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Abstract

The matching procedure is a constructive way of using the isomonodromy deforma‐

tion method, to obtain the critical behavior of Painlevé VI transcendents and solve the

connection problem. This procedure yields two and one parameter families of solutions, in‐

cluding trigonometric and logarithmic behaviors, and three classes of solutions with Taylor
expansion at a critical point.

1 Introduction

We present the results of our paper [11]. The sixth Painlevé equation is:

\displaystyle \frac{d^{2}y}{dx^{2}}=\frac{1}{2}[\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-x}](\frac{dy}{dx})^{2}-[\frac{1}{x}+\frac{1}{x-1}+\frac{1}{y-x}]\frac{dy}{dx}
+\displaystyle \frac{y(y-1)(y-x)}{x^{2}(x-1)^{2}}[ $\alpha$+ $\beta$\frac{x}{y^{2}}+ $\gamma$\frac{x-1}{(y-1)^{2}}+ $\delta$\frac{x(x-1)}{(y-x)^{2}}] , (PVI):

The generic solution has essential singularities and/or branch points in 0,1,1. It�s behavior

at these points will be called critical. The other singularities, which depend on the initial con‐

ditions, are poles. A solution of PVI can be analytically continued to a meromorphic function

on the universal covering of \mathrm{P}^{1}\backslash \{0, 1, \infty\} . For generic values of the integration constants and

of the parameters  $\alpha,\ \beta,\ \gamma,\ \delta$ ,
it cannot be expressed via elementary or classical transcendental

functions. For this reason, it is called a Painlevé transcendent. Solving (PVI) means: i)
Determine the critical behavior of the transcendents at the critical points  x=0 , 1, \infty . Such a

behavior must depend on two integration constants. ii) Solve the connection problem, namely:
find the relation between couples of integration constants at  x=0 , 1, \infty.

We use a matching procedure to study the above two problems. The procedure allows us

to compute the first leading terms of the critical behavior at a critical point and the associated

monodromy data. This procedure is essentially the isomonodromy deformation method. The

reason for our terminology is that we make particular use of the matching between local

solutions of two dierent reductions of the linear system of ODE, associated to (PVI) by the

isomonodromy deformation theory. This matching allows us to obtain the leading term(s) of

the asymptotic behavior of a corresponding Painlevé transcendent y(x) . In this sense, we say

that our approach is constructive. Namely, we don�t assume any behavior of y(x) ; rather, we

obtain it from the matching condition. This diers from other authors� approach, who start

by assuming a given asymptotics for y(x) and then compute the corresponding monodromy
data (and so they solve the connection problem). This kind of approach was successfully used

for some of the Painlevé equations and allowed many progresses. Our approach is developed
to tackle with the cases when we don�t know ‐or we are not able to guess

‐ the asymptotic
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behavior. In the case of (PVI), we may say that most of the solutions are known. But for

some points in the space of monodromy data, we still don�t know the corresponding critical

behaviors. Our work is motivated by the need to explore these remaining cases.

Once the local matching is done, we proceed with a global description of the solutions of

the associate linear system of ODE, in order to compute its monodromy data. These are the

monodromy data associated to the solution y(x) ,
of which the asymptotic behavior has been

obtained by the precedent step. Again, this computation is done by \mathrm{a} (global) matching, among

solutions of the two reduced systems and that of the original one. This is the main powerful
point of the isomonodromy deformation method. The monodromy data are computed in terms

of the coecients of the linear system of ODE, which are elementary functions of the parameters

(namely, the integration constants) appearing in the leading term of the asymptotic behavior

of y(x) . The inversion of the formulae expressing the monodromy data, gives the leading term

of y(x) in term of the monodromy data.

The procedure can be repeated at the other singularities x=1, \infty . In case of (PVI),  x=

0 , 1, \infty are equivalent by symmetry transformations. These facts allow to solve the connection

problem ([16], [6], [7], [9], [3]).

The work of Jimbo [16] is the first on the subject. For generic values of  $\alpha$,  $\beta$,  $\gamma \delta$ , PVI

admits a 2‐parameter class of solutions, with the following critical behaviors:.

 y(x)=ax^{1- $\sigma$}(1+O(|x|^{ $\epsilon$})) , x\rightarrow 0 , (1)

y(x)=1-a^{(1)}(1-x)^{1-$\sigma$^{(1)}}(1+O(|1-x|^{ $\epsilon$})) , x\rightarrow 1 , (2)

 y(x)=a^{(\infty)}x^{$\sigma$^{(\infty)}}(1+O(|x|^{- $\epsilon$})) , x\rightarrow\infty , (3)

where  $\epsilon$ is a small positive number,  a^{(i)} and $\sigma$^{(i)} are complex numbers such that a^{(i)}\neq 0 and

0<\Re $\sigma$<1, 0<\Re$\sigma$^{(1)}<1, 0<\Re$\sigma$^{(\infty)}<1 . We remark that x converges to the critical

points inside a sector with vertex on the corresponding critical point. The connection problem
is to finding the relation among the three pairs (; a) , ($\sigma$^{(1)}, a^{(1)}) , ($\sigma$^{(\infty)}, a^{(\infty)}) . In [16] the

problem is solved by the isomonodromy deformation method. In particular, the exponents are

determined by the relations:

2\cos( $\pi \sigma$)=\mathrm{t}\mathrm{r}(M_{0}M_{x}) , 2\cos( $\pi \sigma$^{(1)})=\mathrm{t}\mathrm{r}(M_{1}M_{x}) , 2\cos( $\pi \sigma$^{(\infty)})=\mathrm{t}\mathrm{r}(M_{0}M_{1}) .

Here M_{0}, M_{x}, M_{1} are monodromy matrices to be introduced below.

The above class of solutions was enlarged in [23] and [9], to the values  $\sigma$\in \mathrm{C},  $\sigma$\not\in(-\infty, 0 ] [
[1, +\infty) (here we consider x\rightarrow 0). When \Re $\sigma$\geq 1 or \Re $\sigma$\leq 0 ,

the critical behavior is like the

above, but it holds for x\rightarrow 0 in a spiral‐shaped domain in the universal covering of a punctured
neighborhood of x=0 , along a paths joining a point x_{0} to x=0 . Along special paths which

approach the movable poles, these solution may have behavior y(x)\displaystyle \sim\sin^{-2}(\frac{i $\sigma$}{2}\ln x+ $\varphi$(x, a

where  $\varphi$(x, a) is a phase depending on the parameter a . The transformation  $\sigma$\mapsto\pm $\sigma$+2N,
N\in \mathrm{Z} ,

leaves the identity \mathrm{t}\mathrm{r}(M_{0}M_{x})=2\cos() invariant. Its eect on the solutions is

studied in [9]. As a result, one can reduce to the values 0\leq\Re $\sigma$\leq 1,  $\sigma$\neq 0 ,
1. The reader may

find a synthetic description of these results in the review paper [10].
It is an open problem to determine the critical behavior, say at x=0 ,

for  $\sigma$=0 ,
1. To

be more precise, the problem is encountered when \mathrm{t}\mathrm{r}(M_{i}M_{j})=\pm 2 . These are precisely the

points of the space of monodromy data mentioned above, in correspondence of which we do

not know the critical behavior. In addition, certain non‐generic values of  $\alpha$,  $\beta$,  $\gamma$,  $\delta$ are not yet
studied. The matching procedure is motivated by the need to explore these unknown cases.
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As a result of the matching procedure, we obtain:

R1) A two‐parameter family of solutions, of the type found by Jimbo [16]. Besides, we

show that there are solutions with trigonometric behavior.

R2) One‐parameter families of solutions, including a class of logarithmic solutions.

Together with the results of [23] and [9], R1) and R2) will cover all cases \mathrm{t}\mathrm{r}(M_{i}M_{j})\neq
-2

, namely  $\sigma$\neq 1 . [see Proposition 1]. By symmetry transformations, some of the cases

\mathrm{t}\mathrm{r}(M_{i}M_{j})=-2 can be obtained from the above results (for example, the Chazy solutions

[20]).
R3) The solutions which admit a Taylor expansion at x=0 [Proposition 2].
R4) We compute the corresponding monodromy data [Proposition 3].

In virtue of the symmetries of (PVI) (birational transformations of (x, y(x)) ), it can be shown

that the solutions with Taylor expansion at x=0 ,
obtained by the matching procedure, are the

representatives of three equivalent classes, which include all the solutions admitting a Taylor
expansion at a critical point. If we dene  $\sigma$ through the relation \mathrm{t}\mathrm{r}(M_{0}M_{x})=2\cos( $\pi \sigma$) ,

the

representatives of three equivalent classes correspond to values  $\sigma$=0,  $\sigma$=\pm($\theta$_{1}\pm$\theta$_{\infty}) and

 $\sigma$=1.

