approx f by the grand orbit equivalence relation forf is coincident with the Riemann

surfa ce \hat{R}=\triangle/ $\Gamma$.

We give several examples of non‐injective self‐covers. First one gives a finite‐sheeted

self‐cover.

Example 1.5. Let f be a rational map of the Riemann sphere having an imme‐

diate attracting or a parabolic basin D . Suppose that the grand orbit Ô of the critical

points of f is discrete in D or f has a non‐critical attracting fixed point in D . We con‐

sider a Riemann surface R=D —cl(Ô). The restriction of f to R gives a finite‐sheeted

non‐injective holomorphic self‐cover, and \hat{R}=R/\approx f is an analytically finite Riemann

surface.

The following two examples give infinite‐sheeted self‐covers.

Example 1.6. Suppose that 0< $\lambda$<1/e and set f(z)= $\lambda$ e^{z} . Then f has an

attracting fixed point z_{0} . The complement D of the Julia set is the immediate attracting
basin of z_{0} ,

and the grand orbit Ô of the critical point 0 is discrete in D-\{z_{0}\} . We

consider a Riemann surface R=D —cl(Ô). The restriction of f to R gives an infinite‐

sheeted holomorphic self‐cover, and \hat{R}=R/\approx f is a once‐punctured torus.

Example 1.7. A pair of pants is a hyperbolic surface homeomorphic to a three‐

punctured sphere having three geodesic boundary components. Choose a pair of pants P

whose boundary components c_{0}, c_{1} and c_{2} have the same length. First, glue two copies of
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P along the 2 boundary components c_{1} and c_{2} of P
,
which results in a hyperbolic surface

P_{1} with 5 boundary components. Next, glue four copies of P along the 4 boundary

components of P_{1} coming from c_{1} and c_{2} ,
which results in a hyperbolic surface P_{2}

with 9 boundary components. Continuing this process infinitely many times, we have

a hyperbolic surface P_{\infty} with the boundary component c_{0} . Let  $\Gamma$ be a Fuchsian group

such that  R=\triangle/ $\Gamma$ is the Nielsen extension of  P_{\infty} beyond c_{0} . On the other hand,
for a connected component R' of P_{\infty}-P ,

the subgroup $\Gamma$' of  $\Gamma$ corresponding to the

fundamental group of  R' is properly contained in  $\Gamma$ but it is conformally conjugate to  $\Gamma$.

This implies that the Riemann surface R admits a non‐injective holomorphic self‐cover.

The structure theorem can be generalized to the case of holomorphic branched

self‐covers.

Theorem 1.8. Let f : R\rightarrow R be a holomorphic branched self‐ cover of a Rie‐

mann surfa ce R of topologically infinite type. Suppose that the grand orbit of the

critical points of f is discrete in R. Then there exist a holomorphic branched cover

f_{\infty} : R\rightarrow R_{\infty} with R_{\infty} of topologically infinite type, and a conformal automorphism

g_{\infty} : R_{\infty}\rightarrow R_{\infty} of infinite order such that g_{\infty}\circ f_{\infty}=f_{\infty}\circ f.

In the case where the grand orbit of the critical points of f is not discrete in R ,
The‐

orem 1.8 does not hold. For example, we choose a number c outside of the Mandelbrot

set and consider the quadratic polynomial f(z)=z^{2}+c . Then the complement R of the

Julia set in \mathbb{C} is of topologically infinite type, but the grand orbit of the critical points
of f is not discrete in R . Recall that f|_{R}:R\rightarrow R is a holomorphic branched self‐cover,
which is usually reduced to a Böttcher map z^{2} : \triangle^{*}\rightarrow\triangle^{*}

,
where \triangle^{*}=\triangle-\{0\}.

A typical example of holomorphic branched self‐covers satisfying the assumptions
in Theorem 1.8 can be constructed as follows.

Example 1.9. Consider the cubic polynomial f(z)=z^{3}-3$\epsilon$^{2}z with a sufficiently
small  $\epsilon$>0 such that f belongs to the class of Milnor�s type A_{1} . Let D be the immediate

attracting basin of the attracting fixed point 0 ,
and Ô \pm the grand orbit of the critical

points \pm $\epsilon$ . Then Ô \pm are discrete in  D-\{0\} . For R:=D —cl(Ô‐), the branched

self‐cover f|_{R}:R\rightarrow R satisfies the assumptions of Theorem 1.8, and we have the same

R_{\infty} as in the first case. Recall that f|_{D} : D\rightarrow D is usually reduced to a Schröder map

-3$\epsilon$^{2}z:\mathbb{C}\rightarrow \mathbb{C}.

