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Properties of asymptotically elliptic modular

transformations of Teichmüller spaces

By

Katsuhiko Matsuzaki *

Abstract

We survey several properties of the action of a Teichmüller modular transformation that

has a fixed point on the asymptotic Teichmüller space. Especially, we consider discreteness of

the orbit of such a modular transformation on the fiber over the fixed point.

§1. Introduction

A Teichmüller modular transformation is called elliptic if it has a fixed point on

the Teichmüller space, or equivalently, the corresponding mapping class can be realized

as a conformal automorphism. The action of the Teichmüller modular transformations

descends to the asymptotic Teichmüller space, and we can also define asymptotic ellip‐

ticity as a property of having a fixed point on the asymptotic Teichmüller space. This

is equivalent to saying that the corresponding mapping class is realized as an asymp‐

totically conformal automorphism, which is a quasiconformal automorphism arbitrarily
close to conformal near the infinity of the surface.

In this note, we survey the action of asymptotically elliptic modular transforma‐

tions on Teichmüller spaces. We summarize several results obtained in our previous

papers [13], [14] and [15], but try to give more general reasoning for some of those the‐

orems. In a future, our study will go to the investigation of the action of such modular

transformations on the asymptotic Teichmüller space. A part of this research has been

already done in [10]. Our companion paper [7] also reviews these topics.
An asymptotically elliptic modular transformation can be regarded as a generaliza‐

tion of a Teichmüller modular transformation of an analytically finite Riemann surface.
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Roughly speaking, this is because an asymptotically conformal automorphism gives a

deformation of the conformal structure essentially on a compact part of the surface.

We also consider a subgroup consisting of asymptotically elliptic modular transforma‐

tions sharing a fixed point. This group satisfies the same properties of the Teichmüller

modular group of an analytically finite Riemann surface such as discreteness of orbits

and countability of elements. In this note, we develop our arguments on asymptot‐

ically elliptic modular transformations of general Riemann surfaces concerning these

properties.

§2. Classification of Teichmüller modular transformations

The Teichmüller space T(R) for a given base Riemann surface R is the space of

all Teichmüller equivalence classes [f] of quasiconformal homeomorphisms f of R . Here

we say that f_{1} : R\rightarrow R_{1} and f_{2} : R\rightarrow R_{2} are Teichmüller equivalent if there exists a

conformal homeomorphism h:R_{1}\rightarrow R_{2} such that f_{2}\circ f_{1}^{-1} is homotopic to h relative to

the ideal boundary at infinity of R_{1} . Namely, the homotopy is assumed to be fixing each

boundary point throughout when R has the ideal boundary at infinity. We will use the

notation 0 for the base point [id] of T(R) . It is known that T(R) is a complex Banach

manifold. Also it has a metric structure such that the distance between p_{1}=[f] and

p_{2}=[f] is given by d_{T}(p_{1}, p_{2})=\log K(f) ,
where K(f) is the maximal dilatation of an

extremal quasiconformal homeomorphism f in the homotopy class of f_{2}\circ f_{1}^{-1} . Then d_{T}

is a complete distance on T(R) ,
which is called the Teichmüller distance. It is known

that d_{T} is coincident with the Kobayashi distance on T(R) .

The quasiconfO rmal mapping class group \mathrm{M}\mathrm{C}\mathrm{G}(R) of a Riemann surface R is the

group of all mapping classes [g] that have a quasiconformal automorphism g : R\rightarrow R

as a representative in each homotopy class. Here, the homotopy is again relative to the

ideal boundary at infinity of R . It acts on the Teichmüller space T(R) as the group

of biholomorphic automorphisms, which is defined as the Teichmüller modular group

Mod (R) . It also acts isometrically with respect to the Teichmüller distance d_{T}.

When R is an analytically finite Riemann surface, Bers [1] classified the Teichmüller

modular transformations  $\gamma$\in \mathrm{M}\mathrm{o}\mathrm{d}(R) analytically according to their translation lengths
on T(R) .

