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1 Introduction

The Noumi‐Yamada system NY_{m} (m=2,3, . :. ) is a non‐linear dierential equa‐

tion of m+1 unknown functions u_{0}(t) ,
.

::, u(t) of t variable which has been found

by Noumi‐Yamada [NY]. To analyze it with WKB analysis, let us first recall the

explicit form of the Noumi‐Yamada system with a large parameter  $\eta$ . See Takei

[T2] for the details. As the structure of  NY_{m} depends on the parity of m
,

we

concentrate our attention, in most cases, to the case where m is even.

Now, the system NY_{2m} with a large parameter  $\eta$ is of the following form:

(NY_{2m}) $\eta$^{-1}\displaystyle \frac{du_{j}}{dt}=u_{j}(u_{j+1}-u_{j+2}+\cdots-u_{j+2m})+$\alpha$_{j}
(j=0,1,2, . ::, 2m) ,

where $\alpha$_{j} are formal power series of $\eta$^{-1} with constant coeffi‐

cients satisfying

(1) $\alpha$_{0}+$\alpha$_{1}+\cdots+$\alpha$_{2m}=$\eta$^{-1}

Hence u_{j} may be assumed to satisfy the following normalization condition

(2) u_{0}+u_{1}+\cdots+u_{2m}=t.

Here the indices j of u_{j} are considered to be elements of \mathbb{Z}/(2m+1)\mathbb{Z} ,
that is,

u_{j+2m+1}=u_{j}.

The non‐linear equation NY_{m} describes the compatibility condition of a system
of linear partial dierential equations. The system is referred to as �a Lax pair�
(as a kind of jargon). In our case it consists of a linear dierential equation
NYL_{m} in x‐variable that depends on a parameter t (a deformation parameter) and

another linear dierential equation in t‐variable that controls the isomonodromic

deformation of NYLm; the explicit form of NYL_{m} is as follows.

(NYL_{m}) \displaystyle \frac{d $\psi$}{dx}= $\eta$ A_{t}(x) $\psi$.
Here  $\psi$={}^{t}($\psi$_{0}(x), . .

:; $\psi$_{m}(x) ), and A(x) is a square matrix of the size m+1 with
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a parameter t as follows:

A_{t}(x)=\displaystyle \frac{-1}{x}(xu_{0}(t)e_{0}x0 u_{1}(t)e_{1}x
u_{2}.(t)1.

. 1.
e_{m-2} u_{m-1}(t)e_{m-1} u_{m}(t)e_{m}1) ,

where \{u_{k}(t)\} is a solution of NY_{m} and e_{k} �s are some constants.

The principal aim of this article is to describe the Stokes geometry of NY_{m}
in terms of the Stokes geometry of the underlying linear equation NYLm. The

guiding principle on which we rely is as follows:

�Stokes curves (in t‐space) of a non‐linear equation consist of points
where the Stokes geometry (in x‐space) of the underlying linear equation
has some kinds of global topological changes�

In order to extract concrete informations from this guiding principle, we first

set a stage for the Stokes geometry of NY_{m} by considering the linearization (the
Fréchet derivative) of NY_{m} at its 0‐parameter solution (cf. [KKNT], [T2]). It

is, however, disputable whether Fréchet derivative is an analytically meaningful
object in this context, as we see below. Hence the terminology �formal Stokes

geometry� is sometimes used to mean its ordinary Stokes geometry, namely the

collection of ordinary Stokes curves and ordinary turning points of the Fréchet

derivatives (cf. Section 8). Thus we use the Stokes geometry of NYL_{m} as the

most reliable object, and deduce informations on NY_{m} from it using the above

guiding principle. This approach was quite successful for a class of higher order