§2. Holomorphic self‐embeddings of a Teichmüller space

In this section, we explain an application of the structure theorem to holomorphic

self‐embeddings of Teichmüller spaces. The Teichmüller space T(R) of a Riemann sur‐

face  R=\triangle/ $\Gamma$ is the set of equivalence classes [f] of quasiconformal homeomorphisms
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f of R . Here we say that two quasiconformal homeomorphisms f_{1} and f_{2} of R are

Teichmüller equivalent if there exists a conformal homeomorphism h : f_{1}(R)\rightarrow f(R)
such that f_{2}^{-1}\circ h\circ f_{1} is homotopic to the identity of R . Here the homotopy is considered

to be relative to the ideal boundary at infinity of R.

A distance between two points [f] and [f] in T(R) is defined by

d_{T(R)}([f_{1}], [f_{2}])=\displaystyle \frac{1}{2}\log K(f) ,

where f is an extremal quasiconformal homeomorphism in the sense that its maximal

dilatation K(f) is minimal in the homotopy class of f_{2}\circ f_{1}^{-1} . Then d_{T(R)} is a complete
distance on T(R) which is called the Teichmüller distance.

Let \triangle^{c} be the complement of \overline{\triangle} in the Riemann sphere and B( $\Gamma$) the complex
Banach space of all bounded holomorphic quadratic differentials for  $\Gamma$ on \triangle^{c} endowed

with the hyperbolic supremum norm. Then the Teichmüller space T(R) is a complex
Banach manifold modeled on B( $\Gamma$) . In fact, T(R) is embedded in B( $\Gamma$) as a bounded

contractible domain T_{B}( $\Gamma$) . More precisely, for a holomorphic universal cover  $\pi$ : \triangle\rightarrow

 R ,
we have an injection $\beta$_{ $\pi$} : T(R)\rightarrow B( $\Gamma$) whose image is T_{B}( $\Gamma$) . This is called the

Bers embedding of T(R) . If R is analytically infinite, then T(R) is infinite dimensional,
and vice versa.

The Teichmüller distance d_{T(R)} is coincident with the Kobayashi distance on the

complex manifold T(R) for every Riemann surface (see [4]). Every biholomorphic au‐

tomorphism is an isometry with respect to the Kobayashi distance. Also it has the

non‐expanding property for holomorphic maps. Concerning the Kobayashi distance,
one can refer to [7].

Every holomorphic cover f : R\rightarrow R' of a Riemann surface R onto another Riemann

surface R' induces a holomorphic injection f^{*}:T(R')\rightarrow T(R) between their Teichmül‐

ler spaces. Such an f^{*} is said to be geometric. Moreover, a holomorphic cover is non‐

injective if and only if the induced holomorphic injection between Teichmüller spaces

is non‐surjective. In particular, a holomorphic self‐cover f induces a holomorphic self‐

embedding f^{*}:T(R)\rightarrow T(R) . Hence f^{*} is non‐expanding and if f^{*} is biholomorphic
then it is isometric.

The diagram in the structure theorem yields the following diagram.

T(\triangle) \leftarrow^{g^{*}} T(\triangle)

\uparrow$\pi$^{*} \uparrow$\pi$^{*}
T(R) \leftarrow^{f^{*}} T(R)

\uparrow f_{\infty}^{*} \uparrow f_{\infty}^{*}
T(R_{\infty})\leftarrow^{g_{\infty}^{*}} $\tau$(R)
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Recall that in the diagram above, the holomorphic self‐embedding f^{*} preserves the

base point and the infinity. Here we say that a holomorphic self‐embedding f^{*} preserves

the infinity if bounded sets are preserved.

Remark. In general, we say that a continuous map f : X\rightarrow Y between metric

spaces preserves the infinity if the preimage of every bounded set of Y is bounded. Recall

that a continuous map f : X\rightarrow Y between metric spaces is proper if the preimage of

every compact set of Y is compact. Since infinite dimensional Teichmüller spaces are not

locally compact, we adopt the condition preserving the infinity instead of properness.