\bullet elliptic:  $\gamma$ has a fixed point on  T(R) ;

\bullet parabolic: \displaystyle \inf_{p\in T(R)}d_{T}( $\gamma$(p),p)=0 but  $\gamma$ has no fixed point on  T(R) ;

\bullet hyperbolic: \displaystyle \inf_{p\in T(R)}d_{T}( $\gamma$(p),p)>0.

This has a correspondence to a topological classification of the mapping classes due to

Thurston. In the case where g=1 ,
we see the identification T(R)=\mathbb{H} which is the
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upper half‐plane with hyperbolic metric, \mathrm{M}\mathrm{C}\mathrm{G}(R)=SL_{2}() ,
and Mod(R)=PSL()

which is regarded as a subgroup of fractional linear transformations of \mathbb{H} . In this case,

the above classification is exactly the same as that of the Möbius transformations.

The orbit \{$\gamma$^{n}(p)\}_{n\in \mathbb{N}} of p\in T(R) is bounded if  $\gamma$ is elliptic, whereas \{$\gamma$^{n}(p)\}
diverges to the infinity, that is,  d_{T}($\gamma$^{n}(p), 0)\rightarrow\infty as  n\rightarrow\infty if  $\gamma$ is either parabolic or

hyperbolic. This defines the following coarser classification, which we call the bounded‐

divergent dichotomy.

\bullet bounded type: the orbit is bounded;

\bullet divergent type: the orbit diverges to the infinity.

However, there are various kinds of Teichmüller modular transformations once  R

becomes analytically infinite. In fact, there exists a recurrent modular transformation,
which is neither bounded nor divergent. See [13]. Namely, the bounded‐divergent

dichotomy is not always satisfied when R is analytically infinite.

The following result due to Markovic [11] completely characterizes the boundedness

of the orbit. Remark that an elliptic modular transformation can be of infinite order

when R is analytically infinite.

Theorem 2.1. A Te ichmüller modular transfO rmation is of bounded type if and

only if it is elliptic in all cases.

§3. Asymptotically elliptic modular transformations

The asymptotic Teichmüller space AT (R) is a quotient space of the Teichmüller

space T(R) obtained by identifying all Teichmüller classes that are equivalent under

asymptotically conformal homeomorphisms. Here, an asymptotically conformal homeo‐

morphism f : R\rightarrow R' is a quasiconformal homeomorphism such that \displaystyle \inf_{V}K(f|_{R-V})=
1

,
where the infimum of the maximal dilatation K of f restricted to R-V is taken over

all compact subsurfaces V of R . Fundamental results on asymptotic Teichmüller spaces

can be found in a series of papers by Earle, Gardiner and Lakic [2], [3], [4].
The asymptotic Teichmüller space AT (R) is endowed with a complex structure such

that the quotient map  $\alpha$ :  T(R)\rightarrow AT(R) is holomorphic. It also has the asymptotic
Teichmüller metric. The distance d_{AT} induced by this metric is coincident with the

quotient distance induced from d_{T}.

The quasiconformal mapping class group \mathrm{M}\mathrm{C}\mathrm{G}(R) acts on T(R) preserving the

fibers of the projection  $\alpha$ . This means that  $\gamma$(T_{p})=T_{ $\gamma$(p)} for any fiber T_{p}\subset T(R) over

 $\alpha$(p)\in AT(R) containing p\in T(R) and for any  $\gamma$\in \mathrm{M}\mathrm{C}\mathrm{G}(R) . From this, the action
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of every  $\gamma$ descends on AT (R) ,
which is biholomorphic (see [4]) as well as isometric.

Hence we have a representation

 $\iota$_{AT}:\mathrm{M}\mathrm{C}\mathrm{G}(R)\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}(AT(R)) .

Note that this representation is not faithful if R has a non‐abelian fundamental group.

We assume that $\pi$_{1}(R) is not abelian hereafter.