Painlevé equations whose Lax pairs consist of second order equation ([KKNT]).
But, NYL_{m} is of higher order, and we encounter several troubles in putting the

above idea into practice. Among other things, we have to take into account both

ordinary turning points and virtual turning points, and hence both ordinary and

new Stokes curves also, to find its complete Stokes geometry ([AKT]). This makes

the Stokes geometry of NYL_{m} quite complicated. Actually in his seminal papers

[Sa1] and [Sa2], Sasaki noticed the following facts by the concrete computation for

m=2 and 4:

1. Although a point t_{0} lies on a formal Stokes curve of NY_{m} ,
if t_{0} is located

far away from the turning point from which the Stokes curve emanates, no

degeneration can be found in the Stokes geometry of NYLm, that is, no

Stokes curves connect two ordinary turning points directly (note that, by a
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result of [T2], if a point t_{0} in a formal Stokes curve is near the turning point,
we always observe some degeneration of the Stokes geometry of NYL).

2. Even if a point t_{0} is situated apart from formal Stokes curves of NY_{m} ,
we

sometimes observe some degeneration in the sense that that a Stokes curve

of NYL_{m} connects two virtual turning points directly. Moreover such virtual

turning points of NYL_{m} present some discontinuities called �

napping� when

the parameter t moves near t_{0} ; he related the napping phenomena of the

virtual turning points with (the counter part of) the Nishikawa phenomena
([KKNT]) for the Noumi‐Yamada system.

Furthermore in the first case, he found that a double turning point and a virtual

turning point instead of an ordinary turning point are directly connected by a

Stokes curve. Moreover he conrmed that Stokes curves of NYL_{m} change discon‐

tinuously when t crosses the Stokes curve.

Thus it seems possible that an appropriate interpretation of the guiding prin‐
ciple might be obtained if the situation where two turning points, either ordinary
or virtual, are directly connected by a Stokes curve of NYL_{m} is regarded as a

degeneration. However, more detailed study of NY_{m} have recently yielded sev‐

eral examples ([H1], pp. 116-124 ) where the straightforward interpretation of

the above degeneration does not necessarily lead to the discontinuous behavior of

Stokes curves of NYL_{m} when the parameter moves around. Therefore we need

some more precise language to dene the degeneration of the Stokes geometry of

NYL_{m} properly.

Our detailed study of NY_{4} ([H1], pp. 33-65 ) indicates that degeneration of

the Stokes geometry in NYL_{m} should be observed when two ordinary turning
points are connected by a zigzag of�effective� Stokes segments, both ordinary and

new; To facilitate detecting such a zigzag in a complicated Stokes geometry we

introduce a graph theoretical notion �an eective bidirectional binary tree�

which are determined by the conguration of turning points and Stokes curves,

and investigate its basic properties. The above two phenomena found by Sasaki

are interpreted as follows in terms of this language.

1. In all the examples we have so far checked, we can find an eective bidi‐

rectional binary tree in the Stokes geometry of NYLm, if t lies on a formal

Stokes curve of NY_{m} . Moreover if t moves apart from the Stokes curve of

NY_{m} ,
the tree splits into some eective unidirectional binary trees, and some

segments of these trees move discontinuously when t moves across the Stokes

curve ([H1, H3]).

2. The Nishikawa phenomenon is observed in the Stokes geometry of NY_{m} when

a new eective bidirectional binary tree is generated by a concatenation of
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two other eective bidirectional binary trees which have the same leaf nodes

([H1, pp.53‐78], see also [H3 and H4]).

The best way to understand the notion and properties of eective bidirectional

binary trees is to become familiar with many concrete examples. In view of the

limitation on the length of this article, we cannot include suciently many figures
but we refer the reader to [H1]. We also omit the proofs of our claims in this paper

and leave them to our forthcoming paper [H4].
In ending this introduction, we emphasize that most of the results in this paper

are applicable to general higher order linear ordinary dierential equations.

2 Preliminaries

First we recall briey denitions of ordinary turning points and Stokes curves.