Thus we exclude trivial cases such as a self‐map of a bounded domain D that

compresses D in a relatively compact open ball contained in D . Nevertheless there

are still so many non‐surjective holomorphic self‐embeddings of infinite‐dimensional

complex manifolds preserving the infinity. A typical example is the forward shift

(z_{1}, \cdots)\mapsto(0, z_{1}, \cdots)

of \mathbb{C}^{\infty} equipped with either L^{p}‐norm for p\geq 1 or L^{\infty} ‐norm. Note that this embedding
is even isometric. Another example comes from a holomorphic amenable non‐injective
self‐cover f : R\rightarrow R . In fact, we know that the corresponding geometric self‐embedding

f^{*}:T(R)\rightarrow T(R) is non‐surjective but isometric.

On the other hand, a geometric self‐embedding f^{*}:T(R)\rightarrow T(R) induced by a

holomorphic self‐cover f : R\rightarrow R is not necessarily isometric, but is at least a strongly
bounded contraction. Here, we say that a geometric self‐embedding f^{*} is a strongly
bounded contraction if there exists a uniform constant c>0 such that

cd_{T(R)}(p, q)\leq d_{T(R)}((f^{*})^{n}(p), (f^{*})^{n}(q))\leq d_{T(R)}(p, q)

for every p and q in T(R) and for every n\in \mathbb{N}.

In [3], we have the following theorem.

Theorem 2.1. For a geometric self‐ embedding f^{*} ,
the full cluster set

C(f^{*})(=\displaystyle \bigcap_{k=1}^{\infty}\bigcup_{n=k}^{\infty}(f^{*})^{n}(T(R)))=\bigcap_{n=1}^{\infty}(f^{*})^{n}(T(R))
is identified with T(R_{\infty}) ,

or more precisely, it is coincident with f_{\infty}^{*}(T(R_{\infty})) .

Remark. The recurrent set and the limit set of f^{*} are coincident, and contained

in C(f^{*}) as a nowhere dense subset. See [2]. In our original paper [3], we have observed

that f^{*} is not uniformly contracting. We gave a quick reasoning for this fact based on

a property that C(f^{*}) is not a singleton, but this was not sufficient. We have to look at

the recurrent set of f^{*} ,
as we have actually done in the arguments on the distribution

of isometric tangent vectors.
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An important example of non‐isometric holomorphic self‐maps is a holomorphic

retract, which also admits invariant proper submanifolds. However, in general, a holo‐

morphic retract does not preserve the infinity. Moreover the above fact implies that, in

the case where a self‐cover f is non‐amenable, the induced self‐embedding f^{*} of T(R)
has completely different nature from that of holomorphic retracts even on the full cluster

sets, which are special invariant proper submanifolds.

§3. Denjoy‐Wolff phenomena

In this section, we give an application of the structure theorem, which is related to

the Denjoy‐Wolff theorem. The so‐called Denjoy‐Wolff theorem is one of fundamental

and important results in the geometric function theory of one complex variable. Orig‐

inally, it was a result on the unit disk, but it has been generalized as the following
theorem. See [5] and [9].

Theorem 3.1 (Denjoy‐Wolff on Riemann surfaces). For every holomorphic en‐

domorphism f of a Riemann surfa ce R ,
the dynamics of f is described by one of the

following (mutually exclusive) possibility.

1. (Escaping) For every p\in R ,
the orbit \{f^{n}(p)\} escapes from compact sets of R as

n tends to \infty . Namely, for every compact set  K
,

there is an integer N such that

f^{n}(p)\not\in K for every n\geq N.

2. (Attracting) There exists a fixed point p_{0}\in R of f such that

\displaystyle \lim_{n\rightarrow\infty}f^{n}(p)=p_{0}
for every p\in R.

3. (Periodic) The endomorphism f is a periodic automorphism of R.

4. (Irrational rotation) The Riemann surfa ce R is biholomorphically equivalent either

\triangle or \{z|0\leq r<|z|<1\} ,
and f corresponds to the restriction of an irrational

rotation around 0.

From the structure theorem and hyperbolic geometry, we can easily see that ev‐

ery non‐injective holomorphic self‐cover is escaping. This fact is a key to the proof
of the Denjoy‐Wolff theorem in [9]. Indeed, suppose to the contrary that there were

a non‐escaping and non‐injective self‐cover f : R\rightarrow R . Then there should exist an

accumulation point p_{\infty} of \{f^{n}(p_{0})\} for some p_{0} ,
which implies that \{g_{\infty}^{n}(f_{\infty}(p_{0}))\} ac‐

cumulate to f_{\infty}(p_{1}) . However, since g_{\infty} is an isometry of infinite order and \langle g_{\infty}\rangle acts

discontinuously on  R ,
this is a contradiction.
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In the attracting case, there are various kinds of results which clarify phenomena

relating the Denjoy‐Wolff theorem more precisely. However there seems to be not so

many in the escaping case. We discuss such results in this section. First, we consider

the Denjoy‐Wolff points. The point p_{0} in the attracting case is called the Denjoy‐ Wolff

point for f . Moreover, even in the escaping case, we can associate f with such a �point�
For this purpose, we introduce an ideal boundary of R.