A further step in the study of PVI, is the problem of the systematic classication of all

the solutions of (PVI) in terms of the monodromy data of the associated linear system. As we

discussed above, the matching procedure is eective to produce new solutions, associated to

monodromy data for which the connection problem has not yet been studied. Therefore, it is

a tool to study the classication problem. This classication will be done in another paper.

A matching procedure, to obtain asymptotic behaviors and monodromy data in the frame‐

work of the isomonodromy deformation method, was suggested by Its and Novokshenov in

[13], for the second and third Painlevé equations. The work by Jimbo [16] can be regarded
as an implicit matching procedure. This method was further developed and used by Kapaev,
Kitaev, Andreev, and Vartanian. Here we cite the case of the fifth Painlevé equation, in [2].
An analogous matching scheme is used in [1], for a dierent problem (limit PVI \rightarrow \mathrm{P}\mathrm{V} ).

Acknowledgments: I wish to thank Alexander Kitaev for introducing me to the matching
procedure and for many discussions. I thank the organizers of the conference, for asking me

to give a talk and write this review paper. I finally thank the anonymous referee for carefully
reading the paper and suggesting several corrections. The author is supported by the Kyoto
Mathematics COE fellowship at RIMS, Kyoto University.

2 Matching Procedure

PVI is the isomonodromy deformation equation of a Fuchsian system of dierential equations

[17]:

\displaystyle \frac{d $\Psi$}{d $\lambda$}=A( $\lambda$, x,  $\theta$) $\Psi$, A( $\lambda$, x,  $\theta$):=[\frac{A_{0}(x, $\theta$)}{ $\lambda$}+\frac{A_{x}(x, $\theta$)}{ $\lambda$-x}+\frac{A_{1}(x, $\theta$)}{ $\lambda$-1}],  $\lambda$\in \mathrm{C} . (4)

The 2\times 2 matrices A_{i}(x,  $\theta$) depend on x
,

in such a way that it is possible to find a fundamental

solution  $\Psi$( $\lambda$, x) with monodromy independent of (local deformations of) x . They also depend
on the parameters  $\alpha$,  $\beta$,  $\gamma$,  $\delta$ of PVI through more elementary parameters  $\theta$= (; $\theta$_{x}, $\theta$_{1}, $\theta$_{\infty})
according to the following relations:

A_{0}+A_{1}+A_{x}=-\displaystyle \frac{$\theta$_{\infty}}{2}$\sigma$_{3} , Eigenvalues (A_{i})=\displaystyle \pm\frac{1}{2}$\theta$_{i}, i=0 , 1, x ;
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 $\alpha$=\displaystyle \frac{1}{2}($\theta$_{\infty}-1)^{2} , (5)- $\beta$=\displaystyle \frac{1}{2}$\theta$_{0}^{2},  $\gamma$=\displaystyle \frac{1}{2}$\theta$_{1}^{2}, (\displaystyle \frac{1}{2}- $\delta$)=\frac{1}{2}$\theta$_{x}^{2}, $\theta$_{\infty}\neq 0.

Here $\sigma$_{3} is the Pauli matrix. The equations of monodromy‐preserving deformation (Schlesinger
equations), can be written in Hamiltonian form and reduce to PVI, being the transcendent

y(x) solution of A(y(x), x,  $\theta$)_{1,2}=0 . Namely:

y(x)=\displaystyle \frac{x(A_{0})_{12}}{x[(A_{0})_{12}+(A_{1})_{12}]-(A_{1})_{12}} , (6)

The matrices A_{i}(x,  $\theta$) , i=0, x
, 1, depend on y(x) , \displaystyle \frac{dy(x)}{dx} and \displaystyle \int y(x) through rational functions,

which are given in [17]. In short, we will write A_{i}=A_{i}(x) .

The product of the monodromy matrices M_{0}, M_{x}, M_{1} of a fundamental matrix solution  $\Psi$

at  $\lambda$=0, x ,
1 respectively, is equal to the monodromy at  $\lambda$=\infty . The order of the products

depends on the choice of a basis of loops.

2.1 Leading Terms of  y(x) as a result of Matching

Since we are considering x\rightarrow 0 ,
we divide the  $\lambda$‐plane into two domains. The \backslash outside� domain

is dened for  $\lambda$ suciently big:

| $\lambda$|\geq|x|^{$\delta$_{OUT}}, $\delta$_{OUT}>0 . (7)

Therefore, (4) can be written as:

\displaystyle \frac{d $\Psi$}{d $\lambda$}=[\frac{A_{0}+A_{x}}{ $\lambda$}+\frac{A_{x}}{ $\lambda$}\sum_{n=1}^{\infty}(\frac{x}{ $\lambda$})^{n}+\frac{A_{1}}{ $\lambda$-1}] $\Psi$ . (8)

The \backslash inside� domain is dened for  $\lambda$ comparable with  x
, namely:

| $\lambda$|\leq|x|^{$\delta$_{IN}}, $\delta$_{IN}>0 . (9)

Therefore,  $\lambda$\rightarrow 0 as x\rightarrow 0 ,
and we rewrite (4) as:

\displaystyle \frac{d $\Psi$}{d $\lambda$}=[\frac{A_{0}}{ $\lambda$}+\frac{A_{x}}{ $\lambda$-x}-A_{1}\sum_{n=0}^{\infty}$\lambda$^{n}] $\Psi$ . (10)

If the behavior of  A_{0}(x) , A(x) and A(x) is suciently good, we expect that the higher order

terms in the series of (8) and (10) are small corrections, which can be neglected when x\rightarrow 0.

If this is the case, (8) and (10) reduce respectively to:

\displaystyle \frac{d$\Psi$_{\mathrm{O}UT}}{d $\lambda$}=[\frac{A_{0}+A_{x}}{ $\lambda$}+\frac{A_{x}}{ $\lambda$}\sum_{n=1}^{N_{OUT}}(\frac{x}{ $\lambda$})^{n}+\frac{A_{1}}{ $\lambda$-1}]$\Psi$_{OUT} , (11)

\displaystyle \frac{d$\Psi$_{IN}}{d $\lambda$}=\lfloor^{\frac{A_{0}}{ $\lambda$}}\lceil+\frac{A_{x}}{ $\lambda$-x}-A_{1}\sum_{n=0}^{N_{IN}}$\lambda$^{n}\rfloor\rceil$\Psi$_{IN} , (12)

where N_{IN}, N_{OUT} are suitable integers. The simplest reduction is to Fuchsian systems:

\displaystyle \frac{d$\Psi$_{\mathrm{O}UT}}{d $\lambda$}=[\frac{A_{0}+A_{x}}{ $\lambda$}+\frac{A_{1}}{ $\lambda$-1}]$\Psi$_{OUT} , (13)
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\displaystyle \frac{d$\Psi$_{IN}}{d $\lambda$}=[\frac{A_{0}}{ $\lambda$}+\frac{A_{x}}{ $\lambda$-x}]$\Psi$_{IN}. (14)

It is a feature of [11] that we used reduced non‐Fuchsian systems. In the literature, the

reduction to Fuchsian systems has been privileged, but in some relevant cases it cannot be

used, being the reduction to non‐Fuchsian systems necessary.

Generally speaking, we can parameterize the elements of A_{0}+A_{x} and A_{1} of (13) in terms

of $\theta$_{1} ,
the eigenvalues of A_{0}+A_{x} and the eigenvalues $\theta$_{\infty} of A_{0}+A_{x}+A_{1} . We also need an

additional unknown function of x . In the same way, we can explicitly parameterize the elements

of A_{0} and A_{x} in (14) in terms of $\theta$_{0}, $\theta$_{x} ,
the eigenvalues of A_{0}+A_{x} and another additional

unknown function of x . When the reductions (11) and (12) are non‐fuchsian, particular care

must be payed [11]. Our purpose is to find the leading term of the unknown functions when

x\rightarrow 0 ,
in order to determine the critical behavior of A_{0}(x) , A_{1}(x) , A(x) and (6). The leading

term can be obtained as a result of two facts:

i) Systems (11) and (12) are isomonodromic. This imposes constraints on the form of the

unknown functions. Typically, one of them must be constant.

ii) [Local Matching]. Two fundamental matrix solutions $\Psi$_{\mathrm{O}UT}( $\lambda$, x) , $\Psi$_{IN} (; x) must match

in the region of overlap, provided this is not empty:

$\Psi$_{OUT}( $\lambda$, x)\sim$\Psi$_{IN}( $\lambda$, x) , |x|^{$\delta$_{OUT}}\leq| $\lambda$|\leq|x|^{$\delta$_{IN}}, x\rightarrow 0 (15)

This relation is to be intended in the sense that the leading terms of the local behavior of

$\Psi$_{OUT} and $\Psi$_{IN} for x\rightarrow 0 must be equal. This determines a simple relation between the two

functions of x appearing in A_{0}, A_{x}, A_{1}, A_{0}+A_{x} . (15) also implies that $\delta$_{IN}\leq$\delta$_{OUT}.
To summarize, matching two fundamental solutions of the reduced isomonodromic systems

(11) and (12), we obtain the leading term(s), for x\rightarrow 0 ,
of the entries of the matrices of the

original system (4). The only assumption about the asymptotic behavior is equation (15).