Let A(x) be an m\times m matrix whose elements are rational functions of x
,

and we

consider a linear dierential system with a large parameter  $\eta$ of unknown functions

 v(x)={}^{t}(v_{1}(x), \ldots, v_{m}(x)) :

(3) $\eta$^{-1}\displaystyle \frac{dv}{dx}=A(x)v.
Let  $\Lambda$( $\lambda$, x)=\det( $\lambda$ I-A(x)) ,

and let D(x) denotes the discriminant of  $\Lambda$( $\lambda$, x)=
0 . On a complex plane equipped with appropriate cut lines, let holomorphic func‐

tions $\lambda$_{1}(x) , $\lambda$_{2}(x) ,
:.

:, $\lambda$_{n}(x) of x denote the roots of the algebraic equation
 $\Lambda$( $\lambda$, x)=0 of  $\lambda$ . Hereafter we always assume the following conditions:

\bullet (LA‐1)  D(x) is not identically zero.

\bullet (LA‐2) For each  x
,
the algebraic equation  $\Lambda$( $\lambda$, x)=0 has at most one double

root, and the other roots are all simple.

Ordinary turning points are roots of the discriminant D(x)=0 . In par‐

ticular, a simple (resp. double) root of D(x)=0 is said to be a simple (resp.
double) turning point. If two roots $\lambda$_{i} and $\lambda$_{j} of  $\Lambda$( $\lambda$, x) =0 merge at x=x_{0},

we say the type of the turning point x_{0} is (i, j) . Remark that if x_{0} is a simple
turning point of the type (i, j) , $\lambda$_{i}(x) and $\lambda$_{j}(x) ramify at x_{0} with the degree of

ramication being 2. On the other hand, if x_{0} is a double turning point, $\lambda$_{i}(x) and

$\lambda$_{j}(x) are holomorphic functions near x_{0}.

Let x_{0} be an ordinary turning point of the type (i, j) ,
and let l : [0, 1 ) \rightarrow \mathbb{C}

be a smooth curve in \mathbb{C} with a starting point x_{0} . In what follows we assume the

following condition (^{*} ):
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\bullet Condition (^{*} ) $\lambda$_{i}(x) and $\lambda$_{j}(x) can be analytically continued along l from

x_{0} ,
and their values never coincide on the curve l except for the starting

point x_{0}.

Owing to the condition (^{*} ), the following form  $\omega$ dened near  x_{0}

(4)  $\omega$={\rm Im}($\lambda$_{i}(x)-$\lambda$_{j}(x))dx

can be analytically continued along l\backslash \{x_{0}\} as non‐degenerate and smooth real

analytic dierential1‐form.

Denition 2.1 (An integral curve) A smooth curve l with a starting point x_{0}

satisfying the condition () and l^{*} $\omega$=0 is called an integral curve emanating from

an ordinary turning point x_{0}.

Denition 2.2 (A Stokes curve) A Stokes curve l emanating from an ordinary
turning point x_{0} is maximal immersion l from [0 , 1) or [0 ,

1 ] to \mathbb{C} whose restriction

on [0 ,
1 ) gives an integral curve emanating from x_{0}.

For any point x in a Stokes curve l
,
if l is an integral curve of a real dierential1‐

form (4) dened by roots $\lambda$_{i'} and $\lambda$_{j'} near x
,

we say the type of the Stokes curve

l at x is (i^{0}, j^{0}) . Concerning the ending point of a Stokes curve emanating from

an ordinary turning point x_{0} ,
we readily see that one of the following situations is

observed:

1. No ending point. That is, the curve l flows into a singular point of the

equation or a point at innity.

2. The ending point x_{1} is a simple turning point s and the type of s and that

of l at x_{1} have one and only one common index. In this case, we say

that l bifurcates at x_{1} . In fact, a semi‐analytic set dened by {\rm Im}\displaystyle \int_{x_{0}}^{x} $\omega$=0
bifurcates at x_{1}.