Definition 3.2. Let \partial R denote the free boundary (\partial\triangle- $\Lambda$( $\Gamma$))/ $\Gamma$ of a Riemann

surface  R=\triangle/ $\Gamma$ ,
where  $\Gamma$ is a torsion‐free Fuchsian group acting on \triangle and  $\Lambda$( $\Gamma$)

denotes the limit set of  $\Gamma$ . If \partial R is empty, then we set S=R ,
and if not, let S be the

double (\hat{\mathbb{C}}- $\Lambda$( $\Gamma$))/ $\Gamma$ of  R . Let S^{*} be the Kerékjártó‐Sto
\cdot

ilow end compactification of

 S ,
and \overline{R}^{S^{*}} the closure of R in S^{*} . Consequently, if \partial R is empty, then \overline{R}^{S^{*}}=R^{*} . Set

dR=\overline{R}^{S^{*}}-R ,
and we call dR the ideal boundary of R . A point of dR is called an ideal

boundary point of R.

We have the following theorem. Note that, in [5], a similar result has been proved
for the Kerékjártó‐Sto

\cdot

ilow boundary (topological ends)  R^{*}-R of an arbitrary Riemann

surface R . Also, in [5] and [11], our theorem have been proved in a special case that

R is a compact bordered Riemann surface for which dR=\partial R . Our ideal boundary
dR is something like a hybrid between the Kerékjártó‐Sto

\cdot

ilow boundary and the free

boundary

Theorem 3.3 (Ideal Denjoy‐Wolff point). Let  f : R\rightarrow R be an escaping holo‐

morphic endomorphism of a Riemann surfa ce R. Then there exists a unique point

 $\xi$\in dR such that f^{n}(x) converge to  $\xi$ as  n\rightarrow\infty for every point  x\in R.

Proof. Consider the orbit \{f^{n}(x)\} of a given point x\in R . Since \overline{R}^{S^{*}} is compact

and satisfies the second countability axiom, it has an accumulation point. Since f is

escaping, all accumulation points must be in the ideal boundary dR . Assume that the

orbit \{f^{n}(x)\} has two distinct accumulation points $\xi$_{1} and $\xi$_{2} in dR.

We first consider the case where there is a simple closed geodesic  $\alpha$ in  R such that

 $\alpha$ separates  $\xi$_{1} and $\xi$_{2} in R , namely, the connected components U_{1} and U_{2} of \overline{R}^{S^{*}}- $\alpha$
containing  $\xi$_{1} and $\xi$_{2} , respectively, are disjoint. Let A be the compact 2L‐neighborhood
of  $\alpha$ in  R with L=d_{R}(x, f(x))>0 . Since d_{R}(f^{n}(x), f^{n+1}(x))\leq L by the non‐

expanding property with respect to the hyperbolic distance, the orbit \{f^{n}(x)\} contains

infinitely many points in both of U_{1} and U_{2} only if so does it in A
,

which is impossible.
Hence we have only to consider the case where there are no such simple closed

geodesic  $\alpha$ . Then the two ideal boundary points  $\xi$_{1} and $\xi$_{2} should correspond to the

same boundary point of the end compactification R^{*} of R ,
and this in particular implies

that \partial R\neq\emptyset . Hence, there exists an end domain  $\Omega$ of  R such that the closure \overline{ $\Omega$}^{S^{*}} in S^{*}
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contains both $\xi$_{1} and $\xi$_{2} . Here, we see that \overline{ $\Omega$}^{S^{*}} contains an accumulation point of the

orbit \{f^{n}(x)\} belonging to \partial R\subset S^{*} . Indeed, if one of $\xi$_{1} and $\xi$_{2} is in \partial R ,
then there is

nothing to prove. If not, then $\xi$_{1} and $\xi$_{2} belong to S^{*}-S and there is a simple closed

geodesic $\alpha$' in S such that $\alpha$' separates $\xi$_{1} and $\xi$_{2} in S . As before, we take the compact

2L‐neighborhood A' of $\alpha$' in S . Since the identical inclusion  $\iota$ :  R\rightarrow S is non‐expanding
with respect to the hyperbolic metric, we have an accumulating point  $\eta$\in A' of the orbit

\{f^{n}(x)\} . Furthermore, since f is escaping, we have  $\eta$\in A'\cup dR\subset\partial R ,
and hence it is

a desired point.
Take an open disk D with center  $\eta$\in\partial R in S . Then V:=D\cap R is simply connected.