2.2 Computation of the Monodromy Data

Let  $\Psi$ be a fundamental matrix solution of (4), and let  M_{0}, M_{x}, M_{1}, M_{\infty} be its monodromy
matrices at  $\lambda$=0, x , 1, \infty respectively (M_{\infty} is the product of M_{0}, M_{x}, M_{1} ,

the order depending
on the choice of a basis of loops). As a consequence of isomonodromicity, there exists a

fundamental solution $\Psi$_{OUT} of (11) such that

M_{1}^{OUT}=M_{1}, M_{\infty}^{OUT}=M_{\infty},

where M_{1}^{OUT} and M_{\infty}^{OUT} are the monodromy matrices of $\Psi$_{OUT} at  $\lambda$=1, \infty . Moreover,
 M_{0}^{OUT}=M_{0}M_{x} or M_{x}M_{0} , depending on the order of loops. A detailed proof of these facts

can be found in [7]. There also exists a fundamental solution $\Psi$_{IN} of (12) such that:

M_{0}^{IN}=M_{0}, M_{x}^{IN}=M_{x},

where M_{0}^{IN} and M_{x}^{IN} are the monodromy matrices of $\Psi$_{IN} at  $\lambda$=0, x.

The method is eective when the monodromy of the reduced systems (11), (12) can be

explicitly computed. This is the case when the reduction is Fuchsian (namely (13), (14)),
because Fuchsian systems with three singular points are equivalent to a Gauss hypergeometric
equation (see Appendix 1 of [11]). For the reduction to non‐Fuchsian systems, in general we

can compute the monodromy when (11), (12) are solvable in terms of special or elementary
functions.
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In order for this procedure to work, the (locally) matching solutions $\Psi$_{OUT} and $\Psi$_{IN} of

subsection 2.1, must match with a fundamental matrix solution  $\Psi$ of (4). Namely, we need

to impose that  $\Psi$_{OUT} matches with  $\Psi$ in some domain of the  $\lambda$ plane, and that  $\Psi$_{IN} matches

with the same  $\Psi$ in another domain of the  $\lambda$ plane. The standard choice of  $\Psi$ is as follows:

 $\Psi$( $\lambda$)=\left\{\begin{array}{ll}
[I+O(\frac{1}{ $\lambda$})]$\lambda$^{-\frac{$\theta$_{\infty}}{2} $\sigma$}3$\lambda$^{R_{\infty}}, &  $\lambda$\rightarrow\infty;\\
$\psi$_{0}(x)[I+O( $\lambda$)]$\lambda$^{\frac{$\theta$_{0}}{2} $\sigma$}3$\lambda$^{R_{0}}C_{0}, &  $\lambda$\rightarrow 0;\\
$\psi$_{x}(x)[I+O( $\lambda$-x)]( $\lambda$-x)^{\frac{$\theta$_{x}}{2} $\sigma$}3( $\lambda$-x)^{R_{x}}C_{x}, &  $\lambda$\rightarrow x;\\
$\psi$_{1}(x)[I+O( $\lambda$-1)]( $\lambda$-1)^{\frac{$\theta$_{1}}{2} $\sigma$}3( $\lambda$-1)^{R_{1}}C_{1}, &  $\lambda$\rightarrow 1;
\end{array}\right. (16)

Here $\psi$_{0}(x) , $\psi$_{x}(x) , $\psi$_{1}(x) are the diagonalizing matrices of A_{0}(x) , A_{1}(x) , A(x) respectively.
They are dened by multiplication to the right by arbitrary diagonal matrices, possibly de‐

pending on x. C_{ $\kappa$},  $\kappa$=\infty, 0, x
, 1, are invertible connection matrices, independent of x[17].

Each R_{ $\kappa$},  $\kappa$=\infty, 0, x
, 1, is also independent of x

,
and:

R_{ $\kappa$}=0 if $\theta$_{ $\kappa$}\not\in \mathrm{Z}, R_{ $\kappa$}=\left\{\begin{array}{ll}
[Matrix], & \mathrm{i}\mathrm{f} $\theta$_{ $\kappa$}>0 \mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}\\
{[}Matrix], & \mathrm{i}\mathrm{f} $\theta$_{ $\kappa$}<0 \mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}
\end{array}\right.
If $\theta$_{i}=0, i=0, x

, 1, then R_{i} is to be considered the Jordan form \left(\begin{array}{ll}
0 & 1\\
0 & 0
\end{array}\right) of A_{i} . If $\theta$_{\infty}=0,

R_{\infty}=0 . Note that for the loop  $\lambda$\mapsto $\lambda$ e^{2 $\pi$ i}, | $\lambda$|> maxf1; |x| }, we immediately compute the

monodromy at innity:
M_{\infty}=\exp\{-i $\pi \theta$_{\infty}\}\exp\{2 $\pi$ iR_{\infty}\}.

Let $\Psi$_{OUT} and $\Psi$_{IN} be the solutions of (11) and (12) matching as in (15). We explain how

they are matched with (16).

(^{*}) Matching  $\Psi$\leftrightarrow$\Psi$_{OUT} :

 $\lambda$=\infty is a Fuchsian singularity of (11), with residue -A_{\infty}/ $\lambda$ . Therefore, we can always
find a fundamental matrix solution with behavior:

 $\Psi$_{OUT}^{Match}=[I+O(\displaystyle \frac{1}{ $\lambda$})]$\lambda$^{-\frac{$\theta$_{\infty}}{2} $\sigma$}3$\lambda$^{R_{\infty}},  $\lambda$\rightarrow\infty.
This solution matches with  $\Psi$ . Also  $\lambda$=1 is a Fuchsian singularity of (11). Therefore, we

have:

$\Psi$_{OUT}^{Match}=$\psi$_{1}^{OUT}(x)[I+O( $\lambda$-1)]( $\lambda$-1)^{\frac{$\theta$_{1}}{2} $\sigma$}3( $\lambda$-1)^{R_{1}}C_{1}^{OUT},  $\lambda$\rightarrow 1 ;

Here C_{1}^{OUT} is a suitable connection matrix. $\psi$_{1}^{OUT}(x) is the matrix that diagonalizes the leading
terms of A_{1}(x) . Therefore, $\psi$_{1}(x)\sim$\psi$_{1}^{OUT}(x) for x\rightarrow 0 . As a consequence of isomonodromicity,
R_{1} is the same of  $\Psi$.

As a consequence of the matching  $\Psi$\leftrightarrow$\Psi$_{OUT}^{Match} ,
the monodromy of  $\Psi$ at  $\lambda$=1 is:

M_{1}=C_{1}^{-1}\exp\{i $\pi \theta$_{1}$\sigma$_{3}\}\exp\{2 $\pi$ iR_{1}\}C_{1} ,
with C_{1}\equiv C_{1}^{OUT}.

We finally need an invertible connection matrix C_{OUT} to connect $\Psi$_{OUT}^{Match} with the solution

$\Psi$_{OUT} appearing in (15). Namely, $\Psi$_{OUT}^{Match}=$\Psi$_{OUT}C_{\mathrm{O}UT}.
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(^{*}) Matching  $\Psi$\leftrightarrow$\Psi$_{IN} :

As a consequence of the matching  $\Psi$\leftrightarrow$\Psi$_{OUT}^{Match} ,
we have to choose the IN‐solution which

matches with $\Psi$_{OUT}^{Match} . This is $\Psi$_{IN}^{Match} :=$\Psi$_{IN}C_{OUT}.