3. The ending point x_{1} is an ordinary turning point s and the type of s is the

same as that of l at x_{1} . In this case, we often say that turning points x_{0} and

x_{1} are connected by a Stokes curve l.

Remark that interior points of Stokes curves always form a smooth curve.

Next we will dene virtual turning points. For the original denition of virtual

turning points, we refer the reader to Aoki‐Kawai‐Takei [AKT]. Here we employ
an alternative denition. Let E be the set of singular points of the equation (the
set E=\{0\} in our case, i.e., for NYL).
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Denition 2.3 (Virtual turning points) ([T1]) A point x_{0} is called a virtual

turning point of the type (i, j)(i\neq j) if there exist a piecewise smooth closed

path C_{x_{0}} in \mathbb{C}\backslash E with the starting and ending point x_{0} ,
and a continuous function

 $\mu$(x) on C_{x_{0}} that satisfy the following conditions.

1. For any x\in C_{x_{0}},  $\mu$(x) is a root of the equation  $\Lambda$( $\mu$, x)=0 . Moreover near

the starting (resp. ending) point of C_{x_{0}},  $\mu$(x)=$\lambda$_{i}(x) (resp.  $\mu$(x)=$\lambda$_{j}(x) )
holds.

2. The following equality holds:

\displaystyle \int_{C_{x_{0}}} $\mu$(x)dx=0.
In general the above condition 1 implies $\lambda$_{j} is an analytic continuation of $\lambda$_{i}

along C_{x_{0}} . However if the path C_{x_{0}} passes an ordinary turning point s of the type

(k, l) and  $\mu$(s)=$\lambda$_{k}(s)=$\lambda$_{l}(s) holds, then we exchange $\lambda$_{k} and $\lambda$_{l} at s.

Note that an ordinary turning point is, logically speaking, a virtual turning
point in the above sense. But, for the sake of convenience we exclude ordinary
turning points from the denition of virtual turning points. For any virtual turning
point v

,
we can dene integral curves and Stokes curves emanating from v in the

same way as in the case of ordinary turning points. A Stokes curve emanating
from a virtual turning point is often called a new Stokes curve. From now on,

by a turning point we mean either a virtual or an ordinary one.

Now let us consider the case where the equation contains a deformation param‐

eter t
,
that is, the situation where the matrix A(x;t) of (3) depends on a parameter

t holomorphically in a simply connected domain V_{t}\subset \mathbb{C}_{t} . We always assume that

\bullet the conditions (LA‐1) and (LA‐2) hold for each fixed  t\in V_{t},

\bullet the singular points of the equation do not move, and

\bullet any ordinary turning point coincides with neither other turning points nor

the singular points of the equation as  t moves in V_{t} . Furthermore the number

of ordinary turning points remains constant.

The lemma below is fundamental in considering continuous deformations of the

Stokes geometry.

Lemma 2.4 On the above assumptions, we have:

1. Each ordinary turning point is a holomorphic function of t.
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2. Any Stokes curve l emanating from an ordinary turning point moves con‐

tinuously when t moves smoothly unless another ordinary turning points hit

against the curve l.

For a virtual turning point v at t=t_{0} , by a deformation of the closed path C_{v}
in Denition 2.3, we can find a virtual turning point v(t) near t=t_{0} satisfying that

v(t_{0})=v and that v(t) is holomorphic. The holomorphic function v(t) is called a

germ of a virtual turning point v at t=t_{0} . Moreover v(t) can be analytically
continued to any points in V_{t} as long as v(t) never merge with ordinary turning
points. The similar lemma holds for Stokes curves emanating from virtual turning
points.