Set l=D\cap\partial R . By taking sufficiently small D if necessary, we may assume that at least

one of $\xi$_{1} and $\xi$_{2} lies outside of D . Consider the universal cover  $\pi$ : \triangle\rightarrow R=\triangle/ $\Gamma$ . We

may also assume that  $\gamma$(V)\cap V=\emptyset for every non‐trivial  $\gamma$\in $\Gamma$ . Then every connected

component of  $\pi$^{-1}(V) is biholomorphic to V . We choose a point x_{0}\in V\cap\{f^{n}(x)\} so

close to  $\eta$ that  x_{1}=f(X) also lies in V . Fix a connected component \tilde{V} of $\pi$^{-1}(V) ,

and let z_{0} and z_{1} , respectively, be the unique preimages of x_{0} and x_{1} in \tilde{V} . Then, f
can be lifted to such a holomorphic endomorphism g\in \mathrm{E}\mathrm{n}\mathrm{d}() that  $\pi$\circ g=f\circ $\pi$ and

 g(z_{0})=z_{1} . Also, let \~{i}\subset\partial\triangle and \tilde{ $\eta$}\in\partial\triangle be the boundary arc and the boundary point
of \tilde{V} corresponding to l and  $\eta$ , respectively.

We take a smooth compact arc  c in V connecting x_{0} and x_{1}=f(x_{0}) ,
and set

C=\displaystyle \bigcup_{n=1}^{\infty}f^{n}(c) .

Then f(C)\subset C . Though C is not entirely contained in V ,
the assumptions that f is

escaping and that there is another accumulation point outside of D imply that there

is a sequence \{C_{m}\}_{m=0}^{\infty}(c\subset C_{0}) of connected components of C\cap V converging to a

non‐degenerate subarc of l in the sense of Hausdorff. Correspondingly, letting \tilde{C}_{m} be the

unique lift of C_{m} on \tilde{V} for every m
,

we see that \tilde{C}_{m} converge to a non‐degenerate subarc

of ĩ in the sense of Hausdorff. Let \tilde{C}^{(m)} be the connected component of $\pi$^{-1}(C) that

contains \tilde{C}_{m} . Since z_{0} and z_{1} are in \tilde{C}_{0} and the lift g is chosen so that g(z_{0})=z_{1} ,
we

see that g(\tilde{C}^{(0)})\subset\tilde{C}^{(0)} . Moreover, by continuity of g ,
we also see that g(\tilde{C}^{(m)})\subset\tilde{C}^{(m)}

for every m.

Set

 $\delta$=\displaystyle \max d_{R}(y, f(y))y\in c.
Then by non‐expanding property with respect to the hyperbolic metric, we see that

\displaystyle \sup_{w\in\tilde{C}_{7n}}d_{\triangle}(w, g(w))\leq $\delta$
for every  m . Since the Euclidean distance |w-g(w)| tend to 0 uniformly if d_{\triangle}(w, g(w))
are bounded and w tend to \partial\triangle ,

we conclude that \displaystyle \sup_{w\in\overline{C}_{7n}}|w-g(w)| tend to 0 as m
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tend to \infty . Hence, a classical theorem due to Koebe on bounded holomorphic functions

(see Theorem X.16 in [12]) implies that  g ,
and hence f ,

should be the identical map,

which contradicts the assumption.

Thus, we have proved that the accumulation point of the orbit \{f^{n}(x)\} is unique,
which we denote by  $\xi$\in dR . For the reminder part of the assertions, we have to show

that the orbit \{f^{n}(x')\} also converges to the same  $\xi$ even if we change the base point
 x to a different point x'\in R . However, since  d_{R}(x, x')<\infty and  f is non‐expanding,
we can prove this fact by a standard argument possibly repeating a part of the above

proof. \square 

Remark. In [11], the existence of the Denjoy‐Wolff point for an escaping map

to \partial R on a Riemann surface R of parabolic end type has been proved. Theorem 3.3

extends this result without any assumption on R . Denjoy‐Wolff phenomena are also

discussed in [8], [10] and [11] by using the Martin boundary of a Riemann surface.