Definition 3.1. A mapping class  $\gamma$\in \mathrm{M}\mathrm{C}\mathrm{G}(R) or the corresponding Teichmül‐

ler modular transformation  $\gamma$\in \mathrm{M}\mathrm{o}\mathrm{d}(R) is called asymptotically elliptic if it has a fixed

point on AT (R) .

An elliptic modular transformation is of course asymptotically elliptic because the

projection of the fixed point is also fixed. However the converse is not true. A trivial

example is a Teichmüller modular transformation caused by a single Dehn twist. This

is not elliptic as a Teichmüller modular transformation, but it acts trivially on AT (R)
because the deformation can be restricted to a compact subset. In particular, it has

a fixed point on AT (R) . Petrovic [16] dealt with an asymptotically elliptic modular

transformation that acts on AT (R) non‐trivially (in fact non‐periodically) and that has

no fixed point on T(R) . Here we give another simpler example of this kind.

Example 3.2. Assume that an analytically infinite Riemann surface R has a

conformal automorphism h of order 2 that maps an oriented simple closed geodesic c to

another h(c) disjoint from c . Let  $\gamma$ be a mapping class obtained by the composition of

the conformal mapping class of order 2 and the double Dehn twists along both  c and h(c)
for their orientations compatible with h . Then $\gamma$^{2} is the twice of the double Dehn twists,
from which we know that  $\gamma$ is not elliptic as a Teichmüller modular transformation. On

the other hand, the action of  $\gamma$ on AT (R) fixes the asymptotic conformal structure and

is non‐trivial (in fact periodic of order 2). The non‐triviality can be easily seen if we

assume a certain geometric condition on  R . See Remark 2 in the next section.

When R is analytically finite, every Teichmüller modular transformation is asymp‐

totically elliptic since AT (R) consists of a single point. Asymptotically elliptic modular

transformations are generalization of Teichmüller modular transformations of analyti‐

cally finite surfaces in a sense that deformations are essentially given only on compact

subsurfaces. As a supporting property for this insight, we see the following similarity to

the analytically finite case. The proof has been given in [13] in a very similar method

to the arguments for Theorem 4.1 given below.

Theorem 3.3. Every asymptotically elliptic modular transfO rmation is of either

bounded type or divergent type.
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Recall that Teichmüller modular transformations for analytically finite Riemann

surfaces have the bounded‐divergent dichotomy but this is not valid in general. How‐

ever, this theorem says that asymptotically elliptic modular transformations keep this

dichotomy.

§4. Action on the fiber

We consider the action of an asymptotically elliptic modular transformation re‐

stricted to the fiber over the fixed point on AT (R) . The following theorem has been

proved in [15]. A proof will be given in the next section as a consequence of more

generalized results.

Theorem 4.1. For every asymptotically elliptic modular transfO rmation  $\gamma$ , its

orbit \{$\gamma$^{n}(p)\}_{n\in \mathbb{Z}} of any point p over the fixed point on AT (R) is a discrete set in the

fiber T_{p}.

As a special case, we first show this theorem for an elliptic modular transformation

 $\gamma$ . The proof given below has already appeared in [15], but since the uniqueness of the

fixed point of  $\gamma$ in the fiber is newly stated, we repeat it here. Remark that even if an

elliptic modular transformation keeps a fiber  T_{p} invariant, it does not necessarily mean

that there is a fixed point in the fiber. See also [15] for this fact.

Theorem 4.2. For every elliptic modular transfO rmation  $\gamma$ , its orbit of any

point  p over the fixed point on AT (R) is a discrete set in the fiber T_{p} . When  $\gamma$ is

of infinite order, the fixed point of  $\gamma$ in  T_{p} is unique if there is.