3 Constructible turning points

It is a hard task to locate virtual turning points using Denition 2.3 directly.
However an excellent algorithm to find virtual turning points was presented in the

paper [AKKSST]. It is as follows:

Let x_{0} and x_{1} be turning points, and s_{0} (resp. s_{1} ) a Stokes curve emanating
from x_{0} (resp. x_{1} ). We assume s_{0} and s_{1} intersect at a point x and the types of s_{0}

and s_{1} at x are (i, j) and (j, k) respectively. Note that the index j is common in

both types in this case. Let l denote an integral curve of a real dierential 1‐form

{\rm Im}($\lambda$_{i}-$\lambda$_{k})dx passing through x.

Theorem 3.1 [AKKSST] (Algorithm for locating VTP�s) If a point v in

the curve l satises the following integral relation

\displaystyle \int_{x}^{x_{0}}$\lambda$_{i}-$\lambda$_{j}dx+\int_{x}^{x_{1}}$\lambda$_{j}-$\lambda$_{k}dx+\int_{x}^{v}$\lambda$_{k}-$\lambda$_{i}dx=0,
then v is a VTP, i.e., a virtual turning point. Here each integrations is performed
along the integral curve designated above.

From now, when we say x is an intersection point of two Stokes curves, we

always assume the types of the Stokes curves at x share one and only one common

index. Remark that if the types are the same, both Stokes curves locally coincide

near x . Incidentally we say that two objects in the Stokes geometry (i.e. turning
points or Stokes curves) are disjoint if their types have no common indices.

Denition 3.2 An intersection point x of two Stokes curves is called regular if

two curves intersect transversally at an interior point x of the curves (when x is

a virtual turning point, it may be conventionally regarded as an interior point).
Remark that the types of both curves at x have one and only one common index

by the denition.
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Using the algorithm for locating VTP�s, we can dene the set of constructible

turning points, which play an important role in exact WKB analysis. Let U be a

relatively compact connected open set with a smooth boundary in \mathbb{C} which does not

contain the singular points of the equation. Let T(U) denote the set of all turning
points in U . For any v\in T(U) , s(v) denotes one of Stokes curves emanating from

v.

Denition 3.3 A subset CT(U)\subset T(U) of constructible turning points is

dened by the following conditions 1, 2 and 3:

1. CT(U) contains all ordinary turning points in U.

2. For any Stokes curves s(X) and s(x_{1})(x_{0}, x_{1}\in CT(U)) and their regular
intersection point x in U

,
if a virtual turning point v located by the above

algorithm is in U
,
then v belongs to CT(U) . Conventionally, we only consider

the connected component containing x in U as the integral curve used in the

algorithm.

3. CT(U) is a minimal set satisfying conditions 1 and 2 above.

All virtual turning points v\in CT(U) can be obtained by the repeated applica‐
tion of the algorithm starting from ordinary turning points, the minimal number

of the applications of the algorithm to obtain v is called the level of a con‐

structible turning point v . In particular, the level of an ordinary turning point
is 0 . For each k=0 , 1, 2\ldots, CT_{k}(U) denote a subset of CT(U) consisting of all

constructible turning points whose levels are less than or equal to k.

Let V be a subset of T(U) and let S(V, U) denote the set of all Stokes curves in

U emanating from v\in V . Here a Stokes curve in U means a connected component

containing v in U . Then G(V, U) designates the totality of the Stokes geome‐

try in U constructed by the data V and S(V, U) ; furthermore we say G_{k}(U)=
G(CT_{k}(U), U) is the Stokes geometry of the level k in U.

From now on, by choosing an open set U suitably we alway assume that the

following finiteness condition is satised.

Denition 3.4 (Finiteness condition) In the Stokes geometry G
,

there are no

cyclic Stokes curves (that is, a Stokes curve emanating from v that returns to the

same v ). Moreover the number of Stokes curves in G is finite and all Stokes curves

in G have finite length.

Let us consider the case where the equation has a deformation parameter
t . For any t\in V_{t} ,

we can consider a set CT_{k}(U;t) of all constructible turn‐

ing points of the level k in U with the parameter t
,

and the Stokes geometry

G_{k}(U;t)=G(CT_{k}(U;t), U) . For any t_{0}\in V_{t} and v\in CT_{k}(U;t_{0}) ,
a germ v(t) of
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a constructible turning point v at t_{0} can be dened in the same way as a germ

of a virtual turning point was dened.