Now,  $\lambda$=0, x are Fuchsian singularities of (12). Therefore:

$\Psi$_{IN}^{Match}=\left\{\begin{array}{ll}
$\psi$_{0}^{IN}(x)[I+O( $\lambda$)]$\lambda$^{\frac{$\theta$_{0}}{2} $\sigma$}3$\lambda$^{R_{0}}C_{0}^{IN}, &  $\lambda$\rightarrow 0;\\
$\psi$_{x}^{IN}(x)[I+O( $\lambda$-x)]( $\lambda$-x)^{\frac{$\theta$_{x}}{2} $\sigma$}3( $\lambda$-x)^{R_{x}}C_{x}^{IN}, &  $\lambda$\rightarrow x;
\end{array}\right.
The above hold for fixed small x\neq 0 . Here C_{0}^{IN} and C_{x}^{IN} are suitable connection matrices.

$\psi$_{0}^{IN}(x) and $\psi$_{x}(x)^{IN} are diagonalizing matrices of the leading terms of A(x) and A_{x}(x) . For

x\rightarrow 0 they match with $\psi$_{0}(x) and $\psi$_{x}(x) of  $\Psi$ in (16). On the other hand, as a consequence of

isomonodromicity, the matrices  R_{0} and R_{x} are the same of  $\Psi$.

By virtue of the matching  $\Psi$ \leftrightarrow $\Psi$_{IN}^{Match} ,
the connection matrices C_{0} and C_{x} coincide

with the x‐independent connection matrices C_{0}^{IN}, C_{x}^{IN} respectively. As a result, we obtain the

monodromy matrices for  $\Psi$ :

 M_{0}=C_{0}^{-1}\exp\{i $\pi \theta$_{0}$\sigma$_{3}\}\exp\{2 $\pi$ iR_{0}\}C_{0}, C_{0}\equiv C_{0}^{IN},

M_{x}=C_{x}^{-1}\exp\{i $\pi \theta$_{x}$\sigma$_{3}\}\exp\{2 $\pi$ iR_{x}\}C_{x}, C_{x}\equiv C_{x}^{IN}.
Our reduction is useful if the connection matrices C_{1}^{OUT}, C_{0}^{IN}, C_{x}^{IN} can be computed explicitly.

3 Results

In the following, it is understood that x\rightarrow 0 inside a sector. Namely, \arg(x) is bounded.

3.1 Results R1 and R2

When (4) can be reduced to the Fuchsian systems (13) and (14), the matching procedure yields
the behaviors of Proposition 1. Let  $\sigma$ be a complex number dened, up to sign, by:

tr (M_{0}M_{x})=2\cos( $\pi \sigma$) , |\Re $\sigma$|\leq 1.

Actually, \pm $\sigma$/2 are the eigenvalues of \displaystyle \lim_{x\rightarrow 0}(A_{0}+A_{x}) .

Proposition 1 Let r\in \mathrm{C} and  $\sigma$ be as above, with the restriction |\Re $\sigma$|<1 . (PVI) has a

family of solutions depending on the two parameters r,  $\sigma$ . The leading terms of the critical

behavior for  x\rightarrow 0 may be parametrized as follows:

For  $\sigma$\neq 0 :

 y(x)\sim \left\{\begin{array}{ll}
\frac{1}{r}\frac{[$\sigma$^{2}-($\theta$_{0}+$\theta$_{x})^{2}][($\theta$_{0}-$\theta$_{x})^{2}-$\sigma$^{2}]}{16$\sigma$^{3}}x^{1- $\sigma$}, & \mathrm{i}\mathrm{f} \Re $\sigma$>0;\\
-\frac{r}{ $\sigma$}x^{1+ $\sigma$}, & \mathrm{i}\mathrm{f} \Re $\sigma$<0;\\
x\{iA\sin(i $\sigma$\ln x+ $\phi$)+\frac{$\theta$_{0}^{2}-$\theta$_{x}^{2}+$\sigma$^{2}}{2$\sigma$^{2}}\}, & \mathrm{i}\mathrm{f} \Re $\sigma$=0.
\end{array}\right. (17)

In the above formulae, r\neq 0 and

 $\phi$:=i\displaystyle \ln\frac{2r}{ $\sigma$ A}, A:=\lfloor^{\frac{$\theta$_{0}^{2}}{$\sigma$^{2}}-}\lceil(\frac{$\theta$_{0}^{2}-$\theta$_{x}^{2}+$\sigma$^{2}}{2$\sigma$^{2}})_{\rfloor}^{2}\rceil^{\frac{1}{2}}
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For special values of  $\sigma$\neq 0 :

y(x)\displaystyle \sim\frac{$\theta$_{0}}{$\theta$_{0}+$\theta$_{x}}x\mp\frac{r}{$\theta$_{0}+$\theta$_{x}}x^{1+ $\sigma$},  $\sigma$=\pm($\theta$_{0}+$\theta$_{x})\neq 0 , (18)

y(x)\displaystyle \sim\frac{$\theta$_{0}}{$\theta$_{0}-$\theta$_{x}}x\mp\frac{r}{$\theta$_{0}-$\theta$_{x}}x^{1+ $\sigma$},  $\sigma$=\pm($\theta$_{0}-$\theta$_{x})\neq 0 . (19)

For  $\sigma$=0 :

y(x)\sim\left\{\begin{array}{ll}
x\{\frac{$\theta$_{x}^{2}-$\theta$_{0}^{2}}{4}[\ln x+\frac{4r+2$\theta$_{0}}{$\theta$_{0}^{2}-$\theta$_{x}^{2}}]^{2}+\frac{$\theta$_{0}^{2}}{$\theta$_{0}^{2}-$\theta$_{x}^{2}}\}, & $\theta$_{0}\neq\pm$\theta$_{x},\\
x(r\pm$\theta$_{0}\ln x) , & $\theta$_{0}=\pm$\theta$_{x}.
\end{array}\right. (20)

Comments:

1) r can be computed as a function of the monodromy data. See (36) and comments there.

The branch of the square root appearing in A is arbitrary (its change does not aect y(x) ).
x\rightarrow 0 in a sector of width less then 2.

2) Sub‐cases of theorem 1.

i) When  $\sigma$\neq 0 ,
the result of the Theorem includes the sub‐cases (18) and (19). If r=0,

$\theta$_{0}\neq 0, $\theta$_{0}\pm$\theta$_{x}\not\in \mathrm{Z} ,
direct substitution into (PVI) gives the two Taylor expansions (28).

If r\neq 0 , (18) and (19) are a 1‐parameter family, with the restriction |\Re $\sigma$|<1 . The

symmetry (27), to be introduced below, transforms them into the solutions (31), to be discussed

later, the leading terms being respectively:

y(x)\displaystyle \sim\frac{$\theta$_{\infty}+$\theta$_{1}-1}{$\theta$_{\infty}-1}(1\pm\frac{r}{$\theta$_{\infty}-1}x^{ $\omega$}) ,  $\omega$=\pm($\theta$_{\infty}+$\theta$_{1}-1)\neq 0,
y(x)\displaystyle \sim\frac{$\theta$_{\infty}-$\theta$_{1}-1}{$\theta$_{\infty}-1}(1\pm\frac{r}{$\theta$_{\infty}-1}x^{ $\omega$}) ,  $\omega$=\pm($\theta$_{\infty}-$\theta$_{1}-1)\neq 0,

with the restriction |\Re $\omega$|<1

ii) The case  $\sigma$=0 includes the sub‐case y(x)\sim rx ,
which occurs for $\theta$_{0}=$\theta$_{x}, $\theta$_{0}=0 . By

direct substitution in (PVI) we obtain a series:

y(x)=rx+\displaystyle \sum_{n=3}^{\infty}b_{n}(r, $\theta$_{1}, $\theta$_{\infty})x^{n}, $\theta$_{0}=$\theta$_{x}=0, r\neq 0, 1 .

This is the solution (30), to be further discussed later. Note that the special sub‐sub‐case $\theta$_{0}=
$\theta$_{x}=$\theta$_{1}=0 has applications in the theory of semi‐simple Frobenius manifolds of dimension

three [5] [8].