Proof. Let R^{*} be the complex conjugate of R and B(R^{*}) the Banach space of all

bounded holomorphic quadratic differentials  $\varphi$ on  R^{*} . The Bers embedding  $\beta$ :  T(R)\rightarrow
 B(R^{*}) identifies the Teichmüller space T(R) with a bounded domain in B(R^{*}) . We

denote the quadratic differential  $\beta$(p) corresponding to p\in T(R) by $\varphi$_{p}\in B(R^{*}) . It has

been proved by Earle, Markovic and Šarič [5] that each fiber T_{p} over AT (R) is identified

with the intersection

 $\beta$(T(R))\cap\{$\varphi$_{p}+B_{0}(R^{*})\}

of the Bers embedding and an affine subspace determined by $\varphi$_{p} . Here B_{0}(R^{*}) is a closed

separable subspace of B(R^{*}) consisting of all those  $\varphi$ vanishing at infinity, meaning that,
for the hyperbolic density  $\rho$ on  R^{*} ,

the function $\rho$^{-2}(z)| $\varphi$(z)| converges to zero as z tends

to the infinity of R^{*}

We may assume that the base point 0\in T(R) is a fixed point of the elliptic modular

transformation  $\gamma$ . Then the mapping class has a conformal representative  g of R . In
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general, a conformal automorphism g of R (and of R^{*} by reflection) acts on B(R^{*})
by (g_{*} $\varphi$)(z)dz^{2}:= $\varphi$(g^{-1}(z))dg^{-1}(z)^{2} ,

which is a linear isometry of B(R^{*}) . Then the

actions of  $\gamma$ and  g are related as $\varphi$_{ $\gamma$(p)}=g_{*}$\varphi$_{p} for every p\in T(R) . Also B_{0}(R^{*}) is

invariant under g_{*}.

The fiber T_{p} is embedded in $\varphi$_{p}+B_{0}(R^{*}) . Since  $\gamma$ preserves  T_{p} ,
we have g_{*}$\varphi$_{p}=

 $\varphi$_{p}+ $\psi$ for some  $\psi$\in B_{0}(R^{*}) . Then, using this formula inductively, we see that

 g_{*}^{n}$\varphi$_{p}=$\varphi$_{p}+\displaystyle \sum_{i=0}^{n-1}g_{*}^{i} $\psi$
for every integer  n\geq 1.

We have only to consider the case where  $\gamma$ is of infinite order. Suppose that the

orbit \{$\gamma$^{n}(p)\}_{n\in \mathbb{Z}} is not discrete. Then there exists an increasing sequence of positive

integers \{n_{k}\} such that d_{T}($\gamma$^{n_{k}}(p),p)\rightarrow 0 ,
or equivalently g_{*}^{n_{k}}$\varphi$_{p}\rightarrow$\varphi$_{p} as  k\rightarrow\infty . This

implies that

\displaystyle \sum_{i=0}^{n_{k}-1}g_{*}^{i} $\psi$\rightarrow 0 (k\rightarrow\infty)
and, by operating g_{*} once more,

\displaystyle \sum_{i=1}^{n_{k}}g_{*}^{i} $\psi$\rightarrow 0 (k\rightarrow\infty) .

Hence, by subtracting the first one from the second, we have g_{*}^{n_{k}} $\psi$\rightarrow $\psi$.
Take an arbitrary point z\in R^{*} and consider

$\rho$^{-2}(z)|(g_{*}^{n_{k}} $\psi$)(z)|=$\rho$^{-2}(g^{-n_{k}}(z))| $\psi$(g^{-n_{k}}(z))|,

which converge to $\rho$^{-2}(z)| $\psi$(z)| . Since \langle g\rangle acts on  R^{*} discontinuously, g^{-n_{k}}(z) tend to

the infinity as  k\rightarrow\infty . Since  $\psi$ vanishes at infinity, we see that the above quantities

converge to zero as  k\rightarrow\infty . Hence we have  $\psi$=0 and thus g_{*}$\varphi$_{p}=$\varphi$_{p} . However, this

implies that  $\gamma$ fixes  p and hence \{$\gamma$^{n}(p)\}=\{p\}.
For the second statement, suppose that the conformal representative g of  $\gamma$ of

