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Purity of Stratications of Shimura Varieties in

Positive Characteristic

By

Marc‐Hubert Nicole *

Abstract

Let p be a prime number. We describe purity results for some stratications of reductions

of Shimura varieties in characteristic p , developed in the previous decade by various people.
We also prove a new purity result for reductions of Hilbert modular varieties at places dividing
the discriminant.

§1. Part I: Survey.

§1.1. General introduction

This paper is composed of two parts. In the first part, we give a survey of purity
results for stratications of special fibers of integral models of Shimura varieties, focusing
on stratications arising from Barsotti‐Tate groups. In the second part, building on

works of Manin and others, we prove a new purity result for special fibers of integral
models of Hilbert modular varieties at places dividing the discriminant.

The two main examples of Shimura varieties arising in this note are Siegel modular

varieties and Hilbert modular varieties. Their reductions are much simpler to describe

than for general Shimura varieties, while illustrating the gist of purity in the context of

higher dimensional arithmetic geometry in characteristic p>0.
This paper was complemented by notes for a lecture series given in Bordeaux in

March 2008 at the invitation of A. Cadoret. In particular, we have tried to fill in

references for some standard algebraic geometry implicitly used in the literature. We
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point out other survey papers describing stratications of Shimura varieties: [Rap3],
[Ha], and [Va2]. In contrast, we focus unabashedly on purity.
N.B. We allowed ourselves the liberty to use footnotes, for which we ask the reader�s

indulgence if they happen to be distracting.

§1.2. Siegel and Hilbert modular varieties

1.2.1. Curves

A modular curve straties in two strata: a closed zero‐dimensional stratum and its

open complement. For example, the j‐line \displaystyle \mathrm{A}\frac{1}{\mathrm{F}}p parametrizing isomorphism classes of

elliptic curves in characteristic p can be decomposed in two parts: the ordinary and the

supersingular loci. Recall that an elliptic curve E dened over \mathrm{F}_{p} (an algebraic closure

of \mathrm{F}_{p}) is called supersingular if E[p](\mathrm{F}_{p})=0 ; otherwise, E is called ordinary and then

|E[p](\mathrm{F}_{p})|=p.
As a non‐proper (integral, separated) smooth curve is always affine by the Riemann‐

Roch theorem, and the zero‐dimensional stratum is trivially affine, we see that in the

case of curves, any non‐trivial stratication is affine. A naive question is then: what

happens in dimension >1 ? The classical Hasse invariant allows a more fruitful point
of view on modular curves: it displays the zero‐dimensional locus as the zero locus of a

global section (i.e., the Hasse invariant) of an ample invertible sheaf given by a suitable

power of the Hodge bundle. This technique, in some lucky cases, allows proving results

in higher dimensions also (see [Ito1], [Ito2]). Besides a trick suggested in Section 2, this

seems the only known method to prove (absolute) affineness results.

We introduce two classical families of Shimura varieties which include modular curves:

the Siegel modular varieties and the Hilbert modular varieties. These varieties parame‐

terize families of abelian varieties equipped with some additional structures. Recall that

modular curves are moduli spaces of elliptic curves i.e., of abelian varieties of dimension

one.

A Shimura variety is a quasi‐projective algebraic variety dened over a number field K,
called the reex field. When it is possible, describing a Shimura variety via a moduli

problem is an efficient recipe to dene a unique integral model i.e., over \displaystyle \mathcal{O}_{K}[\frac{1}{N}]\subset K ,
for

\mathcal{O}_{K} the ring of integers of K
,

and N\in \mathbb{N} . Henceforth, we may study the reduction of

this integral model modulo a prime \mathfrak{p} of \mathcal{O}_{K}, (\mathfrak{p}, N)=1 . In the examples that follows,
the reex field K will be equal to \mathbb{Q} and thus \mathcal{O}_{K}=\mathbb{Z}.

1.2.2. Basic example I: Siegel modular varieties

Siegel modular varieties \mathcal{A}_{g,1} are a very important, yet relatively easy to dene,

family of higher dimensional Shimura varieties. Besides modular curves, the Siegel
modular threefold \mathcal{A}_{2,1} (not \mathcal{A}_{3,1}! ) associated to the group \mathrm{G}\mathrm{S}\mathrm{p}/\mathbb{Q} has been most
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studied, in particular in connection with Galois representations associated to Siegel
modular forms of genus two.

Roughly, Siegel modular varieties \mathcal{A}_{g,1,N} parametrize principally polarized abelian va‐

rieties of dimension g equipped with a certain level N structure. The (

(g, 1 �

subscript
denotes the dimension g and the degree 1 of the polarisation.
Let S be a scheme over which N is invertible.

Denition 1.1. Let \mathbb{N}\ni N\geq 3 . The Siegel moduli space \mathcal{A}_{g,1,N} of symplec‐
tic similitude level structure N is the fine moduli scheme dened over \mathbb{Z}[1/N] which

associates to an S ‐scheme T the triple \underline{A}:=(A,  $\lambda$,  $\epsilon$)/\cong ,
where:

1.  A is an abelian scheme A\rightarrow T of relative dimension g ;

2.  $\lambda$ :  A\rightarrow^{\underline{}\simeq}A^{t} is a principal polarization;

3. a symplectic similitude level N structure  $\epsilon$.

N.B. The representability of this moduli problem is due to Mumford (see [Mu]). As

level structures play a peripheral rôle in this part, we refer to [FC] or [Ko2] for further

details.

Theorem 1.2 ([Mu]). The Siegel moduli space \mathcal{A}_{g,1,N} is smooth over \mathbb{Z}[1/N]
and of relative dimension \displaystyle \frac{g(g+1)}{2}.

1.2.3. Basic example II: Hilbert modular varieties

We refer to [Vo] and the references therein for details on the moduli interpretation
of Hilbert modular varieties. We fix some notation. Let L be a totally real number field

of degree g=[L: \mathbb{Q}] ,
with \mathcal{O}_{L} its ring of integers. The inverse different \mathcal{D}_{L/\mathbb{Q}}^{-1} is dened

by \{x\in L|\mathrm{T}\mathrm{r}_{L/\mathbb{Q}}(x\mathcal{O}_{L})\subset \mathbb{Z}\} . The discriminant d_{L} of L is given by Norm(Q).
Roughly, Hilbert modular varieties parametrize abelian varieties of dimension g

equipped with an action of \mathcal{O}_{L} ,
a rigid level structure and polarization data.

Denition 1.3. Let \mathbb{N}\ni N\geq 3 . The Hilbert modular space \mathfrak{M}(S, N)\rightarrow S of
level structure N is the fine moduli scheme dened over \mathbb{Z}[1/N] ,

which associates to an

S ‐scheme T the triple \underline{A}:=(A,  $\iota$,  $\epsilon$)/\cong ,
where:

1. (A,  $\iota$) is an abelian scheme A\rightarrow T of relative dimension g equipped with real mul‐

tiplication:

 $\iota$:\mathcal{O}_{L}\mapsto \mathrm{E}\mathrm{n}\mathrm{d}_{T}(A) ;

2. a level N structure

 $\epsilon$:(\mathcal{O}_{L}/N\mathcal{O}_{L})^{2}\cong \mathrm{o}_{L}A[N].



48 MARc‐Hubert Nicole

3. The Deligne‐Pappas condition is satised:

A\otimes_{\mathcal{O}_{L}}\mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{O}_{L}}(A, A^{t})^{sym}\rightarrow^{\simeq\underline{}}A^{t}

The \mathcal{O}_{L} ‐module \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{O}_{L}}(A, A^{t})^{sym} is dened as: {  $\lambda$ :  A\rightarrow A^{t}| $\lambda$=$\lambda$^{t} and  $\iota$^{t}\circ $\lambda$= $\lambda$\circ $\iota$ }.

Theorem 1.4 ([Rap1], [DP]). The morphism \mathfrak{M}(S, N)\rightarrow S is flat of relative

dimension g and is locally of complete intersection. Moreover, it is smooth over

\mathbb{Z}[1/Nd_{L}] . If p|d_{L} ,
the geometric fibers in characteristic p are normal varieties; the

singular locus has codimension two.

§1.3. Stratications via Barsotti{Tate groups

Let k be an algebraically closed field of characteristic p>0 . Let A be an abelian

variety over k . We can associate to A its Barsotti‐Tate group A[p^{\infty}]:=\displaystyle \lim_{\rightarrow}A[p^{n}],
where A[p^{n}] denotes the kernel of the multiplication‐by‐pn map. It is also called a

p‐divisible group. There exist numerous discrete invariants of A[p^{\infty}] . For example,
we can consider the isogeny class of A[p^{\infty}] i.e., the Newton polygon. The Dieudonné‐

Manin classication of p‐divisible groups up to isogeny (see Thm 1.9 below) extends

to F‐isocrystals. As a consequence, stratications of moduli spaces of K3 surfaces can

also be dened and studied (as they fall outside the realm of Barsotti‐Tate groups, we

refer the reader directly to works of: Ogus ([Og]), van der Geer‐Katsura ([vdGKl]) and

references therein). Alternatively, we may also restrict our attention to the finite flat

group scheme A[p^{m}] ,
for some level m\in \mathbb{N} . Other interesting invariants are provided

by the a‐number (see Example 1.17), the p‐rank (see Denition 1.13), etc.

1.3.1. Examples of stratications

We first dene the concept of stratication.

Denition 1.5. Let I be an index set. A stratication of a reduced k ‐scheme S

is a decomposition (of the geometric, closed points):

S(k)=\sqcup S_{i}(k)i\in I �

by subschemes S_{i} which are disjoint, reduced, locally closed.

It would be desirable to know whether: \overline{S_{i}}=\sqcup {}_{j\in J_{i}}S_{j} i.e., the Zariski closure of a

stratum is given by disjoint union of strata but this is only conjectured in general
for (good reductions of) Shimura varieties (see [Rap3]). Note that this can easily be

disproved for arbitrary \mathrm{F}_{p} ‐schemes.
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We do not build in more properties in the denition, as e.g., quasi‐affineness does not

hold for so‐called the p‐rank stratication. Moreover, Newton polygon strata are not

smooth in general (see below for denitions).
We focus on stratications that can be dened via Barsotti‐Tate groups. We recall

this notion.

Denition 1.6. A Barsotti‐Tate group (BT‐group for short) is an fppf
1

sheaf

of abelian groups G/S such that (denoting G(n) :=\mathrm{K}\mathrm{e}\mathrm{r}(p^{n}:G\rightarrow G)) the following
three axioms hold:

1. G is p ‐divisible i.e., p:G\rightarrow G is surjective;

2. G is p ‐torsion i.e., G=\displaystyle \lim_{\rightarrow}G(n) ;

3. G(1) is representable by a finite, flat group scheme over S.

The height of a BT‐group G is the integer h\geq 0 such that rk(G(1))=p^{h}.
We are now sufficiently prepared to introduce examples of stratications. In parallel

to the examples, we provide some brief observations pertaining e.g., to smooth families

of abelian varieties. In general, we construct stratications by dening invariants of

Barsotti‐Tate groups, and then study how a given invariant varies in a family e.g.,

of abelian varieties with additional structures. We will leave formulating the precise
denitions of the stratications in complete generality to the reader (or consult [Va2])
and we shall focus instead on the invariants themselves (but see Examples 1.19 and

1.21).

Example I. The Newton stratication

The Newton polygon is a handy device to encode the isogeny class of a BT‐group.
When the base scheme is an algebraically closed field, it is a complete invariant for the

isogeny class.

Denition 1.7 (Newton polygon).
Let h, d\in \mathbb{N}\cup\{0\} and d\leq h. A Newton polygon is a piecewise linear, continuous

function  $\gamma$ : [0, h]\rightarrow[0, d] such that:

\bullet  $\gamma$ starts at (0,0) and finishes at (h, d) ;

\bullet  $\gamma$ is lower convex;

\bullet each slope  $\beta$ of  $\gamma$ is a rational number comprised between  0 and 1 i.e.,  $\beta$\in[0, 1]\cap \mathbb{Q} ;

We customarily order the slopes of a Newton polygon in increasing order.

lfidèlement plat, présentation finie
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Example 1.8. The Newton polygon of constant slope 1/2 is called supersingular.
For height 2 and dimension 1, there is only one other Newton polygon: the ordinary

polygon of slopes 0 and 1.