3) The first two solutions in formula (17) were studied in [16]. Their existence was proved
by assuming that the matrices A_{0}, A_{x}, A_{1} have a certain critical behavior for x\rightarrow 0 ,

and

proving that such matrices solve the Schlesinger equations. Then, the monodromy data were

computed by a reduction of (4) to the �out� and �in� systems. These solutions where further

studied in [6], [7], [9], [3]. These solutions can be obtained without any assumption by the

matching procedure, together with the solutions (20) and the third solution in (17), which do

not appear in [16].
The class of the first two solutions (17) was enlarged in [23] and [9], as already discussed

in the introduction, to the values  $\sigma$\in \mathrm{C},  $\sigma$\not\in(-\infty, 0] \cup[1, +\infty) .
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4) All solutions with expansion:

y(x)=x(A_{1}+B_{1}\ln x+C_{1}\ln^{2}x+D_{1}\ln^{3}x+ +x^{2}(A_{2}+B_{2}\ln x+ + x\rightarrow 0.

are included it proposition 1 and 2. Actually, only the following cases are possible:

y(x)=\left\{\begin{array}{l}
\frac{$\theta$_{0}}{$\theta$_{0}\pm$\theta$_{x}}x+O(x) [\mathrm{T}\mathrm{a}\mathrm{y}\mathrm{l}\mathrm{o}\mathrm{r} \mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}];\\
x(\frac{$\theta$_{0}^{2}-B_{1}^{2}}{$\theta$_{0}^{2}-$\theta$_{x}^{2}}+B_{1}\ln x+\frac{$\theta$_{x}^{2}-$\theta$_{0}^{2}}{4}\ln^{2}x)+x^{2} +\\
x(A_{1}\pm$\theta$_{0}\ln x)+x^{2} + \mathrm{a}\mathrm{n}\mathrm{d} $\theta$_{0}=\pm$\theta$_{x}.
\end{array}\right. (21)

A_{1} and B_{1} are parameters. We see that the higher orders in (20) are O(x^{2}\ln^{m}x) ,
for some

integer m>0.

5) The symmetry (27) applied to solutions (20) gives:

y(x)=\displaystyle \frac{4}{[$\theta$_{1}^{2}-($\theta$_{\infty}-1)^{2}]\ln^{2}x}[1+\frac{8r+4($\theta$_{\infty}-1)}{$\theta$_{1}^{2}-($\theta$_{\infty}-1)^{2}}\frac{1}{\ln x}+O(\frac{1}{\ln^{2}x})] , (22)

and

y(x)=\displaystyle \frac{\pm 1}{($\theta$_{\infty}-1)\ln x}[1\mp\frac{r}{($\theta$_{\infty}-1)\ln x}+O(\frac{1}{\ln^{2}x})], $\theta$_{\infty}\mp$\theta$_{1}=1.
The higher orders O(1/\ln^{2}x) include powers x^{n}(\ln x)^{\pm m} . The so called Chazy solutions, stud‐

ied in [20] for the special case $\theta$_{0}=$\theta$_{x}=$\theta$_{1}=0, $\theta$_{\infty}=-1 ,
have the behavior (22).

6) In [4] it is proved that (PVI) has solutions with expansion at  x=\infty
,

or  x=0 ,
of the form

y=c_{r}x^{r}+\displaystyle \sum_{s}c_{s}x^{s},  c_{r}\in C. The  c_{s} �s are either complex constants or polynomials in \ln x. r

and s are integer or complex. If r is complex, the restriction \Re r\in(0,1) holds. The method

used in [4] is a power geometry technique. The connection problem and the characterization

of the associated monodromy data are not studied.

3.2 Result R3

When the matching procedure is applied to non‐Fuchsian systems (11) and (12), we obtain all

the solutions that admit a Taylor expansion

y(x)=b_{0}+b_{1}x+b_{2}x^{2}+ =\displaystyle \sum_{n=0}^{\infty}b_{n}x^{n}, x\rightarrow 0.
Precisely, we obtain the representative solutions of three equivalence classes, the equivalence
relation being the birational transformations [22].

Proposition 2 The solutions of (PVI) with Taylor expansion at x=0 are divided into four
equivalent classes (one being that of singular solutions y=0,1, x). The representatives can be

chosen as follows:

1) Singular solution y=1.

2) $\theta$_{\infty}\neq 1, $\theta$_{1}-$\theta$_{\infty}\not\in \mathrm{Z} [representative of $\theta$_{1}\pm$\theta$_{\infty}\not\in \mathrm{Z} ]:

y(x)=\displaystyle \frac{$\theta$_{1}-$\theta$_{\infty}+1}{1-$\theta$_{\infty}}+\frac{$\theta$_{1}[($\theta$_{1}-$\theta$_{\infty})($\theta$_{1}-$\theta$_{\infty}+2)+$\theta$_{x}^{2}-$\theta$_{0}^{2}]}{2($\theta$_{\infty}-1)($\theta$_{\infty}-$\theta$_{1})($\theta$_{\infty}-$\theta$_{1}-2)}x+\sum_{n=3}^{\infty}b_{n}($\theta$_{1}, $\theta$_{\infty}, $\theta$_{0}, $\theta$_{x})x^{n} . (23)
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The coecients are rational functions of $\theta$_{0}, $\theta$_{\infty}, $\theta$_{0}, $\theta$_{x} , that can be obtained in a recursive way

by substitution of the series into the PVI equation.

3) $\theta$_{1}=$\theta$_{\infty}\neq 1, $\theta$_{0}=\pm$\theta$_{x} [representative of $\theta$_{1}\pm$\theta$_{\infty}\in \mathrm{Z}, $\theta$_{x}\pm$\theta$_{0}\in \mathrm{Z} ]:

y(x)=\displaystyle \frac{1}{1-$\theta$_{\infty}}+ax+\sum_{n=2}^{\infty}b_{n}(a;$\theta$_{0}, $\theta$_{\infty})x^{n} . (24)

The coecients are rational functions of $\theta$_{0}, $\theta$_{\infty} and a parameter a\in \mathrm{C} ,
which can be recur‐

sively obtained by substitution into PVI.

4) $\theta$_{\infty}=1, $\theta$_{1}=0 [representative of $\theta$_{1}\pm$\theta$_{\infty}\in \mathrm{Z}, $\theta$_{\infty}\in \mathrm{Z}\backslash \{0\} ]:

y(x)=a+\displaystyle \frac{1-a}{2}(1+$\theta$_{0}^{2}-$\theta$_{x}^{2})x+\sum_{n=2}^{\infty}b_{n}(a;$\theta$_{0};$\theta$_{x})x^{n} . (25)

The coecients are rational functions of $\theta$_{0}, $\theta$_{x} and a parameter a\in \mathrm{C} ,
which can be recursively

obtained by substitution into PVI.

The monodromy data associated to the above solutions is given in proposition 3. The

symmetry $\theta$_{1}\mapsto-$\theta$_{1} ,
which leaves (PVI) invariant, transforms (23) into:

y(x)=\displaystyle \frac{$\theta$_{1}+$\theta$_{\infty}-1}{$\theta$_{\infty}-1}+\frac{$\theta$_{1}[($\theta$_{1}+$\theta$_{\infty})($\theta$_{1}+$\theta$_{\infty}-2)+$\theta$_{x}^{2}-$\theta$_{0}^{2}]}{2(1-$\theta$_{\infty})($\theta$_{\infty}+$\theta$_{1})($\theta$_{\infty}+$\theta$_{1}-2)}x+\sum_{n=3}^{\infty}b_{n}(-$\theta$_{1}, $\theta$_{\infty}, $\theta$_{0}, $\theta$_{x})x^{n}.
(26)

Here $\theta$_{\infty}\neq 1, $\theta$_{1}+$\theta$_{\infty}\not\in \mathrm{Z} . The coecients b_{n} are the same of (23).

The convergence of the Taylor series can be proved by a Briot‐Bouquet like argument. The

reader can find the general procedure in [14] and an application to the fifth Painlevé equation
in [19]

Comments:

1) Characterization of solutions y(x)=\displaystyle \sum_{n=0}^{\infty}b_{n}x^{n}, b_{0}\neq 0.

(a) There always exists one solution (23) when $\theta$_{1}-$\theta$_{\infty}\not\in \mathrm{Z} ; there always exists one solution

(26) when $\theta$_{1}+$\theta$_{\infty}\not\in \mathrm{Z} . The coecients b_{n} depend rationally on $\theta$_{ $\kappa$},  $\kappa$=0, x , 1, \infty . (b) There

is a one‐parameter family of solutions equivalent to (24), when $\theta$_{1}\pm$\theta$_{\infty}\in \mathrm{Z} and $\theta$_{0}\pm$\theta$_{x} has

a particular integer value. The coecients b_{n} depend rationally on a complex parameter a

and $\theta$_{\infty}, $\theta$_{0} . (c) Finally, there is a one‐parameter family of solutions equivalent to (25), when

$\theta$_{1}\pm$\theta$_{\infty}\in \mathrm{Z} ,
and $\theta$_{\infty} has a particular integer value; the coecients b_{n} depend rationally on

a complex parameter a and $\theta$_{0}, $\theta$_{x} . The singular solutions y=0 , 1, x are possibly obtained

by birational transformations of (23), (24), (25). The coecients b_{n} can always be computed
recursively by direct substitution into (PVI).

2) Characterization of solutions y(x)=\displaystyle \sum_{n=1}^{\infty}b_{n}x^{n}, b_{1}\neq 0.