infinite order satisfies  g_{*}$\psi$'=$\psi$' for some $\psi$'\in B_{0}(R^{*}) . Then by using the same

equation

$\rho$^{-2}(z)|(g_{*}^{n}$\psi$')(z)|=$\rho$^{-2}(g^{-n}(z))|$\psi$'(g^{-n}(z))|

as above and the fact that g^{-n}(z) tend to the infinity as  n\rightarrow\infty
,

we see that $\psi$'=0.
If there is another fixed point q\in T_{p} ,

then g_{*}$\varphi$_{q}=$\varphi$_{q} is satisfied. Set $\psi$'=$\varphi$_{p}-$\varphi$_{q}
which belongs to B_{0}(R^{*}) . Since g_{*}$\psi$'=$\psi$' ,

we see that $\varphi$_{p}=$\varphi$_{q} . This shows the

uniqueness of the fixed point. \square 
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Remark 1. If we assume Theorem 2.1 and Theorem 3.3, then Theorem 4.1 follows

from Theorem 4.2. Indeed, since the orbit for a Teichmüller modular transformation

of divergent type is of course discrete, we have only to deal with elliptic (=bounded)
modular transformations. Actually, we have proved Theorem 4.1 in [15] in this way.

Although Theorem 4.2 says that the orbit of an elliptic modular transformation of

infinite order is a discrete set in the fiber over any fixed point on AT (R) ,
it always has

an indiscrete orbit in T(R) . This has been proved in [12] and [13].

Theorem 4.3. For every elliptic modular transfO rmation of infinite order, there

always exists an orbit in T(R) that is not a discrete set.

The combination of Theorems 4.2 and 4.3 yields the following consequence as in

[15]. Since the proof is very short, we can review it here again.

Corollary 4.4. No elliptic modular transfO rmation of infinite order acts trivially
on AT (R) .

Proof. For an elliptic modular transformation of infinite order, choose a point

p\in T(R) whose orbit is not a discrete set by Theorem 4.3. If it acts trivially on AT (R) ,

then the fiber T_{p} is invariant, but this contradicts the fact in Theorem 4.2 that the orbit

in T_{p} is a discrete set. \square 

Remark 2. The statement of Corollary 4.4 should be also true for an elliptic
modular transformation of finite order, but we can prove it so far under an assumption
that R satisfies a bounded geometry condition, or more precisely, if the injectivity radii

of R are uniformly bounded from above and below. This proof has been done in [10] by
a geometric observation completely different from the above argument.

§5. Discrete orbits of stabilizer subgroups

We investigate the action of a stabilizer subgroup of \mathrm{M}\mathrm{C}\mathrm{G}(R) fixing a point on

AT (R) . When R is analytically finite, the whole \mathrm{M}\mathrm{C}\mathrm{G}(R) stabilizes the point of AT (R) .

In this case, it is well‐known that \mathrm{M}\mathrm{C}\mathrm{G}(R) acts discontinuously on T(R) and \mathrm{M}\mathrm{C}\mathrm{G}(R)
is a finitely generated group. This situation can be generalized as follows, which has

been proved in [14].

Theorem 5.1. If \mathrm{M}\mathrm{C}\mathrm{G}(R) has a common fixed point  $\alpha$(p) ,
then \mathrm{M}\mathrm{C}\mathrm{G}(R) is a

countable group and acts discontinuously on T(R) .
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Let MCG(R) be the stabilizer of  $\alpha$(p)\in AT(R) . Theorem 4.1 implies that any

orbit of a cyclic subgroup of MCG(R) is a discrete set in T_{p} ,
and Theorem 5.1 implies

that this is also the case when MCG(R) =\mathrm{M}\mathrm{C}\mathrm{G}(R) . We propose a problem asking in

what extent a subgroup  $\Gamma$ of the stabilizer can satisfy this property. For this problem,
there are two different factors on the group  $\Gamma$\subset \mathrm{M}\mathrm{C}\mathrm{G}(R) to be investigated. One is

stationary action of  $\Gamma$ on  R which is independent of asymptotic ellipticity and the other

is algebraic structure of  $\Gamma$.