Theorem 1.9 (Dieudonné‐Manin). Let k=\overline{k} . There is a bijection between

isogeny classes of BT‐groups of height h and dimension d over k and Newton polygons.

In particular, the Newton stratication has finitely many strata. We refer to [Rap3],
[Ha], [Va2] for basic properties of the Newton stratication. In particular, the Newton

strata are not necessarily smooth.

Examples II. Truncations and their stratications

We have seen that the association A\mapsto A[p^{\infty}] simplies greatly when the BT‐group
is considered up to isogeny. Another natural idea, given the data A[p^{\infty}]=\displaystyle \lim_{\rightarrow}A[p^{n}] is

to truncate in level m i.e., to forget about the A[p^{i}] �s for i>m ,
for some m\in \mathbb{N} . In its

most drastic guise, we may consider the association A\mapsto A[p^{m}] up to isomorphism, for

m=1 . This level1 case was originally studied by Ekedahl and Oort; the corresponding
level1 stratication has finitely many strata. In level m>1 ,

in general we may

encounter innitely many strata.

Manin proved in [Ma] that a BT‐group G over an algebraically closed field k is

determined by its truncation G(m) for m>>0 . One may ask more precise questions:
Traverso publicized the following two conjectures in 1979 ([Tr, §40, Conj. 4, 5]). Let

c, d\in \mathbb{N} such that c+d>0 . Let H be a p‐divisible group over k of codimension c and

dimension d . Recall that the codimension is the dimension of the dual p‐divisible group.

Let n\in \mathbb{N} be the smallest number such that H is uniquely determined up to isogeny by

H[p^{n}] . It is called the isogeny cutoff of H (terminology introduced in [NVI]).

Conjecture 1.10 (Traverso Isogeny Conjecture). The number n is bounded

from above by \displaystyle \lceil\frac{cd}{c+d}\rceil i.e., we have  n\displaystyle \leq\lceil\frac{cd}{c+d}\rceil.
Theorem 1.11 ([NVI]). The Tr averso isogeny conjecture is true.

D. Eriksson remarked to the author 2 that this theorem improves a result of Tate on

the zeta functions of abelian varieties dened over finite fields (cf. [Ta]). For abelian

varieties c=d=\dim(A) ,
and the result says that the truncation of level \lceil g/2\rceil is enough

to determine uniquely the zeta function. Tate�s result required a priori to compute up

to level  g.

Similarly, let m\in \mathbb{N} be the smallest number such that H is uniquely determined

up to isomorphism by H [pm]. It is called the isomorphism number of H (terminology
introduced in [Va1, Def. 3.1.4]).

2in a private conversation at TOdai�s Itatoma in Komaba.
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Conjecture 1.12 (Traverso Isomorphism Conjecture). We have m\displaystyle \leq\min\{c, d\}.

As of December 20083, this conjecture was known to hold only in some very particular
cases e.g., for the slope 1/2 case (see [NVI, Thm. 1.2., Ex. 3.3] and references therein),
and for quasi‐special p‐divisible groups over k (see [Va3, Thm. 1.5.2]). We point out

that in the slope 1/2 case, a variant with principal polarization holds with the same

bound ([NVI, Thm. 1.3]).
It would be interesting to investigate the properties of stratications coming from

isogeny cutoffs n or isomorphism numbers m.

Example III. Other stratications

Denition 1.13. The p ‐rank of an abelian variety A over k is dened as

\log_{p}|A[p](k)|\in\{0, . . . ; \dim(A)\}.

The Newton stratication and the level 1 stratication are both renements of the

p‐rank stratication, but in general none is a renement of the other.

In Part II of this paper, we introduce the so‐called Manin stratication, a strati‐

cation into finitely many strata which applies to some reductions of Shimura varieties

at ramied primes. It can be seen as a finite version (in the case of bad reduction) of

the level m stratication for m=\infty.

1.3.2. Purity

Suppose that we have a stratication S=\sqcup {}_{i\in I}S_{i} . A given stratum S_{i} may satisfy
various purity properties:

Principal purity

\Downarrow

Affineness \Rightarrow Purity i.e.,  S_{i\mapsto}^{\mathrm{a}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}}S
(Sseparated)

\Downarrow (  s locally noetherian)

Codimension 1 purity

Other variants are readily available, but it is still unclear to us at this point how useful

they are in the context of Shimura varieties. We point out that a typical stratum S_{i}
is not necessarily closed, but only locally closed. A closed stratum is automatically

pure, as a closed immersion is affine. The absolute purity conjecture of Grothendieck,
which concerns closed immersions of regular, noetherian schemes, has been proven by
O. Gabber (see [Fu] for a statement and complete proof).
We dene the above notions, for which general results are known to us.

3See [LNV] for a counterexample to the original conjecture and optimal positive results.
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Principal purity is a formalization of the local existence of generalized Hasse‐Witt in‐

variants:

Denition 1.14. Principal purity ([NVW, Def. 1.7]). Let T\rightarrow S be a quasi‐

compact immersion and let \overline{T} be the scheme‐theoretic closure of T in S. Then T is

called Zariski locally principally pure in S if locally for the Zariski topology of \overline{T}
,

there

exists a function f\in $\Gamma$(\overline{T}, \mathcal{O}_{\overline{T}}) such that we have

T=\overline{T}_{f},

where \overline{T}_{f} is the largest open subscheme of \overline{T} over which f is invertible.

Supposing T\mapsto S quasi‐compact is a sufficient condition to insure the existence of \overline{T}

as a scheme ([GD1, Prop 9.5.10]). The underlying topological (Zariski) closure (also
written \overline{T} ) of course always exists.

In the denition of principal purity, the Zariski topology may be replaced by another

Grothendieck topology \mathcal{T} . If \mathcal{T} is coarser than the fpqc
4

topology, then principal purity
for \mathcal{T} implies purity, as affineness is then a local property for \mathcal{T} . We refer to [Del] for a

quick introduction to Grothendieck topologies sufficient for our purpose.

The property we call (purity�
5 is the relative analogue of affineness (see [GD2, §1.2],

where the implication affineness \Rightarrow relative affineness is explained, for  S separated):

Denition 1.15. Purity ([Va1, Sec. 2.1.1], [NVW, Def. 1.1]). A subscheme T

of a scheme S is called pure in S if the immersion T\mapsto S is affine.

The codimension 1 purity is dened as follows:

Denition 1.16. Codimension 1 purity. Let S be locally noetherian. Let T be

a subscheme of S. If Y is an irreducible component of the Zariski closure \overline{T} of T in S,
then the complement of Y\cap T in Y is either empty or of pure codimension 1.

It follows from [GD4‐4, 21.12.7] that purity implies codimension 1 purity when S is

locally noetherian.

Example 1.17. Impurity. Let A be an abelian variety dened over k=\mathrm{F}_{p}.
The a‐number of A is dened as: a(A) :=\dim_{k}($\alpha$_{p}, A)\in\{0, . . :, \dim(A)\} ,

where $\alpha$_{p} is

4fidèlement plat, quasi‐compact
5The term

\backslash 

purity� takes its origin in the Zariski‐Nagata purity theorem. In my talk in Kyoto, I

put forward a mnemotechnical association between TOkkaidO shinkansen�s names and the various

purity properties, suggested by the relative qualities of the trains (speed, frequency, convenience,
etc principal purity is �light� [hikari], purity is �echo� [kodama] and affineness is �hope� [nozomi],
etc. Relative affineness is typically proved as a consequence of affineness results e.g., for orbit

spaces of Barsotti‐Tate groups over fields, so maybe the word [kodama] conveys this as well.



Purity 0F Stratifications 53

the local‐local group scheme of order p i.e., $\alpha$_{p}=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k[T]/(T^{p})) . Let N\in \mathbb{N} such that

(N,p)=1 . Let T_{a} denote the locus of geometric, closed points A of \mathcal{A}_{g,1,N}\otimes \mathrm{F}_{p} where

a(A)\geq a . Consider the stratication of \mathcal{A}_{g,1,N}\otimes \mathrm{F}_{p} dened by S_{a}:=T_{a}\backslash T_{a+1} . An

easy calculation shows that the strata S_{a} are smooth (see [Ni1, Thm. 2.4.14]) fora>0.
On the other hand, it is well‐known ([\mathrm{v}\mathrm{d}\mathrm{G}\mathrm{K}2, \S 6]) that \mathrm{c}\mathrm{o}\dim(S_{a})=a(a+1)/2 ,

and

therefO re pure codimension 1 cannot hold.

We address the natural question: does purity always hold?

We present briey what is known about the following four stratications:

Newton \mathrm{p}‐rank Manin

Purity [Va1]

Level \mathrm{m}

[NVW] Unknown [N., Part II]
Codim. 1 purity [\mathrm{d}\mathrm{J}\mathrm{O}] OK from above [Zi] OK from above

Recall that

principal purity \Rightarrow purity \Rightarrow codimension 1 purity.

We describe in some detail the most recent developments concerning purity, prin‐

cipal or not. The main theorem of [NVW] goes beyond level  m stratications per se

(which have been developed for good reductions of Shimura varieties of Hodge type in

[Va4]):

Theorem 1.18 (N.‐Vasiu‐Wedhorn). Let k be a field of characteristic p>0.
Let D_{m} be a BT_{m} over k (i.e., an m ‐truncated Barsotti‐Tate group over k). Let S be a

k ‐scheme and let X be a BT_{m} over S. Let S(X) be the subscheme of S which

describes the locus where X is locally for the fppf topology isomorphic to D_{m} . If p\geq 5,
then S_{D_{m}}(X) is pure in S i.e., the immersion S_{D_{m}}(X)\mapsto S is affine.

For reasons of space, it is quite difficult to describe Shimura varieties in a degree of

generality matching the applicability of this result. Hence we conne ourselves to the

classical examples introduced earlier.

Example 1.19. Let N\geq 3 be an integer prime to p . Let \mathcal{A}_{g,1,N} be the Siegel
moduli scheme parametrizing the usual objects over \mathrm{F}_{p} ‐schemes. Let (;  $\Lambda$) be the prin‐

cipally quasi‐polarized p ‐divisible group of the universal principally polarized abelian

scheme over \mathcal{A}_{g,1,N} . If k is algebraically closed and if (D,  $\lambda$) is a principally quasi‐

polarized p ‐divisible group of height 2g over k
,

let \mathfrak{s}_{D, $\lambda$}(m) be the unique reduced locally
closed subscheme of \mathcal{A}_{g,1,N,k} that satises the fo llowing identity of sets

\mathfrak{s}_{D, $\lambda$}(m)(k)=\{y\in \mathcal{A}_{g,1,N}(k)|y^{*}(\mathcal{U},  $\Lambda$)[p^{m}]\cong(D,  $\lambda$)[p^{m}]\}.
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Then \mathfrak{s}_{D, $\lambda$}(m) is smooth and equidimensional, and we have:

Proposition 1.20 ([NVW, Thm. 1.6]). If either p=3 and g\leq 6 or p\geq 5,
then the subscheme \mathfrak{s}_{D, $\lambda$}(m) is pure in \mathcal{A}_{g,1,N}.

Example 1.21. Let N\geq 3 be an integer prime to p . Let \mathfrak{M}(S, N) be the Hilbert

moduli scheme parametrizing the usual objects over \mathrm{F}_{p} ‐schemes. Let (;  $\Lambda$) be the quasi‐

polarized p ‐divisible group of the universal polarized abelian scheme with real multiplica‐
tion by \mathcal{O}_{L} over \mathfrak{M}(S, N) . If k is algebraically closed and if (D,  $\lambda$) is a quasi‐polarized

p ‐divisible group of height 2g over k with real multiplication by \mathcal{O}_{L} , let \mathfrak{s}_{D, $\lambda$}(m) be the

unique reduced locally closed subscheme of \mathfrak{M}(S, N)_{k} that satises the fo llowing identity

of sets

\mathfrak{s}_{D, $\lambda$}(m)(k)=\{y\in \mathfrak{M}(S, N)(k)|y^{*}(\mathcal{U},  $\Lambda$)[p^{m}]\cong/\mathcal{O}_{L}(D,  $\lambda$)[p^{m}]\}.

Then \mathfrak{s}_{D, $\lambda$}(m) is smooth and equidimensional, and purity holds as above.