These solutions are obtained from those of proposition 2 by the symmetry.

$\theta$_{x}\mapsto$\theta$_{1}, $\theta$_{0}\mapsto$\theta$_{\infty}-1, $\theta$_{1}\mapsto$\theta$_{x}, $\theta$_{\infty}\mapsto$\theta$_{0}+1 ; y(x)\displaystyle \mapsto\frac{x}{y(x)} . (27)

The solutions obtained from the singular solution y=1 and (23), (24), (25) are respectively:

1) Singular solution y(x)=x.
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2) $\theta$_{0}\neq 0, $\theta$_{0}\pm$\theta$_{x}\not\in \mathrm{Z} :

y(x)=\displaystyle \frac{$\theta$_{0}}{$\theta$_{0}\pm$\theta$_{x}}x\pm\frac{$\theta$_{0}$\theta$_{x}[($\theta$_{0}\pm$\theta$_{x})^{2}+$\theta$_{1}^{2}-$\theta$_{\infty}^{2}+2$\theta$_{\infty}-2]}{2($\theta$_{0}\pm$\theta$_{x})^{2}[($\theta$_{0}\pm$\theta$_{x})^{2}-1]}x^{2}+\sum_{n=3}^{\infty}b_{n}($\theta$_{0}, $\theta$_{x}, $\theta$_{1}, $\theta$_{\infty})x^{n} . (28)

3) $\theta$_{0}+$\theta$_{x}=1, $\theta$_{0}\neq 0, $\theta$_{1}=\pm($\theta$_{\infty}-1) :

y(x)=$\theta$_{0}x+ax^{2}+\displaystyle \sum_{n=3}^{\infty}b_{n}(a;$\theta$_{0}, $\theta$_{\infty})x^{n} . (29)

4) $\theta$_{x}=$\theta$_{0}=0.

y(x)=ax+\displaystyle \frac{a(a-1)}{2}($\theta$_{1}^{2}-($\theta$_{\infty}-1)^{2}-1)x^{2}+\sum_{n=3}^{\infty}b_{n}(a;$\theta$_{1}, $\theta$_{\infty})x^{n} . (30)

(a) (PVI) has always one or both solutions (28) when $\theta$_{0}\pm$\theta$_{x}\not\in \mathrm{Z} . Also when $\theta$_{0}+$\theta$_{x} (or
$\theta$_{0}-$\theta$_{x}) is integer, (PVI) has a solution (28) corresponding to $\theta$_{0}-$\theta$_{x} not integer (or $\theta$_{0}+$\theta$_{x}
not integer). (b) When $\theta$_{0}+$\theta$_{x} or $\theta$_{0}-$\theta$_{x} is integer, (PVI) has a one‐parameter family of

solutions equivalent (by birational transformations) to (29); this family exists provided that

$\theta$_{1}\pm$\theta$_{\infty} has a particular integer value. (c) When $\theta$_{0}+$\theta$_{x} or $\theta$_{0}-$\theta$_{x} is integer and $\theta$_{0} has a

particular integer value, there is a one parameter family of solutions equivalent to (30).

3) (PVI) has a one‐parameter family of solutions of the type:

y(x)=y_{0}(x)+y_{1}(x)ax^{ $\omega$}+y_{2}(x)(ax^{ $\omega$})^{2}+ =\displaystyle \sum_{N=0}^{\infty}y_{N}(x)(ax^{ $\omega$})^{N}, x\rightarrow 0 ; (31)

where the parameter is a\in \mathrm{C} ,
and the y_{N}(x) �s are Taylor series:

y_{N}(x)=\displaystyle \sum_{k=0}^{\infty}b_{k,N}($\theta$_{1}, $\theta$_{\infty}, $\theta$_{0}, $\theta$_{x})x^{k}, x\rightarrow 0.
Either y(x) is (26) and  $\omega$=\pm($\theta$_{1}+$\theta$_{\infty}-1) ,

or y(x) is (23) and  $\omega$=\pm($\theta$_{\infty}-$\theta$_{1}-1)
The conditions |\Re $\omega$|<1,  $\omega$\neq 0 hold. The coecients b_{k,N}($\theta$_{1}, $\theta$_{\infty}, $\theta$_{0}, $\theta$_{x}) are certain rational

functions that can be recursively determined by direct substitution into (PVI). These solutions

are the images of solutions (18) and (19) respectively, through the symmetry (27). Taylor
solutions (23), (26) are a special case of (31), when the parameter is zero. Solutions (24) and

(25)— and their images by symmetry— are one parameters families of type (31), in non generic
cases when  $\omega$\in \mathrm{Z}.

4) Solutions (23) and the equivalent solutions (26), (28) were also derived in [18] by sub‐

stitution of a Taylor expansion in (PVI). The corresponding monodromy was computed by
coalescence of singularities of a Heun�s type (scalar) equation.

3.3 Monodromy: Result R4

In [11], we computed the monodromy for the Taylor‐expanded solutions, which correspond to

a reductions of system (4) to non‐Fuchsian systems. Because of the symmetries of (PVI), we

can limit ourselves to the monodromy data for the representative solutions (23), (24) and (25).
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Proposition 3 a) Let $\theta$_{ $\kappa$}\not\in \mathrm{Z},  $\kappa$=0 , 1, x, \infty. A representation for the monodromy matrices

of the solution (23) is:

M_{0}=C_{0\infty}\exp\{i $\pi \theta$_{0}$\sigma$_{3}\}C_{0\infty}^{-1},
M_{x}=C_{0\infty}C_{01}^{-1}\exp\{i $\pi \theta$_{x}$\sigma$_{3}\}C_{01}C_{0\infty}^{-1}.

M_{1}=\exp\{-i $\pi \theta$_{1}$\sigma$_{3}\}, M_{\infty}=\exp\{-i $\pi \theta$_{\infty}$\sigma$_{3}\}.

The matrices C_{0\infty} and C_{01} are:

C_{0\infty}:=\left\{\begin{array}{ll}
\frac{ $\Gamma$(1+\frac{$\theta$_{1}}{2}-\frac{$\theta$_{\infty}}{2}) $\Gamma$(1+$\theta$_{0})e^{\dot{\mathrm{i}}\frac{ $\pi$}{2}[$\theta$_{0} $\theta$+ $\theta-\theta$_{1}]}+x\infty}{ $\Gamma$(\frac{$\theta$_{0}}{2}+\frac{$\theta$_{x}}{2}+\frac{$\theta$_{1}}{2}-\frac{$\theta$_{\infty}}{2}+1) $\Gamma$(\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}+\frac{$\theta$_{1}}{2}-\frac{$\theta$_{\infty}}{2}+1)} & \frac{ $\Gamma$(1+\frac{$\theta$_{1}}{2}-\frac{$\theta$_{\infty}}{2}) $\Gamma$(1-$\theta$_{0})e^{\dot{\mathrm{i}}\frac{ $\pi$}{2}[ $\theta$- $\theta$+ $\theta-\theta$_{1}]}x0\infty}{ $\Gamma$(-\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}-\frac{$\theta$_{\infty}}{2}+\frac{$\theta$_{1}}{2}+1) $\Gamma$(\frac{$\theta$_{x}}{2}-\frac{$\theta$_{0}}{2}+\frac{$\theta$_{1}}{2}-\frac{$\theta$_{\infty}}{2}+1)}\\
-\frac{ $\Gamma$(\frac{$\theta$_{\infty}}{2}-\frac{$\theta$_{1}}{2}-1) $\Gamma$(1+$\theta$_{0})e^{\dot{\mathrm{i}}\frac{ $\pi$}{2}[ $\theta$+$\theta$_{x}+ $\theta$- $\theta$]}01\infty}{ $\Gamma$(\frac{$\theta$_{0}}{2}+\frac{$\theta$_{x}}{2}+\frac{$\theta$_{\infty}}{2}-\frac{$\theta$_{1}}{2}) $\Gamma$(\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}+\frac{$\theta$_{\infty}}{2}-\frac{$\theta$_{1}}{2})} & -\frac{ $\Gamma$(\frac{$\theta$_{\infty}}{2}-\frac{$\theta$_{1}}{2}-1) $\Gamma$(1-$\theta$_{0})e^{\dot{\mathrm{i}}\frac{ $\pi$}{2}[ $\theta$- $\theta$+ $\theta$- $\theta$]}x01\infty}{ $\Gamma$(-\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}-\frac{$\theta$_{1}}{2}+\frac{$\theta$_{\infty}}{2}) $\Gamma$(\frac{$\theta$_{x}}{2}-\frac{$\theta$_{0}}{2}+\frac{$\theta$_{\infty}}{2}-\frac{$\theta$_{1}}{2})}
\end{array}\right\},
(32)