Denition 3.5 For any t_{0}\in V_{t} and v\in CT_{k}(U;t_{0}) ,
the number of holomorphic

functions v(t) satisfying v(t_{0})=v and v(t)\in CT_{k}(U;t) near t=t_{0} is called a

multiplicity of v at t_{0} in CT_{k}(U;t) .

We fix a smooth curve  $\tau$ : [0, 1]\rightarrow V_{t} in V_{t} . For any two points t_{1}= $\tau$($\theta$_{1}) ,

t_{2}= $\tau$($\theta$_{2})($\theta$_{1}<$\theta$_{2}) in the curve  $\tau$, (t_{1}, t_{2}) (resp. [t_{1}, t] ) denotes an open (resp.
closed) segment \{ $\tau$( $\theta$);$\theta$_{1}< $\theta$<$\theta$_{2}\} (resp. \{ $\tau$( $\theta$);$\theta$_{1}\leq $\theta$\leq$\theta$_{2}\} ) of the curve

 $\tau$ respectively. Remark that the finiteness condition in this case should be the

number and length of Stokes curves are uniformly bounded along the curve  $\tau$ . The

following lemma implies that constructible turning points, generically speaking,
have multiplicity 1 under the finiteness condition.

Lemma 3.6 There exists a set  E=\{ $\tau$($\theta$_{1}), . . . ,  $\tau$($\theta$_{r});$\theta$_{1}<\cdots<$\theta$_{r}\} of finite

points in the curve  $\tau$ for which the following hold:

1. For any  t_{0}\in $\tau$\backslash E ,
all constructible turning points of CT_{k}(U;t_{0}) have mul‐

tiplicity 1 at t_{0} in CT_{k}(U;t) ,
and

2. the number of CT_{k}(U;t) is constant in each open segment ( $\tau$($\theta$_{i}),  $\tau$

(0\leq i\leq r) where we set $\theta$_{0}=0 and $\theta$_{r+1}=1.

See [H4] for the proof.
Remark 3.7 If a constructible turning point v\in CT_{k}(U;t_{0}) is given, then v

denes a germ v(t) at t=t_{0} . The germ v(t) can be analytically continued to

whole space V_{t} as a virtual turning point (multi‐valued); however, v(t) is not

necessarily a constructible virtual turning point when t is far from t_{0} . Therefore

the constructibility of virtual turning points is not continuous property.

4 Solid or dotted line condition

The following Fig. 1 is a numerically calculated example of the Stokes geometry

(level 1) of NYL3. In the figure, a fat dot denotes a turning point and each curve

drawn by a thick line (resp. a thin line) designates an ordinary (resp. a new)
Stokes curve. In particular, s_{1} and s_{2} are simple turning points, d_{1} is a double

turning point, and v_{1} and v_{2} are virtual turning points.

In the figure, the Stokes curves s(v) emanating from the virtual turning point
v_{1} consists of solid and dotted line portions. In general, each Stokes curve consists

of

\bullet solid line portions where the curve is �effective�, that is, where Stokes

phenomena may be observed, and
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Figure 1:  NYL_{3} (Level1). Figure 2: The overlap of curves.

\bullet dotted line portions where Stokes phenomena never occur.

An algorithm to determine solid or dotted line portions of Stokes curves seems

to be quite important. In this paper, we employ slightly modied version of the

algorithm presented by Aoki‐Kawai‐Takei [AKT]. We will explain briey the algo‐
rithm employed here.