The (expected) failure of principal purity may be seen as yet another manifestation

of Murphy�s Law6 in higher dimensional algebraic geometry (for a somewhat analogous
result in the context of Zariski‐Nagata purity, see [Gr, Ex. 3.13]). More precisely, for

g\geq 4 ,
the Siegel modular variety \mathcal{A}_{g,1,N}\otimes \mathrm{F}_{p} does not admit generalized Hasse‐Witt

invariants for the p‐rank stratication (see [NVW, Prop. 1.8]).
As for positive results regarding principal purity, we mention the construction of

(global) generalized Hasse‐Witt invariants by T. \mathrm{I}\mathrm{t}0 (cf. [Ito1]) for U(n, 1) Shimura

varieties, exploiting the fact that the underlying p‐divisible group has dimension one.

We refer to [Ito2] for similar results about the (minimal compactication of the) Siegel
modular 3‐fold \mathcal{A}_{2,1} ,

in which case the underlying p‐divisible group has dimension two.

The 6‐fold \mathcal{A}_{3,1} remains somewhat mysterious.
We also point out that the usual stratication of moduli spaces of K3 surfaces by

the height satises principal purity, and moreover, it is expected that its strata are affine

(see [vdGKl]).

1.3.3. Applications of purity
We try illustrating some typical applications of purity, picking out examples where

a lesser variant will not yield the desired outcome.

Pure codimension one: Classical codimension one purity allows to get lower bounds

on dimensions of strata.

Purity: What extra information can we derive from purity that is not already a con‐

sequence of codimension one purity? An elementary, direct application of purity is as

follows: suppose that S_{i}, T_{i}, i=1
,

2 are locally closed subschemes in some scheme X.

6 �Anything that can possibly go wrong, will.�
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If S_{1}, T_{1} are pure, then it follows from the denition that S_{1}\cap T_{1} is also pure. On the

other hand, if we only assume that S_{2} has pure codimension one and that T_{2} is pure, we

cannot logically deduce even the weaker statement that S_{2}\cap T_{2} has pure codimension

1, due to the existence of counterexamples.
Another classical application of purity is as follows: affine morphisms f behave well

under natural operations e.g., [AGV, Thm. 3.1] or the perverse sheaf theoretic variant

that Rf_{!} is t‐exact (see [BBD, 4.1.10]). For example, P. Boyer uses mere purity (and
not the stronger affineness results which are nonetheless available in his setting) in this

latter form to prove the monodromy‐weight conjecture for U(n, 1) Shimura varieties (see
[Bo, Partie III, Prop. 6.2]).
Affineness: This is used in geometric proofs of existence of companion forms (special
cases of Serre‐type conjectures) e.g., proof of Gross�s theorem via the modular curves

X_{1}(N) by Faltings‐Jordan ([FJ]), work in progress of F. Herzig and J. Tilouine (see
[HT]), etc.

§1.4. Open questions

We gather in this section the open questions which are more or less explicit in the

main text.

Question 1.22. What are the relationships between the various stratications /?

E.g., describe the intersection S_{i}\cap T_{j} of various strata S_{i}, T_{j}.

Question 1.23. Is the stratication by the p ‐rank pure /?

Question 1.24. Can global Hasse‐Witt invariants be constructed for the (min‐
imal compactication of the) Siegel modular variety \mathcal{A}_{3,1,N}\otimes \mathrm{F}_{p} of dimension 6^{l}? The

most mysterious part of this variety seems the Newton stratum of slopes {1/3, 2/3}.

§1.5. Appendix of Part I: affineness criteria

For the convenience of the reader, we collect classical affineness criteria.

Affineness as cohomological purity

Theorem 1.25 ([GD3, Thm. 1.3.1]). Let X be an affine scheme. For all quasi‐
coherent \mathcal{O}_{X} ‐module \mathcal{F} , we have H^{i}(X, \mathcal{F})=0 for all i>0.

Moreover, we have the criterion of Serre in the noetherian case:

Theorem 1.26 ([GD2, Thm. 5.2.1]).
lowing are equivalent:

Let X be a noetherian scheme. The fol‐
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1. X is an affine scheme;

2. there exists a fa mily f_{ $\alpha$}\in A= $\Gamma$(X, \mathcal{O}_{X}) such that X_{f_{ $\alpha$}} are affine and the ideal

generated by the f_{ $\alpha$}s in A is equal to A ;

3. the fonctor  $\Gamma$(X, \mathcal{F}) is exact in the term \mathcal{F} in the category of quasi‐coherent \mathcal{O}_{X^{-}}

modules;

4. H^{1}(X, \mathcal{F})=0 for all quasi‐coherent \mathcal{O}_{X} ‐modules \mathcal{F};

5. H^{1}(X, \mathcal{J})=0 for all quasi‐coherent sheaves of ideals \mathcal{J} in \mathcal{O}_{X}.

Among quasi‐affine subsets, affine subsets are characterized by the following vanishing

property:

Corollary 1.27. Let X=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(A) be a scheme offinite type over a field, U\subset X

a quasi‐compact Zariski open subset. Then U is affine iff H^{i}(U, \mathcal{O}_{U})=0 for all i>0.

Proof. (Sketch) Since X is a scheme of finite type over a field, the structure sheaf

\mathcal{O}_{X} is ample, and so is \mathcal{O}_{U} . Also, every coherent sheaf on U admits a resolution by
direct sums of \mathcal{O}_{X} . As the cohomological dimension is finite, we are done. \square 

A theorem of Chevalley

Theorem 1.28 ([GD2, Prop. 6.7.1]). Let X be a separated, affine scheme, Y a

noetherian scheme, and f : X\rightarrow Y a finite, surjective morphism. Then Y is an affine
scheme.

In particular, Chevalley�s theorem implies that affineness is a local property in the fpqc

topology.
N.B. This result also holds for varieties i.e., schemes of finite type over a field.

A theorem of Cline‐Parshall‐Scott

Let \mathfrak{G} be an affine, smooth connected group over a field k . A smooth subgroup
scheme \mathfrak{F} of \mathfrak{G} is called exact if the induction of rational \mathrm{F}‐modules to rational \mathfrak{G} ‐modules

preserves short exact sequences.

Theorem 1.29 ([CPS, Thm. 4.3]). A smooth subgroup scheme \mathfrak{F} of \mathfrak{G} is exact

if and only if the quotient variety \mathfrak{G}/\mathfrak{F} is affine.

This affineness criterion was used crucially in [NVW, Thm. 5.1] to prove purity for level

m stratications associated to Shimura varieties of Hodge type.
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§2. Part II. The Manin Stratication of Hilbert Modular Varieties

In Part II, we introduce the Manin stratication, using [Ma] heavily. Our main

goal is to illustrate purity explicitly with Hilbert modular varieties at a place of bad

reduction. We also point out a connection between the singular superspecial locus (\mathrm{a}
zero‐dimensional stratum) and base change for \mathrm{G}\mathrm{L}_{2} . We postpone discussing other

Shimura varieties over ramied primes to future work, as additional techniques come

into play.

§2.1. Introduction to Part II

The Manin stratication is expected to give finitely many reduced, locally closed

strata, which are smooth, equidimensional, quasi‐affine, relatively affine and such that

the Zariski closure of a stratum is given by the union of strata. We identify the Manin

stratication of Hilbert modular varieties with the slope stratication previously studied

in [AG1] and [AG2], where all properties but purity were previously veried. We prove

purity i.e., relative affiness of strata, via explicit computations. These computations are

tractable because the slope stratication is dened using modules of rank two. We note

that purity of the supersingular strata was first proved in [Ni1].
The main virtue of the Manin stratication is to provide a finite stratication

adapted to the study of reductions of some classical modular varieties at ramied primes.
Our motivation for studying such singular Shimura varieties is the possibility of estab‐

lishing a geometric version of base change via vanishing cycles. We give partial evidence

for \mathrm{G}\mathrm{L}_{2}.
We describe the contents of each section. Section 2 classies Dieudonné modules

with real multiplication (RM) by Manin�s method. Section 3 applies this classication

to the study of Hilbert modular varieties. We show that the slope stratication coincides

with the Manin stratication. The explicit nature of our computations exhibits algebraic
varieties which are easily seen to be affine, as in Manin�s original work. Section 4 de‐

scribes the quaternion orders appearing as endomorphism orders of superspecial abelian

varieties with RM in this ramied setting and revisits the Eichler Basis Problem. In

section 5, we recall the denition of P‐adic character groups using vanishing cycles, and

we use it to draw a tentative connection between Hilbert modular surfaces associated

to a real quadratic field \mathbb{Q}(\sqrt{D}) ,
modular curves X(p) and the classical Doi‐Naganuma

lifting. This paper extends slightly [Ni2], where p is assumed to be unramied.

N.B. We assume throughout Part II that p is a totally ramied prime in \mathcal{O}_{L} i.e., p\mathcal{O}_{L}=

\mathfrak{p}^{g} for a prime ideal \mathfrak{p} of \mathcal{O}_{L}.
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§2.2. Classication of Dieudonné modules up to isomorphism over totally
ramied Witt vectors

Dieudonné modules arise in geometry e.g., as the first crystalline cohomology group

H_{cris}^{1}(A/W(k)) of an abelian variety A dened over a perfect field k . Since cohomology
is functorial, additional structures (such as real multiplication) carry over from A to

the Dieudonné module \mathrm{D}(A) ,
and we may incorporate the additional structure and

try to classify the resulting objects. In this section, we establish the classication of

Dieudonné modules up to isomorphism over totally ramied Witt vectors i.e., over a

totally ramied extension of the Witt vectors; as a very particular case, we recover

all instances of such enhanced Dieudonné modules arising from superspecial points on

Hilbert modular varieties over a totally ramied prime. Recall that an abelian variety
A dened over k is superspecial if A\cong_{\overline{k}}E^{g} ,

for E a supersingular elliptic curve.

N.B. This whole section rests on the observation that the proofs in [Ma] carry over

mutatis mutandis to totally ramied extensions of W(k) ; indeed, all ideas in this section

are due to Manin. We see no point in reproducing his proofs word by word. Instead,
we sketch the proofs, pointing out the minor, required modications and hopefully we

describe the results in sufficient detail to make the geometric application in Subsection

2:3 intelligible.
Let k be an algebraically closed field, and let \mathfrak{F} be a finite, totally ramied extension

of \mathbb{Q}_{p} . As k is perfect, we can form the ring of Witt vectors W(k) . The Witt vectors

W(k) are a complete discrete valuation ring in characteristic zero with residue field k i.e.,

W(k)/pW(k)=k . Let K be the fraction field of W(k) . The Frobenius automorphism  $\sigma$

of the residue field  k induces an automorphism of K that we note also  $\sigma$ by a slight abuse

of notation. Denote by  K_{\mathrm{F}}:=K\cdot \mathfrak{F} the compositum of K and \mathfrak{F} , with ring of integers

W_{\mathrm{F}} . The ring W(k) is a totally ramied extension of W(k) of degree [\mathfrak{F} : \mathbb{Q}_{p}]=g . We

sometimes use the shorthand notation W_{\mathrm{F}} , omitting the mention of the residue field k.

Since k is algebraically closed, we may fix an uniformizer T\in W_{\mathrm{F}} such that T^{ $\sigma$}=T.

The main tools that appear in Manin�s classication are two finiteness theorems and

some algebro‐geometric classifying spaces that we shall call Manin spaces, for short.

The key idea behind Manin�s finiteness theorems is the concept of a special module; \mathrm{a}

crucial fact is that every Dieudonné module has a unique maximal special submodule,
of finite colength. We go over the denitions and describe these results.

Denition 2.1. A Dieudonné module \mathrm{D} is a leftt W_{\mathrm{F}}[F, V] ‐module fr ee of finite
rank over W_{\mathrm{F}} with the condition that \mathrm{D}/F\mathrm{D} has finite length.

Recall that the ring W_{\mathrm{F}}[F, V] is non‐commutative (except if k=\mathrm{F}_{p} ) : F is  $\sigma$‐linear i.e.,

 Fx=x^{ $\sigma$}F, V is $\sigma$^{-1} ‐linear i.e., Vx^{ $\sigma$}=xV ,
and moreover FV=VF=p.

Denition 2.2. Two Dieudonné modules \mathrm{D}_{1}, \mathrm{D}_{2} are isogenous if there is an
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injective W_{\mathrm{F}}[F, V] ‐homomorphism  $\phi$ : \mathrm{D}_{1}\mapsto \mathrm{D}_{2} such that \mathrm{D}_{2}/ $\phi$(\mathrm{D}_{1}) has finite length.