C_{01}:=\left\{\begin{array}{ll}
\frac{ $\Gamma$(-$\theta$_{x}) $\Gamma$(1+$\theta$_{0})}{ $\Gamma$(\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}+\frac{$\theta$_{1}}{2}-\frac{$\theta$_{\infty}}{2}+1) $\Gamma$(\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}+\frac{$\theta$_{\infty}}{2}-\frac{$\theta$_{1}}{2})} & \frac{ $\Gamma$(-$\theta$_{x}) $\Gamma$(1-$\theta$_{0})}{ $\Gamma$(-\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}-\frac{$\theta$_{\infty}}{2}+\frac{$\theta$_{1}}{2}+1) $\Gamma$(-\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}-\frac{$\theta$_{1}}{2}+\frac{$\theta$_{\infty}}{2})}\\
\frac{ $\Gamma$($\theta$_{x}) $\Gamma$(1+$\theta$_{0})}{ $\Gamma$(\frac{$\theta$_{0}}{2}+\frac{$\theta$_{x}}{2}+\frac{$\theta$_{\infty}}{2}-\frac{$\theta$_{1}}{2}) $\Gamma$(\frac{$\theta$_{0}}{2}+\frac{$\theta$_{x}}{2}+\frac{$\theta$_{1}}{2}-\frac{$\theta$_{\infty}}{2}+1)} & \frac{ $\Gamma$($\theta$_{x}) $\Gamma$(1-$\theta$_{0})}{ $\Gamma$(\frac{$\theta$_{x}}{2}-\frac{$\theta$_{0}}{2}+\frac{$\theta$_{\infty}}{2}-\frac{$\theta$_{1}}{2}) $\Gamma$(\frac{$\theta$_{x}}{2}-\frac{$\theta$_{0}}{2}+\frac{$\theta$_{1}}{2}-\frac{$\theta$_{\infty}}{2}+1)}
\end{array}\right\},
(33)

The subgroup generated by M_{0}M_{x} and M_{1} is reducible. As for the solution (26), we just
need to change $\theta$_{1}\mapsto-$\theta$_{1}.

b) It is convenient to re‐parameterize the solution (24) by introducing a parameter s through
the equality:

a=\displaystyle \frac{$\theta$_{\infty}(2s+$\theta$_{x}+1)}{2($\theta$_{\infty}-1)}.
Let $\theta$_{x}, $\theta$_{\infty}\not\in \mathrm{Z} . Then, a representation for the monodromy group is:

M_{0}=G\exp\{i $\pi \theta$_{x}$\sigma$_{3}\}G^{-1}, M_{1}=\exp\{-i $\pi \theta$_{\infty}$\sigma$_{3}\}

M_{x}=G\exp\{-i $\pi \theta$_{x}$\sigma$_{3}\}G^{-1}, M_{\infty}=\exp\{-i $\pi \theta$_{\infty}$\sigma$_{3}\}
In particular, M_{1}=M_{\infty}, M_{0}M_{x}=I . We can choose G as follows:

G=\left(\begin{array}{ll}
1 & 1\\
\frac{s+$\theta$_{x}}{r} & \frac{s}{r}
\end{array}\right)
Conversely, we may express s as a function of the monodromy data:

s=\displaystyle \frac{$\theta$_{x}[2\cos( $\pi$($\theta$_{\infty}+$\theta$_{x}))-\mathrm{t}\mathrm{r}(M_{1}M_{0})]}{2[\cos( $\pi$($\theta$_{\infty}-$\theta$_{x}))-\cos( $\pi$($\theta$_{\infty}+$\theta$_{x}))]}.
c) We re‐parameterize solution (25) introducing a new parameter s dened by a=:(1-s)^{-1}.

Let $\theta$_{0}, $\theta$_{x}\not\in \mathrm{Z} . Then, a monodromy representation for the solutions (25) is:

M_{0}=(C_{\infty 0})^{-1}\exp\{i $\pi \theta$_{0}$\sigma$_{3}\}C_{\infty 0}, M_{\infty}=\left(\begin{array}{lll}
-1 &  & 0\\
2 $\pi$ i(1- & s) & -1
\end{array}\right)
M_{x}=(C_{\infty 0})^{-1}(C_{01})^{-1}\exp\{i $\pi \theta$_{x}$\sigma$_{3}\}C_{01}C_{\infty 0}, M_{1}=\left(\begin{array}{ll}
1 & 0\\
2 $\pi$ is & 1
\end{array}\right)
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where C_{\infty 0} and C_{01} are (34) and (35) given below. Conversely, we may express s as a function
of the monodromy data:

s=\displaystyle \frac{\mathrm{t}\mathrm{r}(M_{1}M_{0})-2\cos( $\pi \theta$_{0})}{4 $\pi$\sin( $\pi \theta$_{0})}\frac{(C_{\infty 0})_{21}}{(C_{\infty 0})_{22}}.
The matrices C_{\infty 0} and C_{01} are:

C_{\infty 0=}2\left(\begin{array}{ll}
0 & \frac{ $\Gamma$(-$\theta$_{0})e^{-\mathrm{i} $\pi$\{\frac{$\theta$_{0}}{2}+\frac{$\theta$_{x}}{2}+\frac{3}{2}\}}}{ $\Gamma$(-\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}+\frac{3}{2}) $\Gamma$(-\frac{$\theta$_{0}}{2}+\frac{$\theta$_{x}}{2}+\frac{3}{2})}\\
\frac{ $\Gamma$(-\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}-\frac{1}{2}) $\Gamma$(-\frac{$\theta$_{0}}{2}+\frac{$\theta$_{x}}{2}-\frac{1}{2})}{ $\Gamma$(1-$\theta$_{0})e^{-\dot{\mathrm{i}} $\pi$\{\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}-\frac{3}{2}\}}} & \frac{ $\Gamma$($\theta$_{0})e^{-\dot{\mathrm{i}} $\pi$\{-\frac{$\theta$_{0}}{2}+\frac{$\theta$_{x}}{2}+\frac{3}{2}\}}}{ $\Gamma$(\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}+\frac{3}{2}) $\Gamma$(\frac{$\theta$_{0}}{2}+\frac{$\theta$_{x}}{2}+\frac{3}{2})}
\end{array}\right) (34)

C_{01}=\left(\begin{array}{ll}
\frac{ $\Gamma$(-$\theta$_{x}) $\Gamma$(1+$\theta$_{0})}{ $\Gamma$(\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}+\frac{3}{2}) $\Gamma$(\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}-\frac{1}{2})} & \frac{ $\Gamma$(-$\theta$_{x}) $\Gamma$(1-$\theta$_{0})}{ $\Gamma$(-\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}+\frac{3}{2}) $\Gamma$(-\frac{$\theta$_{0}}{2}-\frac{$\theta$_{x}}{2}-\frac{1}{2})}\\
\frac{ $\Gamma$($\theta$_{x}) $\Gamma$(1+$\theta$_{0})}{ $\Gamma$(\frac{$\theta$_{0}}{2}+\frac{$\theta$_{x}}{2}+\frac{3}{2}) $\Gamma$(\frac{$\theta$_{0}}{2}+\frac{$\theta$_{x}}{2}+\frac{1}{2})} & \frac{ $\Gamma$($\theta$_{x}) $\Gamma$(1-$\theta$_{0})}{ $\Gamma$(-\frac{$\theta$_{0}}{2}+\frac{$\theta$_{x}}{2}+\frac{3}{2}) $\Gamma$(-\frac{$\theta$_{0}}{2}+\frac{$\theta$_{x}}{2}-\frac{1}{2})}
\end{array}\right) (35)

Comments.

1) The conditions $\theta$_{ $\kappa$}\not\in \mathrm{Z} can be eliminated, and the computations can be repeated without

conceptual changes, but with dierent results.

2) In the above theorem, the subgroups generated by M_{0}M_{x} and M_{1} are reducible. This

characterizes the monodromy associated to solutions which have a Taylor series at x=0 . The

same characterization at x=1 involves the subgroup generated by M_{1}M_{x} and M_{0} . At x=\infty,

it involves the subgroup generated by M_{0}M_{1} and M_{x} . In the appendix of [9], the reader may

find explanations about how to obtain results at x=1, \infty from the results at  x=0 . In

another paper, we will consider again this characterization, together with the general problem
of classication.