The next issue is to find a canonical domain associated to f �near� the ideal

Denjoy‐Wolff point. In the attracting case, there is a neighborhood U of p_{0} (with
compact smooth boundary) such that

\bullet the orbit \{f^{n}(x)\} of every point x\in R has intersection with U,

 $\dagger$  f(U)\subset U ,
and

\displaystyle \bullet\bigcap_{n=1}^{\infty}f^{n}(U)=\{p_{0}\},

which we call an absorbing domain for an attracting f . We classify the attracting case

into two sub‐cases according as there is an absorbing domain U such that U is simple,

namely f|_{U} : U\rightarrow U is injective, or not. If no simple absorbing domains exist, then we

call f super‐attracting.
We can consider absorbing domains also in the escaping case. A typical example is

an attracting petal in the immediate parabolic basin.

Definition 3.4. For an escaping holomorphic endomorphism f of R ,
we say that

a domain U\subset R is an absorbing domain for f if

\bullet the orbit \{f^{n}(x)\} of every point x\in R has intersection with U,

 $\dagger$  f(U)\subset U ,
and

\displaystyle \bullet\bigcap_{n=1}^{\infty}f^{n}(U)=\emptyset.

Furthermore, if f is injective on U ,
then we call U simple.
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Remark. Let U be a simple absorbing domain for f : R\rightarrow R . Then U-f(U)
gives a fundamental set for the action of f on R in the sense that the identification of

the relative boundaries \partial U and \partial f(U) under f yields the quotient R/\approx f by the grand
orbit relation.

For an escaping f ,
there always exists an absorbing domain.

Theorem 3.5 (Absorbing domain). For every escaping holomorphic endomor‐

phism f of a Riemann surfa ce R ,
there exists an absorbing domain U for f.

Proof. Recall that the assumption implies that for every pair of compact sets E

and F in R ,
the orbit of E escapes from F

, namely, there is an N such that  f^{n}(E)\cap F=\emptyset
for every  n\geq N . Fix a point p_{0}\in R arbitrarily, and let c be an arc connecting p_{0} with

f(p_{0}) . Consider the open 1‐neighborhood of c
,

which is denoted by G_{0} . Take an

exhaustion of R by the compact bordered subsurfaces

R_{k}=\{p\in R|d(p,p_{0})\leq k+\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(G_{0})\}

for every k\geq 1 ,
and let G_{k}(\supset G_{0}\supset c) be the interior of R_{k} . Then for every k

,
we can

find an N_{k} such that

(\displaystyle \bigcup_{n=N_{k}}^{\infty}f^{n}(G_{k}))\cap R_{k}=\emptyset.
Here we may also assume that N_{k} are non‐decreasing with respect to k.

Since f^{n}(G_{k})\cap f^{n+1}(G_{k})\neq\emptyset(\ni f^{n+1}(p_{0})) ,
we see that U_{k}:=\displaystyle \bigcup_{n=N_{k}}^{\infty}f^{n}(G) is

connected. Also f^{n}(G_{k})\subset f^{n}(G_{k+1}) gives that U:=\displaystyle \bigcup_{k=1}^{\infty}U_{k} ,
is a connected open set.

Then U is an absorbing domain for f . Indeed, for every x\in R ,
there is some k such

that x\in G_{k} and hence f^{N_{k}}(x)\in U_{k}\subset U . The condition f(U)\subset U is clearly satisfied,
for f(U_{k})\subset U_{k} . Finally, for any m

,
we see

 f^{N_{7n}}(\displaystyle \bigcup_{k=m}^{\infty}U_{k})\cap R_{m}\subset(\bigcup_{k=m}^{\infty}U_{k})\cap R_{m}=\emptyset
and

 f^{N_{7n}}(\displaystyle \bigcup_{k=1}^{m-1}U_{k})\cap R_{m}\subset(\bigcup_{n=N_{7n}}^{\infty}f^{n}(G_{m}))\cap R_{m}=\emptyset.
Hence  f^{N_{7n}}(U)\cap R_{m}=\emptyset for every  m

,
from which \displaystyle \bigcap_{n=1}^{\infty}f^{n}(U)=\emptyset follows. \square 

Corollary 3.6. For every escaping holomorphic automorphism f of a Riemann

surfa ce R ,
there exists a simple absorbing domain U for f.
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On the other hand, simple absorbing domains do not necessarily exist if we allow

us to consider branched holomorphic self‐covers.