If \mathrm{D}_{1} is isogenous to \mathrm{D}_{2} , we write: \mathrm{D}_{1}\sim \mathrm{D}_{2}.

The isogeny relation \sim \mathrm{i}\mathrm{s} indeed symmetric. Since k is algebraically closed, the associ‐

ated F‐isocrystal uniquely determines the isogeny class of the Dieudonné module.

Denition 2.3. An F ‐isocrystal (V;,  $\Phi$) is a finite dimensional space V over K_{\mathrm{F}}
equipped with a  $\sigma$ ‐linear bijection  $\Phi$.

Theorem 2.4 (Dieudonné‐Manin). Let k be an algebraically closed field. The

category of F ‐isocrystals over K_{\mathrm{F}} is semisimple and with simple objects parametrized

by \mathbb{Q} . To  $\lambda$\in \mathbb{Q} correspond the simple object E_{ $\lambda$} , dened as follows. If  $\lambda$=\displaystyle \frac{r}{s} , with

r, s\in \mathbb{Z}, s>0, (r, s)=1 ,
then

E_{ $\lambda$}=K_{\mathrm{F}}(k)[F]/(F^{s}-T^{r}) ,

where T is a uniformizer of K_{\mathrm{F}} , and Fx=x^{ $\sigma$}F.

Proof. [Ma, Chap. 2], cf. [Ko1, Chap. 3]. \square 

The rational numbers \{$\lambda$_{i}\} associated to a semisimple object \oplus_{i}E_{$\lambda$_{i}} are called the slopes.

By a standard argument (cf. [La, Chap. VI 5.7‐5.8, p.180]), any Dieudonné module \mathrm{D} is

decomposable uniquely in a direct sum: \mathrm{D}=\mathrm{D}_{\'{e} \mathrm{t}\mathrm{a}\mathrm{l}\mathrm{e}}\oplus \mathrm{D}_{\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}1} ,
where F is an isomorphism

on \mathrm{D}_{\'{e} \mathrm{t}\mathrm{a}\mathrm{l}\mathrm{e}} ,
and F is topologically nilpotent on \mathrm{D}_{\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}1} i.e., \displaystyle \bigcap_{i\geq 0}F^{i}\mathrm{D}_{\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}1}=0 . Repeating this

decomposition with V in lieu of F
,

we get:

\mathrm{D}=\mathrm{D}_{\'{e} \mathrm{t}\mathrm{a}\mathrm{l}\mathrm{e},\'{e} \mathrm{t}\mathrm{a}\mathrm{l}\mathrm{e}}\oplus \mathrm{D}_{\'{e} \mathrm{t}\mathrm{a}\mathrm{l}\mathrm{e}} , local \oplus \mathrm{D}_{\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}1\'{e} \mathrm{t}\mathrm{a}\mathrm{l}\mathrm{e}}\oplus \mathrm{D}_{\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}11\mathrm{o}\mathrm{c}\mathrm{a}1}.

Since \mathrm{D}_{\'{e} \mathrm{t}\mathrm{a}\mathrm{l}\mathrm{e},\'{e} \mathrm{t}\mathrm{a}\mathrm{l}\mathrm{e}} is easily seen to be zero, it suffices to classify local Dieudonné modules

by the standard dévissage via Cartier duality. Manin�s proofs are written in this setting.
Recall that a Dieudonné module \mathrm{D} is isoclinic if the set of slopes of \mathrm{D} is a singleton.

Denition 2.5 (Special module).

\bullet An isoclinic Dieudonné module of slope \displaystyle \{\frac{r}{s}\} is special if F^{r}\mathrm{D}=T^{s}\mathrm{D}.

\bullet An (arbitrary) Dieudonné module \mathrm{D} is special if \mathrm{D}\cong\oplus_{i}\mathrm{D}_{i} , where \mathrm{D}_{i} are maximal

isoclinic special submodules of D.

We denote by K_{\mathrm{F}}(\mathrm{F}_{p^{r}}) the subeld of K_{\mathrm{F}} fixed under $\sigma$^{r} (e.g., K_{\mathrm{F}}()=\mathfrak{F}).

Denition 2.6 (Cyclic local algebra). Let E_{r,s} be the associative W_{\mathrm{F}}(\mathrm{F}_{p^{r}}) ‐algebra

(with unit) generated by  $\theta$ such that:

 $\theta$^{r}=T,  $\theta \alpha$=$\alpha$^{$\sigma$^{-b}} $\theta$,  $\alpha$\in W_{\mathrm{F}}(\mathrm{F}_{p^{r}}) ,

where b is such that-bs=1\mathrm{m}\mathrm{o}\mathrm{d} r.
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Let K_{r,s} denote the division algebra E_{r,s}\otimes \mathbb{Q} . Dene the isosimple module M_{r,s}:=

W_{\mathrm{F}}(k)\otimes_{W_{F}(\mathrm{F}_{p^{r}})}K_{r,s} . The Dieudonné module structure is dened as follows: F$\theta$^{i}:=

$\theta$^{i+s}, T$\theta$^{i}:=$\theta$^{i+r}
,

and the action of V is uniquely determined by the relation FV=p.
As the notation suggests, the slope of M_{r,s} is \displaystyle \frac{r}{s} . It follows from [Ma, Lem. 3.6] that

every element x\in M_{r,s} can be uniquely expressed as: x=\displaystyle \sum_{i>-\infty}$\epsilon$_{i}$\theta$^{i}, $\epsilon$_{i}\in \mathfrak{T} , for any

multiplicative system \mathfrak{T}\subset W(k) of representatives of k . In particular, for any element

x\in \mathrm{D} of a module \mathrm{D} of slope \displaystyle \frac{r}{s} ,
we can dene v(x) as the minimal integer i such that

$\epsilon$_{i}\neq 0 . By picking a suitable embedding (cf. [Ma, Section 2, p.47]), we can view \mathrm{D}

as included in the submodule W_{\mathrm{F}}(k)\otimes E_{r,s} ,
and containing an element congruent to 1

modulo W_{\mathrm{F}}(k)\otimes E_{r,s} $\theta$.
We can thus dene J=J(\mathrm{D}) :=\{v(x)|x\in \mathrm{D}\} . It is invariant under translation by

r, s
, gr—s, and \mathbb{N}\backslash J is finite.

Lemma 2.7. Let \mathrm{D} be an isosimple module of slope \displaystyle \frac{r}{s}.

\bullet The finite set \overline{J}:=\mathbb{N}\backslash J does not depend on the choice of the embedding (if we

restrict ourselves to embeddings that satisfyy \displaystyle \min\{v(x)|x\in \mathrm{D}\}=0) i.e., \overline{J} is an

invariant of D.

\bullet For the given embedding \mathrm{D}\mapsto W_{\mathrm{F}}(k)\otimes E_{r,s} ,
the module \mathrm{D} contains a system of

elements of the form:

z_{j}=$\theta$^{j}+\displaystyle \sum_{\ell\in\overline{J},\ell>j}$\epsilon$_{l}$\theta$^{p}, $\epsilon$_{l}\in \mathfrak{T},
where \mathfrak{T} is a multiplicative system of representative for k, and j runs over all el‐

ements of J such that the translates belong to \overline{J} . The system \{z_{j}\} is uniquely
determined and coincides with a minimal generating set of the Dieudonné module

D.

Proof. See [Ma, Lem. 3.9]. \square 

Corollary 2.8 (First Finiteness Theorem for isosimple modules). There exists

only a finite number of non‐isomorphic special modules isogenous to a fixed isosimple
module.

Proof. See [Ma, Cor.1, \mathrm{p}.48]. \square 

Proposition 2.9 (First Finiteness Theorem for isoclinic modules). There exists

only a finite number of non‐isomorphic special modules isogenous to a fixed isoclinic

module.
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Proof. See [Ma, Lem. 3. 10,\mathrm{p}.51 ]. \square 

Corollary 2.10 (First Finiteness Theorem (general case Let \mathrm{D} be a Dieudonné

module. There exists only a finite number of non‐isomorphic special modules isogenous
to D.

Proof. This follows from the denition of a special module and the First Finiteness

Theorem for isoclinic modules. \square 

Theorem 2.11 (Second Finiteness Theorem). Let \mathrm{D} be a Dieudonné module.

The module \mathrm{D} has a unique maximal special submodule \mathrm{D}_{0} . The length [\mathrm{D} : \mathrm{D}_{0}] is

bounded uniformly in the isogeny class of D.

Proof. See [Ma, Thm. 3.1, p.39] for the first assertion, and [Ma, Section 6, Thm

3.8] for the second assertion. \square 

Theorem 2.12 (Classication Theorem). Let k be an algebraically closed field.
A Dieudonné module \mathrm{D} is determined uniquely up to (non‐unique) isomorphism by the

following collection of invariants:

\bullet the slopes of \mathrm{D} ;

\bullet the maximal special submodule \mathrm{D}_{0}\subset \mathrm{D} (parametrized by discrete invariants);

\bullet a  $\Gamma$(\mathrm{D}_{0}, h) ‐orbit of a point corresponding to \mathrm{D} in a constructible algebraic set

A(\mathrm{D}_{0}, h) ,
where h is a nonnegative integer that depends only on the slopes; A(\mathrm{D}_{0}, h)

and  $\Gamma$(\mathrm{D}_{0}, h) depend only on \mathrm{D}_{0} and h
,

and  $\Gamma$(\mathrm{D}_{0}, h) is a finite group.

Proof. See [Ma, Chap. 3, Section 3, Thm. 3.2]. \square 

We need to explain a few elementary facts concerning special modules before presenting
an easy illustration of the general classication.

Denition 2.13 (Special element).

\bullet Let  M be an isoclinic module of slope \displaystyle \frac{r}{s} . An element x\in M is special if F^{r}x=T^{s}x.

\bullet Let  M be an arbitrary Dieudonné module. An element x\in M is special if the

projections to all maximal isoclinic special submodules of M are special.

Lemma 2.14. An isoclinic module M of slope \displaystyle \frac{r}{s} is special if and only if as

a W(k) ‐module, it has a basis consisting of special elements (i.e., a so‐called special

basis).
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Proof. (See [Ma, Lem. 3.3]). This is a consequence of the so‐called Fitting Lemma:

a non‐trivial  $\sigma$‐linear additive bijection of a finite dimensional  k‐vector space admits a

basis of eigenvectors with eigenvalue 1. Fitting�s Lemma shows that there is a special
basis modulo p ,

and a standard bootstrap argument finishes the proof. \square 

We illustrate the above theory in a typical computation. Recall that a supersingular
Dieudonné module is an isoclinic Dieudonné module of (Newton polygon) slope \displaystyle \frac{1}{2}.

Remark 2.15. A supersingular Dieudonné module is superspecial if and only if
it is special.

Corollary 2.16. The number of isomorphism classes of superspecial Dieudonné

modules with RM by \mathcal{O}_{L} of rank 2 over a totally ramied prime p=\mathfrak{p}^{g} is: [\displaystyle \frac{g}{2}]+1.

Proof. The supersingular isocrystal has slope \displaystyle \frac{1}{2} . We are classifying rank 2 mod‐

ules over W_{\mathrm{F}}(k) . If g is odd, the supersingular isocrystal is given by the isosimple
module W_{\mathrm{F}}(k)[F, V]/(F-V) . We can count the number of special modules isogenous
to W_{\mathrm{F}}(k)[F, V]/(F-V) by looking at the discrete invariants of Lemma 2.7. The triplet

{r, s
, gr—s} boils down to \{g ,

2 \} ,
hence for g=2k+1 ,

the sets \overline{J} have the shape

(1, 3, . . :; 2c-1) ,
where 0\leq c\leq k ( \overline{J} is empty if c=0 ). The complement of such a set

is: J_{c} :=\{2a+(2k+1)b\}\cup\{2c+1+2a+(2k+1)b\}, a, b, c\geq 0 . Recall that by Lemma 2.7,
the distinguished special submodule M containing 1 is generated by elements \{ 1, $\theta$^{2c+1}\}
if the set J() coincides with J_{c} ,

and all the corresponding modules are non‐isomorphic.
This gives precisely k+1=[g/2]+1 modules, hence finishes the proof for g odd. If g

is even, the isogeny class is given by the non‐simple module 2 \cdot  W_{\mathrm{F}}(k)[F, V]/(F-$\tau$^{g/2}) .