Definition 5.2. We say that a sequence of distinct mapping classes \{$\gamma$_{i}\}_{i\in \mathbb{N}}
in \mathrm{M}\mathrm{C}\mathrm{G}(R) is stationary if there exists a compact subsurface V of R such that any

representative g_{i} of each mapping class $\gamma$_{i} satisfies  g_{i}(V)\cap V\neq\emptyset . On the other hand,
a sequence \{$\gamma$_{i}\}_{i\in \mathbb{N}} in \mathrm{M}\mathrm{C}\mathrm{G}(R) is escaping if, for every compact subsurface V of R ,

all

but finitely many mapping classes $\gamma$_{i} have representatives g_{i} satisfying g_{i}(V)\cap V=\emptyset.

Remark that a sequence \{$\gamma$_{i}\} itself can be neither stationary nor escaping, but each

sequence contains a subsequence that is either stationary or escaping. We can also say

a subgroup  $\Gamma$\subset \mathrm{M}\mathrm{C}\mathrm{G}(R) to be stationary or escaping according to this definition. See

[9].
Compactness of a family of normalized quasiconformal homeomorphisms with uni‐

formly bounded maximal dilatation easily yields the following fact. In our situation, the

normalization is given by the stationary action, which prevents the images of V from

escaping to the infinity.

Proposition 5.3. Assume that a sequence \{$\gamma$_{i}\}\subset \mathrm{M}\mathrm{C}\mathrm{G}(R) is stationary and

satisfies $\gamma$_{i}(p)\rightarrow p for some point p\in T(R) as  i\rightarrow\infty . Then there are representatives

 g_{i} of $\gamma$_{i} such that a subsequence of \{g_{i}\} converges locally uniformly to a conformal
automorphism of finite order on the Riemann surfa ce corresponding to p.

When  $\Gamma$ is an infinite cyclic group, this proposition makes it possible to exclude

the case where both  $\Gamma$ is stationary and some orbit of  $\Gamma$ is indiscrete, as the following
lemma asserts. The proof is similar to that of Theorem 6 in [13].

Lemma 5.4. If a sequence \{$\gamma$_{i}\} in an infinite cyclic subgroup  $\Gamma$\subset \mathrm{M}\mathrm{C}\mathrm{G}(R) is

stationary, then, for every p\in T(R) , \{$\gamma$_{i}(p)\} does not accumulate to p.

Remark 3. This lemma is also true when  $\Gamma$ is a finitely generated abelian group,

which will be proved elsewhere. However, it cannot be applied to an infinitely generated

subgroup of \mathrm{M}\mathrm{C}\mathrm{G}(R) . Actually, a counterexample is given by an abelian subgroup  $\Gamma$

generated by infinitely many Dehn twists \{$\gamma$_{i}\} along mutually disjoint simple closed

geodesics \{c_{i}\} whose lengths tend to zero.
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Another feature of the stationary action is that the orbit is always discrete when

we impose a certain geometric condition on a Riemann surface R . In particular, the

following result has been proved by Fujikawa [6] and [8].

Lemma 5.5. If a Riemann surfa ce R satisfies the bounded geometry condition,

then, for every stationary sequence \{$\gamma$_{i}\}\subset \mathrm{M}\mathrm{C}\mathrm{G}(R) and for every p\in T(R) , \{$\gamma$_{i}(p)\}
does not accumulate to p.

Remark 4. When R satisfies the bounded geometry condition, Lemma 5.5 also

shows that any stabilizer subgroup MCG(R) is always countable, which has been

proved in [14]. Indeed, any subgroup of \mathrm{M}\mathrm{C}\mathrm{G}(R) contains a stationary subgroup of

countable index by  $\sigma$‐compactness of  R . Hence, if MCG(R) is uncountable, then it

contains an uncountable stationary subgroup  $\Gamma$ . On the other hand, the fiber  T_{p} is a

separable subspace. Thus it is impossible that  $\Gamma$(p) is both uncountable and discrete.