Example 3.7. There is a branched holomorphic self‐cover with a given finite

positive number of branch points which admits no simple absorbing domains.

Indeed, let f be a rational map having a super‐attracting fixed point z_{0} . Let D be

the immediate super‐attracting basin of z_{0} ,
and \hat{O}(z_{0}) and C the grand orbits of z_{0} and

all critical points of f other than z_{0} , respectively. Assume that \hat{O}(z_{0})\cap D\neq\{z_{0}\} and

 C\cap\hat{O}(z_{0})=\emptyset . Set  R=D-\hat{O}(z_{0}) . Since \hat{O}(z_{0}) is discrete in D
,
the map f : R\rightarrow R is a

branched holomorphic self‐cover, which clearly can admit no simple absorbing domains.

A rational map f satisfying all of above assumptions actually exists. An example
with a single branch point comes from the cubic polynomial f(z)=z^{3}+z^{2}.

Nevertheless, we can show, as an application of the structure theorem, that a simple

absorbing domain does exist for every holomorphic non‐injective self‐cover other than

Böttcher self‐covers z^{n} : \triangle^{*}\rightarrow\triangle^{*}(n\geq 2) . The rest of this section is devoted to the

proof of the following theorem.

Theorem 3.8 (Simple absorbing). For a holomorphic non‐injective self‐ cover

f : R\rightarrow R of a Riemann surfa ce R other than Böttcher self‐ covers, there exists a

simple absorbing domain U.

Recall that holomorphic non‐injective self‐covers other than Böttcher self‐covers

appear only when R is of topologically infinite type. Hence we may assume that R is

of topologically infinite type.
To prove Theorem 3.8, we first recall the following lemma which is used in [3] to

prove the existence theorem (Theorem 1.2).

Lemma 3.9. Let \hat{R}=\triangle/ $\Gamma$, R_{\infty}=\triangle/$\Gamma$_{\infty} ,
and g_{\infty} the same as in Theorem 1.2.

Taking a base point x_{0}\in R_{\infty} arbitrarily, we have a Dirichlet fundamental domain

W= { x\in R_{\infty}|d_{R_{\infty}}(x, x_{0})<d_{R_{\infty}}(x, g_{\infty}^{2k} (x0)) for all k\in \mathbb{Z}-\{0\} }

of \langle g_{\infty}^{2}\rangle in  R_{\infty} centered at x_{0} . Let V_{0}=W\cap g_{\infty}^{-1}(W) and V_{1}=g_{\infty}(V_{0}) . Then the

subgroups H, J_{0} and J_{1} of $\Gamma$_{\infty} corresponding to the fundamental groups of W, V_{0} and

V_{1} , respectively, give the representation of  $\Gamma$ by the HNN‐extension.

We take an exhaustion of \hat{R} by a sequence \{\hat{R}_{k}\}_{k\in \mathbb{N}} of the interiors of suitable com‐

pact bordered subsurfaces. Let R_{k}\subset R_{\infty} be the preimage of \hat{R}_{k} under the projection

R_{\infty}\rightarrow\hat{R} and set W_{k}=W\cap R_{k} . Then \{W_{k}\}_{k\in \mathbb{N}} is an exhaustion of W . Assume that

x_{\infty}\in W_{1} and let H_{k} be a subgroup of H\subset$\Gamma$_{\infty} corresponding to the fundamental group

of W_{k} . Obviously, \{H_{k}\} gives an exhaustion of H.
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For every k\in \mathbb{N} and m\in \mathbb{Z} ,
we define

$\Gamma$^{(k,m)}=\langle g^{n}hg^{-n}|h\in H_{k}, n\geq m\rangle,

which is a subgroup of $\Gamma$_{\infty} generated by the elements g^{n}hg^{-n} for all h\in H_{k} and for all

n\geq m . Let

U^{(k,m)}=\displaystyle \bigcup_{n\geq m}g_{\infty}^{n}(W_{k}) ,

and V a neighborhood of the appropriate path from x_{\infty} . Then $\Gamma$^{(k,m)} corresponds to

the fundamental group of V\cup U^{(k,m)}.

Lemma 3.10. There exists a sequence \{m_{k}\}_{k=1}^{\infty} such that m_{k}>m_{k-1} and

 $\Gamma$^{(k,m_{k})}\subset $\Gamma$ for every  k.