We first remark that when the parameter  t lies on a Stokes curve of NY_{m},
we usually observe that two turning points are located in the same Stokes curve

of NYLm, that is, the Stokes curve emanating from one of the turning points
geometrically overlaps with another Stokes curve. For example, the Stokes curve

s(d) emanating from the turning point d_{1} and the curve s(S) emanating from

s_{1} in Fig. 1 are geometrically the same. To determine the state (solid or dotted)
of the overlapped Stokes curve correctly, it is necessary to apply the algorithm
to each Stokes curve s(d) and s(S) separately. Therefore, in what follows, we

consider the Stokes curves s(v) and s(v) to be dierent if turning points
v_{1} and v_{2} are dierent, even if they geometrically coincide.

That means that a Stokes curve s(v) is regarded as a pair (v;l) of a turning
point v and an integral curve l emanating from v . We denote by [s(v)] the integral
curve l of a Stokes curve s(v)=(v;l) .

Let l be a Stokes curve emanating from a turning point x_{1} ,
and x a point in the

curve l . Here a point of the Stokes curve l means that of the underlying integral
curve [l] (note that [l] itself is an immersion from [0,1 ) or [0 , 1] to U).
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Denition 4.1 Assume that the type of a Stokes curve l at x is (i, j) . When

{\rm Re}\displaystyle \int_{x_{1}}^{x}$\lambda$_{i}-$\lambda$_{j}dx<0
holds, we say that the index j dominates the index i along the Stokes curve l

,
and

the inequality of indices i<j designates this situation.

The following ordered relation of two Stokes curves is one of the most important
notions, and its importance was first noticed by [BNR]. Let l_{1} and l_{2} be Stokes

curves, and x an intersection point of the curves [l] and [l2].
Denition 4.2 Assume that the types of curves l_{1} and l_{2} at x are (i, j) and (k, l)
respectively. If the order relations of the following kind hold

i<j=k<l or j<i=k<l,

(that is, one of the indices is less than the common index and the rest is greater
than the common index), then we say that l_{1} and l_{2} form an ordered crossing
at x.

When a Stokes curve intersects with an overlapping Stokes curve because of

the overlap we must distinguish the curve which really intersects in the sense of

the Stokes geometry. We will introduce a notion� combined� below. Let v, v_{1} ,
and

v_{2} be three turning points and s(v) , s(v) and s(v) their Stokes curves.

Denition 4.3 We say that three curves s(v) , s(v) and s(v) are combined at

a point x if the curves [s(v)], [s(v)] and [s(v)] intersect at x and the types of the

curves s(v_{1}) , s(v) and s(v) at x are (i, j) , (j, k) and (i, k) respectively for mutually
dierent indices i, j and k

,
and if the following integral relation

\displaystyle \int_{x}^{v_{1}}$\lambda$_{i}-$\lambda$_{j}dx+\int_{x}^{v_{2}}$\lambda$_{j}-$\lambda$_{k}dx+\int_{x}^{v}$\lambda$_{k}-$\lambda$_{i}dx=0
holds.

In Fig. 1, the Stokes curves s(d_{1}) , s(S) and s(v) are combined at the inter‐

section point b_{1} and b_{2} respectively. On the other hand, the Stokes curves s(d_{1}) ,

s(S) and s(v) are not combined either at b_{1} or at b_{2} . In the same way, the Stokes

curves s(s_{1}) , s(S) and s(v) are combined at each intersection point, but, the

Stokes curves s(s_{1}) , s(S) and s(v) are not combined.

Remark 4.4 If there exist turning points with higher multiplicity, the denition

of �combined� should be modied. However all turning points of CT_{k}(U;t) have

simple multiplicity at generic t by the lemma in the previous section. Therefore

the above denition is sucient for our purpose. See Honda [H3] for the case with

higher multiplicity.
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In the same situation as above, we introduce the following.

Denition 4.5 (Coherent) We say that s(v) is coherent at x with respect to

s(v) and s(v) if the following conditions are fullled:

1. s(v) , s(v) and s(v) are combined at x.

2. s(v) and s(v) form an ordered crossing at x.