By changing variables, the generating system of the special module \mathrm{D} can be chosen to

be \{ 1, $\theta$^{c}\} for 0\leq c\leq g/2 ,
since it depends only on the valuations of the generators.

This gives also [g/2]+1 modules, so the proof is finished. \square 

Remark 2.17. C.‐F. Yu gave in [Yu 1, Lem. 4.5, 4.6] an ad hoc classication

of superspecial crystals.

§2.3. Application to Hilbert moduli spaces over totally ramied primes

In this section, we show that the slope stratication of the Hilbert moduli space over

a totally ramied prime p\mathcal{O}_{L}=\mathfrak{p}^{g} introduced by Andreatta‐Goren in [AG1] coincides

with the stratication suggested by the Manin classication.

We recall briey the denition of the slope stratication of [AG1]. Recall that L is a

totally real field of degree g over \mathbb{Q} , with ring of integers \mathcal{O}_{L} ,
and different \mathcal{D}_{L/\mathbb{Q}}^{-1} . We

fix a set of fractional ideals \{\mathfrak{L}_{1}, \cdots, \mathfrak{L}_{h+}\} that form a complete set of representatives
of Cl (L)^{+} ,

the narrow class group of L, h^{+}=|Cl(L)^{+}|.
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Denition 2.18. Let S be a scheme. Let N be a positive integer. If T is a

scheme over S ,
the objets of the Hilbert moduli space \mathfrak{M}(S, $\mu$_{N})\rightarrow S are quadruples

(A,  $\iota$,  $\lambda$,  $\epsilon$)/\cong consisting of:

(a) an abelian scheme  A\rightarrow T of relative dimension g ;

(b) an \mathcal{O}_{L} ‐action i.e., a ring homomorphism  $\iota$ : \mathcal{O}_{L}\mapsto \mathrm{E}\mathrm{n}\mathrm{d}_{T}(A) ;

(c) a polarisation

 $\lambda$:(\mathcal{P}_{A}, \mathcal{P}_{A}^{+})\rightarrow^{\simeq\underline{}}(\mathfrak{L}, \mathfrak{L}^{+}) ,

i.e., an \mathcal{O}_{L} ‐linear isomorphism on the étale site of S between the invertible \mathcal{O}_{L} ‐module

\mathcal{P}_{A}:=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{O}_{L}}(A, A^{t})^{sym} and one of the fixed \mathfrak{L}_{i}' s, 1\leq i\leq h^{+} , identify ing the positive
cone of polarisations \mathcal{P}_{A}^{+} with \mathfrak{L}^{+} . Moreover, we require that the morphism A\otimes_{\mathcal{O}_{L}}

\mathcal{P}_{A}\rightarrow A^{t} be an isomorphism.

(d) an \mathcal{O}_{L} ‐linear injective homomorphism

 $\epsilon$:$\mu$_{N}\otimes_{\mathbb{Z}}\mathcal{D}_{L}^{-1}\mapsto A,

where for any scheme T' over T, ($\mu$_{N}\otimes_{\mathbb{Z}}\mathcal{D}_{L}^{-1})(T') :=$\mu$_{N}(T')\otimes_{\mathbb{Z}}\mathcal{D}_{L}^{-1}

The stack \mathfrak{M}(S, $\mu$_{N}) decomposes as disjoint union \sqcup_{\mathcal{L}_{i}}\mathfrak{M}(S, $\mu$_{N}, \mathfrak{L}) , according to the po‐

larisation modules. We point out that the Deligne‐Pappas condition for A is equivalent
to the existence, locally for the étale topology, of an \mathcal{O}_{L} ‐linear p‐principal polarisation
on A ([AG1, Prop. 3.1], [Vo, Prop. 2.2]).
Let A/k be a polarized abelian variety with RM, dened over a field k of characteristic

p . Fix an isomorphism \mathcal{O}_{L}\otimes_{\mathbb{Z}}k\cong k[T]/(T^{g}) . Recall the short exact sequence:

0\rightarrow H^{0}(A, $\Omega$_{A}^{1})\rightarrow H_{dR}^{1}(A)\rightarrow H^{1}(A, \mathcal{O}_{A})\rightarrow 0.

These modules are Dieudonné modules of group schemes, and we may rewrite this exact

sequence in terms of Frobenius and Verschiebung as:

0\rightarrow(k, \mathrm{F}\mathrm{r}^{-1})\otimes_{k}\mathrm{D}(\mathrm{K}\mathrm{e}\mathrm{r}(\mathrm{F}\mathrm{r}))\rightarrow \mathrm{D}(A[p])\rightarrow \mathrm{D}(\mathrm{K}\mathrm{e}\mathrm{r}(\mathrm{V}\mathrm{e}\mathrm{r}))\rightarrow 0.

Since H_{dR}^{1}(A) is a free k[T]/(T^{g}) ‐module of rank 2, there are two generators  $\alpha$ and  $\beta$
such that:

 H^{1}(A, O_{A})=(T^{i}) $\alpha$+(T^{j}) $\beta$, i\geq j, i+j=g.

The index j=j(A) is called the singularity index. The slope n=n(A) is dened by

j(A)+n(A)=a(A) ,
where a(A) :=\mathrm{H}\mathrm{o}\mathrm{m}($\alpha$_{p}, A) is the a‐number of the abelian variety.

The subschemes \mathrm{W}_{(j,n)} parameterizing abelian varieties with singularity index j and

slope n are quasi‐affine, locally closed and thus form a stratication (see [AG1, Thm.

10.1], [AG2, §6.1]). Note that for any Dieudonné module \mathrm{D} with RM of rank 2, we can
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dene abstractly j() and n() without any reference to abelian varieties i.e., j(\mathrm{D})=j
is the integer such that

(T^{i}) $\alpha$+(T^{j}) $\beta$=\mathrm{K}\mathrm{e}\mathrm{r}(V : \mathrm{D}/p\mathrm{D}\rightarrow \mathrm{D}/p\mathrm{D}) , i\geq j,

for  $\alpha$,  $\beta$ some generators of D. The slope is  n(\mathrm{D}) :=a(\mathrm{D})-j(\mathrm{D}) .

For a fixed special module \mathrm{D}_{c} ,
denote by \{\mathcal{M}_{c}^{d}\}_{d\geq 0} the finitely many irreducible

algebraic varieties classifying modules over the special module \mathrm{D}_{c} ,
ordered in increasing

dimension.

N.B. The index d is justied a posteriori by the fact that d is precisely the dimension of

\mathcal{M}_{c}^{d} (or, equivalently, its e‐index) i.e., there are no gaps, or missing dimensions, starting
from dimension zero.

We use this set‐theoretic decomposition to dene a stratication of the Hilbert moduli

space.

Denition 2.19. Dene \mathfrak{N}_{c}^{d} as the locus on the Hilbert moduli space such that

for \underline{A}\in \mathfrak{N}_{c}^{d} , the Dieudonné module \mathrm{D}(\underline{A}) belongs to \mathcal{M}_{c}^{d} . We call such a decomposition
the Manin stratication.

The main theorem of this section justies our terminology:

Theorem 2.20. The Manin stratication \{\mathfrak{N}_{c}^{d}\}_{c,d} coincides with the slope strat‐

ication \{9X_{(j,n)}\}_{j,n} of the Hilbert moduli space \mathfrak{M}(\mathrm{F}_{p}, $\mu$_{N}) , (N,p)=1.

Let \mathrm{D} be a Dieudonné module, and let \mathrm{D}_{c} be its maximal special submodule. We

shall see that the slope n() of \mathrm{D} depends only on the maximal special submodule \mathrm{D}_{c}.

Moreover, a‐number of \mathrm{D} depends only on the e‐index (0, d) of \mathrm{D} over its superspecial
module i.e., a(\mathrm{D})=a(\mathrm{D}_{c})-d.
We prove Theorem 2.20 by giving an explicit description of Manin spaces for all possible
Newton polygons, following the terminology and the very similar computations of [Ma,
Chap. 3, Thm. 3.12, Lem. 3.14, Thm. 3.15]). This is done for the supersingular
Newton polygon stratum in Subsection 2.3.1, and for the non‐supersingular Newton

polygon strata in Subsection 2.3.2.

2.3.1. The supersingular Newton polygon stratum

Denition 2.21. we_{e} dene the superspecial Dieudonné module \mathrm{D}_{c} as follows,

for c\in\{0, . :. ; [g/2]\}:\mathrm{D}_{c} is generated by \{ 1, $\theta$^{2c+1}\} if g is odd; \{ 1, $\theta$^{c}\} if g is even.

For short, if a module \mathrm{D} is generated by \{a, b\} ,
we write \mathrm{D}=<a, b>.

Denition 2.22 ( e‐index). Let \mathrm{D}_{0}\subset \mathrm{D}\subset T^{-h}\mathrm{D}_{0} be a W(k) ‐module, foor h>>

0 . There exists a W(k) ‐basis (xl, . .

:, x_{N} ) of \mathrm{D}_{0} such that:

(T^{-e_{1}}x_{1}, \ldots, T^{-e_{N}}x_{N}) , 0\leq e_{1}\leq e_{2}\leq. . . \leq e_{N}\leq h
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is a W(k) ‐basis for D. We call the string of integers e(\mathrm{D}_{0}, \mathrm{D})= (el, . . .

, e_{N} ), the

e ‐index of D.

\bullet  g odd. As we have already seen in the proof of Corollary 2.16, any supersingular
module is isogenous to the isosimple module W_{\mathrm{F}}(k)[F, V]/(F-V) . By Lemma 2.7,

any module \mathrm{D} over \mathrm{D}_{c} has two standard generators:

z_{1}=1+\displaystyle \sum_{l=1}^{h}$\epsilon$_{2\ell-1}$\theta$^{2l-1}, z_{2}=$\theta$^{2h+1},
where $\epsilon$_{2l-1}\in \mathfrak{T} are determined by D. We dene a number d, 0\leq d\leq h by the

conditions:

$\epsilon$_{2l-1}\in W_{\mathrm{F}}(\mathrm{F}_{p^{2}}) , \ell\leq h-d,

$\epsilon$_{2(l-d)+1}\not\in W_{\mathrm{F}}(\mathrm{F}_{p^{2}}) .

Proposition 2.23. Let \mathrm{D} be a Dieudonné having \mathrm{D}_{c} as its maximal special sub‐

module.

1. The T ‐height of \mathrm{D} is at most [g/2]+1.

2. The factor module \mathrm{D}/\mathrm{D}_{c} is generated by the coset of one element z
,

where

z=1+\displaystyle \sum_{l=1}^{d}$\epsilon$_{2\ell-1}$\theta$^{-(2\ell-1)}.
3. The e ‐index of \mathrm{D} is (0, d) , for some d\leq c\leq[g/2].

4. The space \mathcal{M}_{c}^{d} of modules M of e ‐index (0, d) belonging to a fixed special module

\mathrm{D}_{c} has dimension d and is isomorphic to the complement of the disjoint union

of p^{2} hyperplanes in \mathrm{A}^{d} :

\overline{$\epsilon$_{d}}=a, a\in \mathrm{F}_{p^{2}}.

Proof. Cf. [Ma, p.60, Thm. 3.12]. \square 

\bullet  g even. Any supersingular module is isogenous to 2 W_{\mathrm{F}}(k)[F, V]/(F-T^{g/2}) .

We label $\theta$_{i} the generator of the cyclic local algebra coming from the i‐th copy of

W_{\mathrm{F}}(k)[F, V]/(F-$\tau$^{g/2}) . Without loss of generality, we restrict to primitive modules

i.e., modules that do not contain $\theta$_{1}^{-1} and $\theta$_{2}^{-1} . We dene an invariant d in the same

way as in the g odd case.

Proposition 2.24. Let \mathrm{D} be a Dieudonné having \mathrm{D}_{c} as its maximal special sub‐

module.
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1. There is a primitive module \mathrm{D}' isomorphic to \mathrm{D} with T ‐height d\leq g/2.

2. The factor module \mathrm{D}'/\mathrm{D}_{c} is generated by the coset of z
,

where:

z=$\theta$_{1}^{-d}+\displaystyle \sum_{l=1}^{d}$\epsilon$_{l}$\theta$_{2}^{-l}, $\epsilon$_{\ell}\in \mathfrak{T}, $\epsilon$_{c}\neq 0.
3. The e ‐index of \mathrm{D} is (0, d) , for some d\leq c\leq[g/2].