3) Let us dene again  $\sigma$ by \mathrm{t}\mathrm{r}(M_{0}M_{x})=2\cos $\pi \sigma$ . Then, in case a),  $\sigma$=\pm($\theta$_{1}-$\theta$_{\infty}) [and
\pm($\theta$_{1}+$\theta$_{\infty}) for the change $\theta$_{1}\mapsto-$\theta$_{1} ]. In case b), \mathrm{t}\mathrm{r}(M_{0}M_{x})=2 and  $\sigma$=0 . In case

c), \mathrm{t}\mathrm{r}(M_{0}M_{x})=-2,  $\sigma$=\pm 1 . The matching procedure is eective to produce solutions

corresponding to monodromy data for which the connection problem is so far not well studied,
such as the case \mathrm{t}\mathrm{r}(M_{i}M_{j})=-2.1
4) Also the 1‐parameter solutions (18) (19) and the second solution in (20) are characterized

by a reducible subgroup generated by M_{0}, M_{x}.

5) The monodromy group for the solutions (28) was derived also in [18], by conuence of

singularities of scalar equations (including a Heun�s type equation). The result is equivalent
to that in point a) of the above theorem.

6) The computation of the monodromy group of the fuchsian systems (13) and (14) is quite
clear [16] [6] [9] [3]. It allows to express the parameter r of (17), (18), (19) and (20) as a

lHere I remark that the formula (1.30), page 1293, of my paper [9] is wrong. The correct one is \mathrm{t}\mathrm{r}(M_{i}M_{j})\not\in
(-\infty, -2] . In [9] the connection problem is solved for \mathrm{t}\mathrm{r}(M_{i}M_{j})\neq\pm 2 . The case \mathrm{t}\mathrm{r}(M_{i}M_{j})=2 yields (20). For

the special choice of the parameters $\theta$_{0}=$\theta$_{x}=$\theta$_{1}=0 , it was studied in [6] and [7] (no logarithmic terms appear

in such a special case). The result (20) for the general (PVI), corresponding to \mathrm{t}\mathrm{r}(M_{0}M_{x})=2 , appears in the

present paper for the first time.
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function of the monodromy data. We just report the result for (17), which can be found in

[16] [9] [3]:

r=\displaystyle \frac{($\theta$_{0}-$\theta$_{x}+ $\sigma$)($\theta$_{0}+$\theta$_{x}- $\sigma$)($\theta$_{\infty}+$\theta$_{1}- $\sigma$)}{4 $\sigma$($\theta$_{\infty}+$\theta$_{1}+ $\sigma$)}\frac{1}{\mathrm{F}} , (36)

where

\displaystyle \mathrm{F}:=\frac{ $\Gamma$(1+ $\sigma$)^{2} $\Gamma$(\frac{1}{2}($\theta$_{0}+$\theta$_{x}- $\sigma$)+1) $\Gamma$(\frac{1}{2}($\theta$_{x}-$\theta$_{0}- $\sigma$)+1)}{ $\Gamma$(1- $\sigma$)^{2} $\Gamma$(\frac{1}{2}($\theta$_{0}+$\theta$_{x}+ $\sigma$)+1) $\Gamma$(\frac{1}{2}($\theta$_{x}-$\theta$_{0}+ $\sigma$)+1)}\times
\displaystyle \times\frac{ $\Gamma$(\frac{1}{2}($\theta$_{\infty}+$\theta$_{1}- $\sigma$)+1) $\Gamma$(\frac{1}{2}($\theta$_{1}-$\theta$_{\infty}- $\sigma$)+1)}{ $\Gamma$(\frac{1}{2}($\theta$_{\infty}+$\theta$_{1}+ $\sigma$)+1) $\Gamma$(\frac{1}{2}($\theta$_{1}-$\theta$_{\infty}+ $\sigma$)+1)}\frac{V}{U},

and:

U:=[\displaystyle \frac{i}{2}\sin( $\pi \sigma$)\mathrm{t}\mathrm{r}(M_{1}M_{x})-\cos( $\pi \theta$_{x})\cos( $\pi \theta$_{\infty})-\cos( $\pi \theta$_{0})\cos( $\pi \theta$_{1})]e^{i $\pi \sigma$}+
+\displaystyle \frac{i}{2}\sin( $\pi \sigma$)\mathrm{t}\mathrm{r}(M_{0}M_{1})+\cos( $\pi \theta$_{x})\cos( $\pi \theta$_{1})+\cos( $\pi \theta$_{\infty})\cos()

V:=4\displaystyle \sin\frac{ $\pi$}{2}($\theta$_{0}+$\theta$_{x}- $\sigma$)\sin\frac{ $\pi$}{2}($\theta$_{0}-$\theta$_{x}+ $\sigma$)\sin\frac{ $\pi$}{2}($\theta$_{\infty}+$\theta$_{1}- $\sigma$)\sin\frac{ $\pi$}{2}($\theta$_{\infty}-$\theta$_{1}+ $\sigma$) .

The above formula was computed with the assumption that  $\sigma$\pm($\theta$_{0}+$\theta$_{x}) ,  $\sigma$\pm($\theta$_{0}-$\theta$_{x}) ,

 $\sigma$\pm($\theta$_{1}+$\theta$_{\infty}) ,  $\sigma$\pm($\theta$_{1}-$\theta$_{\infty}) are not even integers.
2

7) Reducible Monodromy. The monodromy groups in Theorem 3 are not reducible, but

they have a reducible subgroup. If the entire group itself is completely reducible, the solutions

of (PVI) are well known: they are classical solutions in the sense of Umemura [24]. We

summarize them in the following proposition (the reader can see also [12]).

Proposition 4 All the solutions of (PVI) corresponding to a reducible monodromy group are

equivalent by birational canonical transfO rmations to the following one‐parameter family of
solutions, with $\theta$_{\infty}+$\theta$_{1}+$\theta$_{0}+$\theta$_{x}=0 :

y(x)=\displaystyle \frac{$\theta$_{1}+$\theta$_{\infty}-1+x(1+$\theta$_{x})}{$\theta$_{\infty}-1}-\frac{1}{$\theta$_{\infty}-1}\frac{x(1-x)}{u(x;a)}\frac{du(x;a)}{dx} , (37)

where u(x;a)=u_{1}(x)+au_{2}(x);a\in \mathrm{C}, u(x) and u(x) are linear independent solutions of
the hypergeometric equation:

x(1-x)\displaystyle \frac{d^{2}u}{dx^{2}}+\{[2-($\theta$_{\infty}+$\theta$_{1})]-(4-$\theta$_{\infty}+$\theta$_{x})x\}\frac{du}{dx}-(2-$\theta$_{\infty})(1+$\theta$_{x})u=0
The monodromy matrices are upper triangular:

M_{0}= (^{\frac{$\theta$_{0}}{02}} -\displaystyle \frac{$\theta$_{0}}{2}*) , M_{x}=(^{\frac{$\theta$_{x}}{02}} -\frac{$\theta$_{x}}{2}*) , M_{1}=(^{\frac{$\theta$_{1}}{02}} -\frac{$\theta$_{1}}{2}*)
Remark: The rational solutions of (PVI) are a special case of the above proposition. They
were studied in [21]. Up to canonical birational transformations, they are realized for $\theta$_{\infty}+
$\theta$_{1}+$\theta$_{0}+$\theta$_{x}=0 and:

$\theta$_{0}=1 : y(x)=\displaystyle \frac{$\theta$_{\infty}+$\theta$_{1}}{$\theta$_{\infty}}\frac{x-1}{x(1+$\theta$_{1})-($\theta$_{1}+$\theta$_{\infty})} .

2In [9] there is a miss print in formula (A.30), which must be re‐calculated. In [16], in formula (1.8) at the

bottom of page 1141, the last sign is \pm $\sigma$ instead of \mp $\sigma$.
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$\theta$_{0}=-2 : y(x)=\displaystyle \frac{(2-($\theta$_{\infty}+$\theta$_{1})+$\theta$_{1}x)^{2}-2+$\theta$_{\infty}+$\theta$_{1}-$\theta$_{1}x^{2}}{(1-$\theta$_{\infty})(2-($\theta$_{\infty}+$\theta$_{1})+$\theta$_{1}x)}.
The computation of the expansion at x=0 of (37) is just a consequence of the expansions

of u(x) and u_{2}(x) . The reader can find by himself a behavior y\sim x(r(a)\pm$\theta$_{x}\ln(x)) for

$\theta$_{1}+$\theta$_{\infty}=$\theta$_{0}+$\theta$_{x}=0 , namely a sub‐case of the second solution in (20). For $\theta$_{1}+$\theta$_{\infty}\not\in \mathrm{Z} ,
we

find behaviors of the type (31) (and (23), (28) for a=0).

This paper is a review of [11]. Therefore, we refer the reader to [11] for the derivation of

the results.
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