As a result of the arguments mentioned above, suppose that we are now in a

situation that a sequence \{$\gamma$_{i}\}\subset $\Gamma$ in question can be assumed to be escaping. Then,
for the discreteness problem of the orbit of  $\Gamma$ in the stabilizer MCG(R), we have to

consider the second factor, that is, an algebraic structure on  $\Gamma$ . When  $\Gamma$ is abelian in

particular, we have the following theorem, which is crucial for the proof of Theorem 4.1.

The arguments are similar to those in Theorem 10 of [13].

Theorem 5.6. Let  $\Gamma$ be an abelian subgroup of MCG(R). Suppose that there

is an escaping sequence \{$\gamma$_{i}\} in  $\Gamma$ such that  $\gamma$_{i}(p)\rightarrow p as  i\rightarrow\infty . Then  $\gamma$(p)=p for

every  $\gamma$\in $\Gamma$.

Proof. Without loss of generality, we may assume that p is the base point  0\in

 T(R) . Represent R by a Fuchsian group H acting on the unit disk \triangle and let  $\pi$ : \triangle\rightarrow

 R=\triangle/H be the projection. For the sake of argument, we assume that the limit set of

H is \partial\triangle . Otherwise, we have to make a little modification but it is not essential. Fix

geodesic lines  $\beta$ and  $\beta$' in \triangle such that  $\beta$\cap$\beta$'\neq\emptyset and  $\pi$( $\beta$) and  $\pi$($\beta$') are closed geodesics
on R . For a quasiconformal automorphism g of R in an arbitrary mapping class  $\gamma$\in $\Gamma$,
choose its lift \tilde{g} : \triangle\rightarrow\triangle . Let $\beta$_{ $\gamma$} and $\beta$_{ $\gamma$}' be the geodesic lines in \triangle determined by the

end points of \tilde{g}( $\beta$) and \tilde{g}($\beta$') respectively, and consider the cross‐ratio c($\beta$_{ $\gamma$}, $\beta$_{ $\gamma$}')\in(1, \infty)
defined by the four end points of $\beta$_{ $\gamma$} and $\beta$_{ $\gamma$}' . Then we introduce a real value

 $\xi$( $\gamma$)=\displaystyle \int_{2}^{c($\beta$_{ $\gamma$},$\beta$_{ $\gamma$}')}$\rho$_{\mathbb{C}-\{0,1\}}(x)dx,
where $\rho$_{\mathbb{C}-\{0,1\}}(z)|d\mathrm{z}| is the hyperbolic metric on \mathbb{C}-\{0 ,

1 \} . This is a signed hyperbolic
distance of c($\beta$_{ $\gamma$}, $\beta$_{ $\gamma$}') from 2.
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First, we consider the difference of the values

 $\xi$($\gamma$_{i} $\gamma$)- $\xi$( $\gamma$)=\displaystyle \int_{c($\beta$_{ $\gamma$},$\beta$_{ $\gamma$}')}^{c(\tilde{g}_{i}($\beta$_{ $\gamma$}),\tilde{g}_{i}($\beta$_{ $\gamma$}'))}$\rho$_{\mathbb{C}-\{0,1\}}(x)dx
for every  $\gamma$\in $\Gamma$ . An  K‐quasiconformal automorphism of \triangle changes the cross‐ratio by
at most \log K with respect to the hyperbolic distance on \mathbb{C}-\{0 ,

1 \} . Hence

| $\xi$($\gamma$_{i} $\gamma$)- $\xi$( $\gamma$)|\leq d_{T}($\gamma$_{i}(0), 0)

for every  $\gamma$\in $\Gamma$ . Thus  d_{T}($\gamma$_{i}(0), 0)\rightarrow 0 implies  $\xi$($\gamma$_{i} $\gamma$)- $\xi$( $\gamma$)\rightarrow 0 as i\rightarrow\infty.