4. The space \mathcal{M}_{c}^{d} of modules \mathrm{D} of index (0, d) belonging to a fixed special module

\mathrm{D}_{c} has dimension d
,

and is isomorphic to the complement of the disjoint union

of p^{2} hyperplanes in \mathrm{A}^{d} :

\overline{$\epsilon$_{d}}=a, a\in \mathrm{F}_{p^{2}}.

Proof. Cf. [Ma, p. 66, Thm. 3.15]. \square 

Armed with the precise description of the Manin spaces, we can compute the invari‐

ants dening the slope stratication, and prove the assertions of Theorem 2.20 in the

supersingular case.

Lemma 2.25. The a‐number of the Dieudonné module \mathrm{D} over its (maximal)
superspecial module \mathrm{D}_{c} depends only on the e ‐index e(\mathrm{D}_{c}, \mathrm{D})=(0, d) over this module:

a(\mathrm{D})=g-d.

Proof. Let \mathrm{D} be a module over its maximal special module \mathrm{D}_{c} such that e(\mathrm{D}_{c}, \mathrm{D})=
(0, d) . The a‐number of \mathrm{D} is, by denition, \dim_{k}\mathrm{D}/F\mathrm{D}+V\mathrm{D} . Since \mathrm{D}_{c} is superspecial,

\dim_{k}\mathrm{D}_{c}/F\mathrm{D}_{c}+V\mathrm{D}_{c}=g . Thence, showing that a(\mathrm{D})=g-d is equivalent to showing
that the e‐index of F\mathrm{D}+V\mathrm{D} over F\mathrm{D}_{c}+V\mathrm{D}_{c} is (0, d) i.e., e(F\mathrm{D}_{c}+V\mathrm{D}_{c}, F\mathrm{D}+V\mathrm{D})=
(0, d) . This is possible if and only if d\leq c\leq[g/2].
Let g be odd.

d d

F(1+\displaystyle \sum$\epsilon$_{2l-1}$\theta$^{-(2\ell-1)})=$\theta$^{g}+\sum$\epsilon$_{2l-1}^{ $\sigma$}$\theta$^{-2l+1+g}, F$\theta$^{2c+1}=$\theta$^{2c+1+g},
P=1 P=1

and

V(1+\displaystyle \sum_{p=1}^{d}$\epsilon$_{2\ell-1}$\theta$^{-2\ell+1})= $\mu$\{$\theta$^{g}+\sum_{\ell=1}^{d}$\epsilon$_{2\ell-1}^{$\sigma$^{-1}}$\theta$^{-2l+1+g}\}, V$\theta$^{2c+1}= $\mu \theta$^{2c+1+g}.

This implies that F\mathrm{D}+V\mathrm{D}=

d d

<$\theta$^{g}+\displaystyle \sum$\epsilon$_{2l-1}^{ $\sigma$}$\theta$^{-2l+1+g}, $\theta$^{2c+1+g}>+<$\theta$^{g}+\sum$\epsilon$_{2\ell-1}^{$\sigma$^{-1}}$\theta$^{-2l+1+g}, $\theta$^{2c+1+g}>,
P=1 \ell=1
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as we can ignore the unit  $\mu$ by changing the generator; note the crucial difference in the

action of  $\sigma$ (resp.  $\sigma$^{-1} ) for F (resp. V). Of course,

F\mathrm{D}_{c}+V\mathrm{D}_{c}=<$\theta$^{g}, $\theta$^{2c+1+g}>

Since the second generator $\theta$^{2c+1+g} of F\mathrm{D} and V\mathrm{D} is the same as the second generator
of F\mathrm{D}_{c}+V\mathrm{D}_{c} ,

to compute the e‐index of F\mathrm{D}+V\mathrm{D} over F\mathrm{D}_{c}+V\mathrm{D}_{c} ,
we only need to

inspect the coefficients of the first generators. Since $\epsilon$_{2d-1}^{ $\sigma$}\neq$\epsilon$_{2d-1}^{$\sigma$^{-1}} ,
the corresponding

coefficient in the generator of F\mathrm{D}+V\mathrm{D} is non‐trivial, and this implies that the e‐index

of F\mathrm{D}+V\mathrm{D} over F\mathrm{D}_{c}+V\mathrm{D}_{c} is (0, d) ,
since for g odd, $\theta$^{2}=T.

Let g be even. Similarly to the g odd case, F acts by  $\sigma$ on the coefficients  $\epsilon$_{l}\in \mathfrak{T}
and by multiplication by $\theta$^{g/2} in the cyclic local algebra, and V acts by $\sigma$^{-1} on the

coefficients $\epsilon$_{l}\in \mathfrak{T} and by multiplication by  $\mu \theta$^{g/2} in the cyclic local algebra, where

 $\theta$=T . We can ignore  $\mu$ as before by making the obvious change of generator of  V\mathrm{D}.

Since \mathrm{D}_{c}=\{1, $\theta$^{c}\}, F\mathrm{D}_{c}+V\mathrm{D}_{c}=\{$\theta$^{g/2}, $\theta$^{g/2+c}\} . In the same way as in the g odd case,

the e‐index of F\mathrm{D}+V\mathrm{D} over F\mathrm{D}_{c}+V\mathrm{D}_{c} is (0, d) ,
and we are done.

\square 

Lemma 2.26. Let \mathrm{D} be a module over its maximal special submodule \mathrm{D}_{c} with

e ‐index (0, d) . Then \mathrm{D} has type (c-d, g-c) .

Proof. The invariants j() and i() are computable modulo p . In particular,

g-j=\displaystyle \min\{m|T^{m}H^{1}(A, \mathcal{O}_{A})=0 \mathrm{m}\mathrm{o}\mathrm{d} p\}.

Recall that H^{1}(A, \mathcal{O}_{A})\cong H_{dR}^{1}(A)/H^{0}(A, $\Omega$_{A}^{1}) , and, in terms of the contravariant version

of Dieudonné theory,

H^{1}(A, \mathcal{O}_{A})=\mathrm{D}(A[p])/V\mathrm{D}(A[p])=\mathrm{D}(A[p])/\mathrm{D}(A[p])[F].

We can compute the singularity index j() by computing \displaystyle \min\{m|T^{m}(\mathrm{D}/\mathrm{D}[F])=0
\mathrm{m}\mathrm{o}\mathrm{d} p\} for any Dieudonné module D. We reduce the claim to the case of e‐index

(0, d)=(0,0) . Fix an isomorphism \mathrm{D}\cong W_{\mathrm{F}}(k)\oplus W_{\mathrm{F}}(k) ,
such that \overline{\mathrm{D}_{c}}=\mathrm{D}_{c}\mathrm{m}\mathrm{o}\mathrm{d} p\cong

 k[T]/(T^{g})\oplus T^{d}k[T]/(T^{g}) . In this representation, it is obvious that j(\mathrm{D}_{c})-d=j(\mathrm{D}) .

We show that

j(\mathrm{D}_{c})=c.

Suppose first that g is odd. Recall that the superspecial module \mathrm{D}_{c} is generated by

\{ 1, $\theta$^{2c+1}\} . Therefore

$\theta$^{2g-2c-1}(\mathrm{D}/V\mathrm{D})=0, $\theta$^{2g-2c-2}(\mathrm{D}/V\mathrm{D})\neq 0,
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and so

$\tau$^{g-c}(\mathrm{D}/V\mathrm{D})=0, T^{g-c-1}(\mathrm{D}/V\mathrm{D})\neq 0,

i.e., j(\mathrm{D}_{c})=c . Suppose now that g is even. \mathrm{D}_{c} is generated by \{ 1, $\theta$^{c}\} . Therefore,

$\theta$^{g-c}(\mathrm{D}/V\mathrm{D})=0, $\theta$^{g-c-1}(\mathrm{D}/V\mathrm{D})\neq 0,

and since  $\theta$=T, j(\mathrm{D}_{c})=c. \square 

2.3.2. Non‐supersingular strata

The non‐supersingular strata are easier to deal with, and we are briefer. In partic‐

ular, the slope n uniquely denes the Newton polygon as \displaystyle \{\frac{n}{g}, \frac{g-n}{g}\} . Moreover, for every

non‐supersingular Newton polygon, there is a unique special module, given by

W_{\mathrm{F}}(k)[F, V]/(F-T^{n})\oplus W_{\mathrm{F}}(k)[F, V]/(F-T^{g-n}) .

In other words, the maximal special module depends only on the slope n . Following

[Ma, p.63, Lem. 3.13, p. 65, Thm. 3.14], we indeed recover all non‐supersingular slope
strata from Manin strata.

Proposition 2.27. Let \mathrm{D} be a Dieudonné module having W_{\mathrm{F}}(k)[F, V]/(F-
T^{n})\oplus W_{\mathrm{F}}(k)[F, V]/(F-T^{g-n}) as its maximal special submodule, forn<g-n . The

Manin space of such Dieudonné modules \mathrm{D} splits in n+1 components \mathcal{M}_{d} of index

(0, d) , for 0\leq d\leq n . The component \mathcal{M}_{d} is isomorphic to the space of orbits of a

certain finite group acting on the affine space \mathrm{A}^{d} with hyperplanes removed.

Of course, it is possible to generalize the Manin stratication by modifying the level

(e.g., replacing A[p^{\infty}] by A[p^{n}] ). In particular, the Manin stratication of level1 would

generalize the Ekedahl‐Oort stratication at primes of good reduction while remaining
a finite stratication at ramied primes. We note that the Manin stratication can be

readily dened for Picard modular varieties over ramied primes, but since available

tools are insufficient (cf. [PR]) to describe accurately the local geometry in dimension

(strictly) greater than two, we postpone a detail study of such varieties to later work.

The slope stratication is pure i.e., all its strata are relatively affine. This follows

from the explicit computations of the Manin spaces: since they are easily seen to be

affine, the locally closed embeddings in the ambient space are affine, hence their pull‐
backs i.e., the locally closed embeddings of the Manin strata in the Hilbert modular

variety, are also affine. We record this observation:

Proposition 2.28. The Manin stratication of Hilbert modular varieties over

totally ramied primes is pure.
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Moreover, some supersingular strata are (absolutely) affine for trivial reasons. In‐

deed, in the supersingular Newton polygon stratum, there are zero‐dimensional strata

(consisting of superspecial points) that are of course affine. We propose the following
naive method to prove affineness \backslash \backslash \mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r} � zero‐dimensional strata in some cases. The

idea is to use group actions to relate strata directly via finite, surjective maps in order

to apply Chevalley�s theorem.

Let W^{[m]} be the scheme‐theoretic image of Isom (p^{m+2})\rightarrow \mathrm{I}\mathrm{s}\mathrm{o}\mathrm{m}(p^{m}) ,
where

(j,j')

Isom(p) represents the functor associating to a scheme over W_{(j,j')} the group of iso‐

morphisms Isom (A[p^{m}]\times W_{(j,j)}T, A[p^{m}]\times {}_{k}T) as group schemes over T endowed with

an \mathcal{O}_{L} ‐action. The scheme Isom(p) is affine and of finite type over W_{(j,j')}.

Proposition 2.29 ([AG2, Prop. 6.1.9]). Let 0\leq m\leq j\leq g/2 . Let j' be either

j or g-j . There exists a smooth, connected, affine scheme U_{m} over k
, of dimension

m
,

and a finite surjective map:

$\psi$_{m}:W_{(j,j)}^{[m]}\times kU_{m}\rightarrow W_{(j-m,j')}.
N.B. The statement of [AG2] gives more information, but we shall not need the extra

properties that are proved there.

Proposition 2.30. All strata in the supersingular locus are affine.

Proof. Since W_{(j,j)}^{[m]} and U_{m} are affine, it follows that W_{(j,j)}^{[m]}\times kU_{m} is also affine.

By Prop. 2.29 and Chevalley�s theorem [GD2, Thm. 6.7.1], it follows that W_{(j-m,j')} is

affine. It is straightforward that all (supersingular) strata are obtained in this way. \square 

§2.4. Superspecial orders

In this section, we give a classical description of endomorphism orders of superspe‐

cial points on the Hilbert modular variety; in short, they can be described as locally

primitive (or Bass) orders i.e., orders containing the ring of integers of a quadratic exten‐

sion of the center, locally at each prime. For completeness with respect to [Ni2] (whose
notation and terminology we follow), we also derive from this description a parametriza‐
tion of the superspecial locus, and the Eichler Basis Problem as in the unramied case.