Proof. For k=1
,

we can choose m_{1}\in \mathbb{Z} such that $\Gamma$^{(1,m_{1})} is contained in  $\Gamma$.

Indeed, since the sequence $\Gamma$_{n}=g^{-n} $\Gamma$ g^{n} gives the exhaustion of $\Gamma$_{\infty} and since H_{1} is a

finitely generated subgroup of $\Gamma$_{\infty} ,
there exists m_{1} such that, for every n\geq m_{1} ,

a finite

system of the generators of H_{1} is contained in $\Gamma$_{n} , namely, H_{1}\subset$\Gamma$_{n} . Then  g^{n}H_{1}g^{-n}\subset $\Gamma$
for every  n\geq m_{1} ,

which implies that $\Gamma$^{(1,m_{1})}\subset $\Gamma$.
For k=2

, similarly we can choose m_{2}>m_{1} so that  $\Gamma$^{(2,m_{2})}\subset $\Gamma$ . Inductively, for

each  k
,

we can choose desired m_{k}. \square 

Let $\Gamma$^{+} be the subgroup of  $\Gamma$\subset$\Gamma$_{\infty} generated by the elements in $\Gamma$^{(k,m_{k})} for all k.

Set

U_{\infty}=\displaystyle \bigcup_{k=1}^{\infty}U^{(k,m_{k})}.
Then U_{\infty} is a domain and $\Gamma$^{+} corresponds to the fundamental group of V\cup U_{\infty}.

Finally, let x\in R be a point determined by the conditions that f_{\infty}(x)=x_{\infty} and

that the inclusion  $\Gamma$\subset$\Gamma$_{\infty} corresponds to the natural injection from the fundamental

group of R with respect to x into that of R_{\infty} with respect to x_{0} . Let U be the connected

component of the inverse image f_{\infty}^{-1}(U_{\infty}) which contains x.

From the construction, we see that f_{\infty} is injective on U . Here we modify U by

replacing each boundary component of U with a geodesic in the same homotopy class

and, if necessary, by pasting an annulus or half‐disk to each boundary component facing
to the ideal boundary. This modification does not affect the property that f_{\infty} is injective
on U . Thus, the following lemma implies Theorem 3.8.

Lemma 3.11. The domain U is a simple absorbing for f.

Proof. We take an arbitrary compact set K in R and consider the projection

K_{\infty}=f_{\infty}(K) on R_{\infty} ,
which is also compact. It is clear from the definition of U_{\infty} that
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there exists N\in \mathbb{N} such that  g_{\infty}^{n}(U_{\infty})\cup K_{\infty}=\emptyset for every  n\geq N . Since g_{\infty}\circ f_{\infty}=f_{\infty}\circ f,
we see that \displaystyle \bigcap_{n=1}^{\infty}f^{n}(U)=\emptyset.

From the definition of U_{\infty}, g_{\infty}(U_{\infty})\subset U_{\infty} and, for every point y_{\infty}\in R_{\infty} ,
there

exists n_{0}\in \mathbb{N} such that g_{\infty}^{n_{0}}(y_{\infty})\in U_{\infty} . The facts that U_{\infty}=f_{\infty}(U) and g_{\infty}\circ f_{\infty}=

f_{\infty}\circ f imply that f_{\infty}(f(U))\subset f_{\infty}(U) . Since f_{\infty} maps U onto U_{\infty} bijectively, we

conclude that f(U)\subset U . Also g_{\infty}\circ f_{\infty}=f_{\infty}\circ f implies that, for every y\in R ,
there

is n_{0}\in \mathbb{N} such that f_{\infty}(f^{n_{0}}(y))\in f_{\infty}(U) . This yields f^{n_{0}}(y)\in U and thus U is an

absorbing domain.

Finally, since f_{\infty} : R\rightarrow R_{\infty} has a factorization including f : R\rightarrow R ,
we see that

f is injective on U if so is f_{\infty} . This means that U is simple. \square 

From the above proof, we also have the following fact in a special case where the

Riemann surface \hat{R} obtained by the grand orbit relation is topologically finite. Note

that, if R comes from an invariant Fatou component for a rational map f ,
it satisfies

this condition. See [9].

Corollary 3.12. Assume that, for a non‐injective holomorphic self‐ cover f :

R\rightarrow R ,
the Riemann surfa ce \hat{R}=R/\approx f is topologically finite. Then a simple absorbing

domain U can be taken so that the number of the connected components of the relative

boundary \partial U in R is finite.
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