On the other hand, for every  $\gamma$\in $\Gamma$,

 $\xi$( $\gamma \gamma$_{i})- $\xi$($\gamma$_{i})=\displaystyle \int_{c($\beta$_{$\gamma$_{i}},$\beta$_{$\gamma$_{i}}')}^{c(\tilde{g}($\beta$_{$\gamma$_{i}}),\tilde{g}($\beta$_{$\gamma$_{i}}'))}$\rho$_{\mathbb{C}-\{0,1\}}(x)dx
tends to 0 as  i\rightarrow\infty . Indeed, this follows from the facts that the mapping class  $\gamma$ has an

asymptotically conformal automorphism  g of R as a representative and that  $\pi$($\beta$_{$\gamma$_{i}}\cup$\beta$_{$\gamma$_{i}}')
diverge to the infinity of R as  i\rightarrow\infty . Note that the cross‐ratios \{c($\beta$_{$\gamma$_{i}}, $\beta$_{$\gamma$_{i}}')\} are

uniformly bounded from above and away from one because $\beta$_{$\gamma$_{i}} and $\beta$_{$\gamma$_{i}}' are the images
of  $\beta$ and  $\beta$' under quasiconformal automorphisms of bounded dilatations. More detailed

arguments can be found in Lemma 8 of [13].
Since  $\xi$($\gamma$_{i} $\gamma$)= $\xi$( $\gamma \gamma$_{i}) ,

the above two limits conclude that \displaystyle \lim_{i\rightarrow\infty} $\xi$($\gamma$_{i})= $\xi$( $\gamma$) for

every  $\gamma$\in $\Gamma$ . This in particular implies that  $\xi$ is a constant function on  $\Gamma$
,
or equivalently,

every \tilde{g} does not change the cross‐ratio c( $\beta,\ \beta$') .

Next, take arbitrary four distinct points a_{1} , aí, a_{2}, a_{2}' on \partial\triangle . Then there exists a

sequence of geodesic lines  $\beta$ in \triangle whose projections  $\pi$( $\beta$) are closed geodesics in R and

whose end points converge to a_{1} (aí) and a_{2}(a_{2}') respectively. Hence the cross‐ratio

c ( a_{1}, a_{2} , aí, a_{2}' ) is approximated by a sequence \{c( $\beta$,  $\beta$ for which our estimate can be

applied. Since \tilde{g} does not change c( $\beta,\ \beta$') , continuity of the cross‐ratio shows that \tilde{g} does

not change c ( a_{1}, a_{2} , aí, a_{2}' ) either. This is true for any four distinct points on \partial\triangle . This

implies that  $\gamma$(0)=0 for every  $\gamma$\in $\Gamma$ . See Sorvali [17] for this argument. \square 

Checking two factors we have discussed above, we can obtain the following result for

instance, as a combination of Lemma 5.5 and Theorem 5.6. Note that, if the orbit  $\Gamma$(p)
is not a discrete set, then we can always find a sequence \{$\gamma$_{i}\}\subset $\Gamma$ such that  $\gamma$_{i}(p)\neq p
converge to p as i\rightarrow\infty.

Corollary 5.7. If a Riemann surfa ce R satisfies the bounded geometry condition

and if a subgroup  $\Gamma$ of the stabilizer MCG(R) is abelian, then the orbit  $\Gamma$(p) is a discrete

set in T_{p}.
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We can further show that the orbit is a discrete set when  $\Gamma$ is solvable. However,
if  $\Gamma$ is an infinitely generated free group for instance, then the orbit is not necessarily
discrete. Our problem asks for some algebraic conditions upon  $\Gamma$ that guarantee this

discreteness. These topics will be discussed elsewhere.

Now Theorem 4.1 immediately follows from Lemma 5.4 and Theorem 5.6.
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