We recall a few facts about quaternion algebra (see [Bz1] for a good compendium).
Let B_{p,\infty} be the quaternion algebra over \mathbb{Q} ramied at p and \infty.

Denition 2.31. The dual of an \mathcal{O}_{L} ‐lattice M\subset B:=B_{p,\infty}\otimes L is dened as:

M\#:=\{x\in B:tr(xM)\subset \mathcal{O}_{L}\},

where tr is the reduced trace. The \mathcal{O}_{L} ‐ideal Norm (M\#)^{-1} is the level of M.
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Denition 2.32. An order \mathcal{O} in a quaternion algebra B over a field F is prim‐
itive if it contains the maximal order of a quadratic field extension of F or the maximal

order of the split extension F\oplus F.

As being primitive is not a local property, we say that an \mathcal{O}_{L} ‐order \mathcal{O} in B_{p,\infty}\otimes L is

locally primitive if \mathcal{O}_{v} is primitive at all places v of L.

Denition 2.33. An order \mathcal{O} is Gorenstein if  0\# is \mathcal{O} ‐projective as a left (resp.
right) \mathcal{O} ‐lattice.

Denition 2.34. An order \mathcal{O} is a Bass order if each order in B containing it

is a Gorenstein order.

In particular, a Bass order is Gorenstein. It follows from [Bz2, Prop. 1.11] that an order

in B_{p,\infty}\otimes L is Bass if and only if it is locally primitive.

Denition 2.35. Let B be the quaternion algebra over L_{\mathfrak{p}} . Let K=K_{\mathfrak{p}} be a

quadratic extension of L_{\mathfrak{p}} contained in B. Set

R_{v}(K)=\mathcal{O}_{K}+P_{B}^{v-1},

for P_{B} the unique maximal ideal in \mathcal{O}_{B} and v=1
, 2, . :: .

We introduce a subclass of Bass orders.

Denition 2.36. An order \mathcal{O} is superspecial of level \mathcal{P} dividing p, \displaystyle \mathcal{P}=\prod_{i}\mathfrak{p}_{i}^{$\alpha$_{i}}.
\displaystyle \prod_{j}\mathrm{q}_{j}^{$\beta$_{j}} , for \mathfrak{p}_{i}\in Ram(B_{p,\infty}\otimes L) , \mathrm{q}_{j}\not\in Ram(B_{p,\infty}\otimes L) , if::

\bullet for $\alpha$_{i}\geq 1 ,
there is an unramied quadratic extension \mathcal{O}_{K} of \mathcal{O}_{L_{\mathfrak{p}}} such that \mathcal{O}_{\mathfrak{p}_{i}}=

R_{$\alpha$_{i}}(K) ;

\bullet for $\beta$_{j}>1 ,
if f(\mathrm{q}_{j}/p) is even, \mathcal{O}_{q_{j}} contains a split quadratic extension; if f(\mathrm{q}_{j}/p) is

odd, there is an unramied quadratic extension \mathcal{O}_{K} such that

\mathcal{O}_{\mathrm{q}_{j}}\cong\{\left(\begin{array}{lll}
 $\alpha$ &  & $\beta$^{ $\sigma$}\\
$\pi$_{\mathrm{q}_{j}}^{$\beta$_{j}} &  $\beta$ & $\alpha$^{ $\sigma$}
\end{array}\right),  $\alpha$,  $\beta$\in \mathcal{O}_{K}\},
for  $\sigma$ the involution on  K, $\pi$_{\mathrm{q}_{j}} a uniformizer in \mathcal{O}_{L_{\mathrm{q}_{j}}} ;

\bullet for any other finite prime [, \mathcal{O}_{\mathfrak{l}} contains a split extension (i.e., \mathcal{O}_{L_{\mathfrak{l}}}\oplus \mathcal{O}_{L_{\mathfrak{l}}} ).

Recall that an abelian variety with RM is an abelian variety with an action by \mathcal{O}_{L},

satisfying the Deligne‐Pappas condition i.e., the canonical morphism

A\otimes_{\mathcal{O}_{L}}\mathcal{P}_{A}\rightarrow^{\simeq\underline{}}A^{t}, (a,  $\lambda$)\mapsto $\lambda$(a) ,
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is an isomorphism (see [DP, 2.1.3, p.64]).
Recall that the type of an abelian variety A is the pair (j(A), g-j(A)) given by the

singularity index j(A) ,
see Section 2.3.

Theorem 2.37. Let A be a superspecial abelian variety with RM of type (j , gj).
Then End(A) is a superspecial order of level \mathfrak{p}^{g-2j} ,

where j\leq[g/2].

Proof. This follows from [Yu1, Lem. 4.5, 4.6] and also from the \mathcal{O}_{L} ‐variant of

Tate�s theorem on endomorphisms of abelian varieties ([Ni2, Thm 2.1]). \square 

2.4.1. Locally principal ideals and superspecial loci

We may parametrize superspecial abelian varieties whose endomorphism order has

fixed level with left ideals of that order. In order to have a bijection, it is necessary to

impose that ideals are locally principal or, equivalently, projective. This condition is

non‐trivial e.g., for nonsquarefree levels. For simplicity, we assume that h^{+}(L)=1.

Proposition 2.38. Let h^{+}(L)=1 . Let A be a superspecial abelian variety with

RM satisfy ing the Deligne‐Pappas condition, and such that \mathcal{O}=\mathrm{E}\mathrm{n}\mathrm{d}_{\mathcal{O}_{L}}(A) has level

\mathfrak{p}^{n} . The map A\mapsto A\otimes_{\mathcal{O}} I induces a functorial bijection between locally principal left
\mathcal{O} ‐ideals I and superspecial points whose endomorphism orders have level \mathfrak{p}^{n}.

Proof. This follows from Tate�s theorem with RM and the locally principal con‐

dition, as in the unramied case (see [Ni2, Thm. 5.6] \square 

Corollary 2.39. All superspecial orders of level \mathfrak{p}^{n} arise from geometry.

Proof. All superspecial orders of level \mathfrak{p}^{n} are conjugate by [Bz1, Prop. 5.3], and

the rest of the proof follows as in unramied case (see [Ni2, Cor. 5.7]). \square 

For completeness, we recall and adapt the construction of quadratic forms

(and theta series) for the projective module \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{O}_{L}}(A_{1}, A_{2}) ,
where A_{1}, A_{2} are two

p‐principally polarized supersingular abelian varieties with RM having isomorphic

quasi‐polarized Dieudonné modules. Let $\lambda$_{i} : A_{i}\rightarrow^{\simeq\underline{}}A_{i}^{t}, i=1
, 2, be p‐principal

\mathcal{O}_{L} ‐polarisations, and dene, for  $\phi$\in \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{O}_{L}}(A_{1}, A_{2})

A_{2}^{t}\leftarrow^{$\lambda$_{2}}A_{2}

|| $\phi$||_{0}:=|| $\phi$||_{0,$\lambda$_{1},$\lambda$_{2}}:=$\lambda$_{1}^{-1}\circ$\phi$^{t}\circ$\lambda$_{2}\circ $\phi,\ \phi$^{t}\downarrow \uparrow $\phi$ .

 A_{1}^{t}\vec{$\lambda$_{1}^{-1}}A_{1}
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As we recall from [Ni2, Lem. 5.9], || $\phi$||_{0}\in L . We dene \deg_{\mathcal{O}_{L}}($\lambda$_{i}) :=||$\lambda$_{i}||_{0} for i=1
,
2.

Finally, the \mathcal{O}_{L} ‐degree is dened as:

||-||:\displaystyle \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{O}_{L}}(A_{1}, A_{2})\rightarrow \mathcal{O}_{L},  $\phi$\mapsto\frac{\deg_{\mathcal{O}_{L}}($\lambda$_{1})}{\deg_{\mathcal{O}_{L}}($\lambda$_{2})}|| $\phi$||_{0}.
Note that for h^{+}(L)=1 ,

we retrieve the \mathcal{O}_{L} ‐degree dened in the principally polarized
case in [Ni2]. This gives a quadratic module structure on \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{O}_{L}}(A_{1}, A_{2}) ,

and we can

thus dene the theta series as in [Ni2] via representations numbers, etc.

2.4.2. The Basis Problem in the totally ramied case

It is well‐known how to derive directly from the Jacquet‐Langlands correspondence the

Eichler Basis Problem. Details can be found in [HPS, §9], [Ge2, p.294], [Ge1, §10])
and [Hi1]. The key observation of [HPS, 9.1, §9] is that the Jacquet‐Langlands corre‐

spondence implies the Basis Problem for so‐called minimal forms. A form is minimal

if it has minimal level among all the character twists (in particular, a minimal form is

a newform). Note that there are sometimes no minimal forms e.g., for even level and

dyadic fields, see [BH, Section 41.5, Lem.]. We specialize this to superspecial orders:

when g is even, the quaternion algebra is split at \mathfrak{p} ,
so there is no nothing to check;

when g is odd, all possible levels are also of odd exponent. Exactly as in [HPS], all

newforms are minimal for odd exponent levels.

Proposition 2.40. Let p\mathcal{O}_{L}=\mathfrak{p}^{g} , and let 0\leq g-2j\leq g, j\in \mathbb{N} . The space

S_{2}^{new}($\Gamma$_{0}(\mathfrak{p}^{g-2j})) is contained in the span of theta series coming fr om left ideals of a

superspecial order of level \mathfrak{p}^{g-2j} in the quaternion algebra B_{p,\infty}\otimes L.

§2.5. The Doi‐Naganuma lifting

We describe a tentative connection between the locus of (singular) superspecial

points of Hilbert modular varieties at ramied primes, and the Doi‐Naganuma lifting.
Recall that an abelian variety A is called superspecial if A\cong E^{g}

,
for some supersingular

elliptic curve E.

We consider the simplest case i.e., restricting to L=\mathbb{Q}(\sqrt{p}) , p\equiv 1 mod4, h^{+}(L)=
1 and weight two. We wish to compare the character group (dened via vanishing

cycles) of the Hilbert modular surface, with the vanishing cycles sheaf cohomology of

the modular curve X(p) of $\Gamma$_{1}(p) ‐level structure. Difficulties already arise in this case

and this section contains no fundamentally new result. Our aim is to sketch a very quick
route through the series of algebro‐geometric coincidences leading to Question 2.43 on

the existence of geometric base change.
Geometric approaches to base change were pioneered in characteristic zero by Hirze‐

bruch and Zagier ([HZ]).
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Recall that the Doi‐Naganuma lift is a map of the space of modular forms of level

$\Gamma$_{0}(p) with non‐trivial quadratic character $\chi$_{p} to the space of Hilbert modular forms of

parallel weight:

DN:S_{2}($\Gamma$_{0}(p), $\chi$_{p})\rightarrow S_{2,2}(\mathrm{S}\mathrm{L}_{2}(\mathcal{O}_{L})) .

According to Hecke, the space of modular forms of nebentype decomposes in \pm‐spaces:

 S_{2}($\Gamma$_{0}(p), $\chi$_{p})=S_{2}^{+}($\Gamma$_{0}(p), $\chi$_{p})\oplus S_{2}^{-}($\Gamma$_{0}(p), $\chi$_{p}) .

The kernel of the map DN is S_{2}^{-}($\Gamma$_{0}(p), $\chi$_{p}) ,
and thus DN maps S_{2}^{+}($\Gamma$_{0}(p), $\chi$_{p}) injec‐

tively into S_{2,2}(\mathrm{S}\mathrm{L}_{2}(\mathcal{O}_{L})) . The image of the map consists of symmetric Hilbert modular

forms i.e., forms F such that F(z_{1}, z_{2})=F(z_{2}, z_{1}) . We denote the space of symmetric
Hilbert modular forms by S_{2,2}^{sym}(\mathrm{S}\mathrm{L}_{2}(\mathcal{O}_{L})) . We shall try to gain some understanding of

the isomorphism S_{2}^{+}($\Gamma$_{0}(p), $\chi$_{p})\rightarrow^{\simeq\underline{}}S_{2,2}^{sym}(\mathrm{S}\mathrm{L} via characteristic p geometry.
We fix some extra notation. Since p\mathcal{O}_{L}=\mathfrak{p}^{2} ,

note that B_{p,\infty}\otimes L\cong B_{\infty_{1},\infty_{2}} ,
the

quaternion algebra ramied only at the innite places of L . Let x\in B_{\infty_{1},\infty_{2}} . Denote

by x\mapsto \mathrm{X} the quaternion involution on B_{\infty_{1},\infty_{2}} ,
and by x\mapsto x^{*} the \mathbb{Q}‐automorphism

of B_{\infty_{1},\infty_{2}} extending the non‐trivial Galois involution  $\sigma$ :  L\rightarrow L and which is trivial

on B_{p,\infty} . Let V:=\{x\in B_{\infty_{1},\infty_{2}}|x^{*}=\overline{x}\} . Equipped with the reduced norm, it is a

quadratic space over \mathbb{Q} of discriminant p (not p2!).
Let A=E\otimes \mathcal{O}_{L} ,

for E a supersingular elliptic curve over \mathrm{F}_{p} . Indeed, this corresponds
to a non‐singular superspecial point on the Hilbert modular surface. But there is a

canonical procedure to associate to it a singular superspecial point, whose endomor‐

phism order has level 1. Indeed, for any g=[L : \mathbb{Q}] ,
there is a canonical chain of

\mathcal{O}_{L} ‐invariant $\alpha$_{p} ‐isogenies stemming from A=E\otimes \mathcal{O}_{L} ([AG1, Prop. 6.6, (2c) and (2\mathrm{d}) ],
cf. [Ni1, p.115]):

\bullet for  g odd:

A=A_{0,g^{-}}^{\exists!}!A_{1,g-1}\exists!-!A_{2,g-2}\exists!-! . . . \exists!-!A_{[g/2],[g/2]+1} ;

\bullet for  g even:

A=A_{0,g}\exists!-!A_{1,g-1}\exists!-!A_{2,g-2}\exists!-! . . . \exists!-!A_{g/2,g/2},
where the pair (j, i) , i+j=g is the type of the superspecial abelian variety.

This canonical chain provides a distinguished symmetric maximal order. Recall that an

order \mathcal{O} is symmetric if for any  $\sigma$\in \mathrm{A}\mathrm{u}\mathrm{t}(L) ,
there exists an extension \overline{ $\sigma$} to \mathrm{A}\mathrm{u}\mathrm{t}(B_{\infty_{1},\infty_{2}})

such that \mathcal{O}^{\overline{ $\sigma$}}=\mathcal{O} . For g=2 ,
this order is \mathrm{E}\mathrm{n}\mathrm{d}_{\mathcal{O}_{L}}(E\otimes \mathcal{O}_{L}/H) ,

for H the unique \mathcal{O}_{L^{-}}
invariant $\alpha$_{p} ‐group scheme of the abelian surface E\otimes \mathcal{O}_{L} . The symmetry is easily
checked on \mathrm{E}\mathrm{n}\mathrm{d}_{\mathcal{O}_{L}}(E\otimes \mathcal{O}_{L}) ,

and is inherited by successive quotients by \mathcal{O}_{L} ‐invariant

$\alpha$_{p} ‐subgroup schemes.
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Proposition 2.41 ([Po]). Let h(L)=1 . There is a bijection between: leftt \mathcal{O}-

ideal classes  $\Lambda$ for a symmetric maximal order \mathcal{O} of B_{\infty_{1},\infty_{2}} and proper similitude

classes of lattices with reduced discriminant p , given by the map  $\Lambda$\mapsto\overline{$\Lambda$^{*}} $\Lambda$\cap V.

In general (e.g., for h(L)\neq 1 ), the cardinality of proper similitude classes of lattices is

given by the type of \mathcal{O}.

The following diagram describes in a nutshell the link between the ideal classes arising
from singular superspecial points and the Doi‐Naganuma lifting:

\mathrm{f}\mathrm{O} ideal classes \mathrm{g}fOideal classes  $\Lambda$ } {Lattices of disc.  p}
 $\Lambda$\mapsto\overline{$\Lambda$^{*}} $\Lambda$\cap V

theta series \downarrow \downarrow theta series

 S_{k,k}(\mathrm{S}\mathrm{L}_{2}(\mathcal{O}_{L})) S_{k}($\Gamma$_{0}(p), $\chi$_{p})
DoiNaganuma

The top arrow bijection is thus an algebraic version of the Doi‐Naganuma lifting. Thanks

to [Hi2], the integral version of the Eichler Basis Problem is known e.g., in level 1. On

other other hand, it is well‐known that the basis problem for nebentypus does not always
hold (even rationally) for k=2 e.g., the smallest prime for which it fails is p=389 . On

the other hand, Waldspurger ([Wa]) has shown that the basis problem holds for k>2.

Since we do not have a novel geometric interpretation of the spherical polynomials thus

arising, we stick to k=2.

2.5.1. The Hilbert modular surface \mathfrak{M}

To get a more geometric statement, we recall generalized character groups.

As is well‐known ([Il], [Raj]), the vanishing cycles formalism allows to dene a \mathbb{Z}_{\ell^{-}}
coefficients character group C_{\mathbb{Z}_{l}}(X) for arbitrary weights:

C_{\mathbb{Z}_{l}}(X) :={\rm Im}(H^{d}(X\times\overline{K}, \mathfrak{F})\rightarrow H^{d}(X\times\overline{k}, R $\Phi$(\mathfrak{F}))) ,

where X is a d‐dimensional scheme over \mathcal{O}_{K}, [K:\mathbb{Q}_{p}]<\infty ,
and with residue field  k.

The vanishing cycle sheaf R(F) ) is dened for any lisse \mathbb{Z}_{l} ‐sheaf \mathfrak{F} (see the discussion

in [Raj]). In what follows, we shall restrict to weight two for simplicity i.e., \mathfrak{F}=\mathbb{Z}_{l}.

Here, \ell denotes a prime number different than  p.

We denote by \mathfrak{M} the Hilbert modular surface studied in Section 2.3. Its compacti‐
fication at ramied primes has been described by Deligne and Pappas ([DP]), correcting
earlier work of Rapoport ([Rap1]). We describe the singularities of the Hilbert modular

surface, following [DP] and [BG]. The singular points are the superspecial points which

do not satisfy the Rapoport condition i.e., the Lie algebra Lie (A) is not locally free as

an \mathcal{O}_{L}\otimes k‐module. There are p+1 singular points on each rational component of the

supersingular locus. Any singular point is ordinary with p+1 branches, and the tangent
cone is z^{2}=xy.
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Proposition 2.42. Fix an identication \overline{\mathbb{Q}}_{\ell}\cong \mathbb{C} . We have an isomorphism of
Hecke modules:

C_{\mathbb{Z}_{l}}(\mathfrak{M})\otimes_{\mathbb{Z}_{l}}\mathbb{C}\cong S_{2,2}(\mathrm{S}\mathrm{L}_{2}(\mathcal{O}_{L}))_{\mathbb{C}}.

Proof (Sketch). It is clear that C_{\mathbb{Z}_{l}}(\mathrm{M}) is a \mathbb{Z}_{l} ‐module supported on the singular

superspecial locus. The claim essentially follows from the Jacquet‐Langlands correspon‐

dence for B_{\infty_{1},\infty_{2}}. \square 

2.5.2. Geometric base change map

We dene the symmetric locus C_{\mathbb{Z}_{l}}(\mathfrak{M})^{sym} as the sub‐Hecke‐module of C_{\mathbb{Z}_{l}}(\mathrm{M})
supported on points of the singular locus whose endomorphism order is symmetric.
These symmetric superspecial abelian varieties are parametrized by A_{H}\otimes I ,

for A_{H}:=

E\otimes \mathcal{O}_{L}/H, H\cong 0_{L}$\alpha$_{p} and where I runs over all symmetric ideals of \mathrm{E}\mathrm{n}\mathrm{d}_{\mathcal{O}_{L}}(A_{H}) . We

suppose that the symmetric Basis Problem holds i.e., that theta series coming from

symmetric ideals generate the whole space of symmetric Hilbert modular forms over \mathbb{C}.

Recall that the curve X(p) is the moduli space
7 of elliptic curves equipped with a

point of exact order p . Denote by X_{1}(p)_{L}:=X_{1}(p)\times {}_{\mathbb{Q}}L ,
and {\rm Res}_{L/\mathbb{Q}}X_{1}(p)_{L} for the

Weil restriction of scalars.

Question 2.43. Let k=2 . Do we have a natural Hecke‐equivariant map:

DN : C_{\mathbb{Z}_{l}}(\mathfrak{M})^{sym}\rightarrow H_{c}^{1}({\rm Res}_{L/\mathbb{Q}}X_{1}(p)_{L}\times \mathrm{F}_{p}, R $\Phi$(\mathbb{Z}_{l})) ,

giving rise to the Doi‐Naganuma lift ing S_{2}^{+}($\Gamma$_{0}(p), $\chi$_{p})\cong S_{2,2}^{sym}(\mathrm{S}\mathrm{L} over \mathbb{C}/?

§2.6. Appendix of Part II. A digression on the condition h^{+}(L)=1.

In [Ni2] and this paper�s Sections 4 and 5, we supposed that h^{+}(L)=1 . We explain
in detail issues arising for a general totally real field L . The hypothesis h^{+}(L)=1
is a natural condition to impose a classical allure: h(L)=1 implies that the group

of transformations of the Hilbert modular forms is conjugate to $\Gamma$_{0}(p) in \mathrm{S}\mathrm{L}_{2}(\mathcal{O}_{L}) ,

while h^{+}(L)=1 allows to parametrize the whole superspecial locus with double cosets

corresponding to (left) ideal classes of an order in a quaternion algebra or, equivalently,
to omit mentioning the polarisation modules. In the adelic approach to Hilbert modular

forms, there is no disadvantage in considering an arbitrary L . As is well‐known, it is

possible in the quaternionic case to parametrize the superspecial locus (for fixed level)
with the adelic double cosets by removing the norm 1 condition i.e., by considering
instead the algebraic group G dened as G(R) :=(\mathrm{E}\mathrm{n}\mathrm{d}_{\mathcal{O}_{L}}(A)\otimes R)^{\times} for any ring R ; (this

7\mathrm{W}\mathrm{e} choose this curve because the space of cusp forms S((p)) contains S_{2}($\Gamma$_{0}(p), $\chi$_{p}) ,
but this

might not be the optimal choice. A problem is to construct geometrically lattices of reduced

discriminant p.
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is well‐known, cf. [Ca]). There is of course a discrepancy between this parametrization
and the ideal class parametrization, precisely at the level of polarisations. The Hilbert

moduli space \mathcal{M} decomposes as: \mathcal{M}=\sqcup_{()(}\mathfrak{A},\mathfrak{A}+\in Cl+L ) \mathcal{M}_{(\mathfrak{A},\mathfrak{A}^{+})} ,
where (\mathfrak{A}, \mathfrak{A}^{+}) is an

\mathcal{O}_{L} ‐module with a notion of positivity. Suppose that we pick a superspecial point

A\in \mathcal{M}_{\mathfrak{A},\mathfrak{A}+} . For h^{+}(L)\neq 1 ,
the point A\otimes_{\mathcal{O}}I ,

for \mathcal{O}=\mathrm{E}\mathrm{n}\mathrm{d}_{\mathcal{O}_{L}}(A) does not land in

the same component. More precisely, if A\in \mathcal{M}_{(\mathfrak{A},\mathfrak{A})}+ ,
then A\otimes_{\mathcal{O}}I\in \mathcal{M}_{(\mathfrak{A}\cdot \mathfrak{B}^{2},(\mathfrak{A}\cdot \mathfrak{B}^{2}))}+,

for \mathfrak{B}=I\cap \mathcal{O}_{L} . This is the case because (A\otimes_{\mathcal{O}}I)^{t}=A^{t}\otimes I^{-1} . Thus, the points

A\otimes_{\mathcal{O}} I do not cover the whole superspecial locus. On the other hand, it is possible to

parametrize the whole superspecial locus by considering a disjoint sum of double cosets,

parametrized by h^{+}(L)/h(L) . The number h^{+}(L)/h(L) thus measures the failure of the

bijection between left ideal classes of a fixed level and the corresponding superspecial
locus of abelian varieties with endomorphism order of the corresponding level.
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