If at a point x of a Stokes curve s(v) , s(v) becomes coherent with respect to

two other Stokes curves, then we say that x is a coherent point of s(v) .

For example, in Fig. 1, the Stokes curve s(v) is coherent at b_{2} with respect to

s(d) and s(s_{2}) ,
but s(v) is not coherent at b_{1} with respect to the same curves.

The Stokes curves s(v) is coherent at b_{1} with respect to s(S) and s(s_{2}) ,
but b_{2} is

not a coherent point of s(v_{2}) .

Let G(V, U) be a Stokes geometry satisfying the finiteness condition (here V is

a subset of turning points T(U) in U).
Condition 4.6 (Solid or dotted line condition) Solid or dotted line portions of

Stokes curves of G(V, U) should be determined so that the following two conditions

are satiSed. For each Stokes curve s(v) in G(V, U)(v\in V) ,

1. the state of the curve s(v) in a neighborhood of v is

(a) solid if v is an ordinary turning point.

(b) dotted if v is a virtual turning point.

2. the state of s(v) should be converted at a point x of the curve s(v) if and

only if there are turning points v_{1} and v_{2}\in V satisfying

(a) s(v) is coherent at x with respect to s(v) and s(v_{2}) ,
and

(b) s(v) and s(v) are solid lines near x.

A point x of a Stokes curve s(v) which satises the above condition 2 (that
is, a point where the state of s(v) should be converted) is called an eective

coherent point of s(v) . For the properties and details of the above �solid or

dotted line condition�, in particular the uniqueness of a solution satisfying the

condition, see Honda ([H2, Section 6], [H3]). We say a turning point v is not

eective if all Stokes curves emanating from v consists of dotted line portions
only. In the examples of the Stokes geometry given in [H1] and this article, all non

eective turning points and their Stokes curves are not printed.
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Figure 3: Bidirectional segments. Figure 4: Binary trees T_{1} and T_{2}.

5 A bidirectional binary tree

We are ready to explain the notion of (eective) bidirectional binary trees.

Let v_{0} and v_{1} be turning points in U
,

and assume that v_{0}\in[s(v_{1})], v_{1}\in[s(v)]
and the type of s(v) and that of s(v) are the same.

Denition 5.1 (A bidirectional segment) A segment l=([l];v_{0}, v_{1}) is called

a bidirectional segment between v_{0} and v_{1} if the following two conditions are

satised:

1. [l] is a connected closed subset of [v_{0}, v_{1}] ,
and it is not a point.

2. The end points of [l] are v_{0}, v_{1} or intersection points of the Stokes curves

with other Stokes curves.

Moreover we say that a bidirectional segment l=([l];v_{0}, v_{1}) is eective when [l]
is contained in the closure of solid line portions of s(v) for each i=0 ,

1.

Now let us recall the denition of a binary tree in the graph theory.

Denition 5.2 (A binary tree) A binary tree T=(B, E, L) consists of E:\mathrm{a}

set of leaf nodes, B : a set of branching nodes, and L : a set of edges whose end

points are B\cup E . These data should satisfy the following:

1. The degree of each leaf node is one (the degree of a node p is the number of

edges with end point p).

2. The degree of each branching node is three.

3. For any two nodes in B\cup E
, they are connected by a path and such a path is

unique. Here a path is by denition a set of edges in which each edge never

appear twice.

13



An edge is often said to be a segment in our context.

The degree of a binary tree T is by denition the number of leaf nodes. We

also dene the depth of a binary tree T to be the number of edges of a maximal

path in the tree T . For example, the degree of the binary trees T_{1} (resp. T_{2} ) in

Fig. 4 is 3 (resp. 4), and the depth of T_{1} (resp. T_{2} ) is 2 (resp. 3). The tree T_{2}
consists of 4 leaf nodes ( e_{1}, e_{2}, e_{3} and e_{4} ), 2 branching nodes (b_{1}, b_{2}) and 5 edges
( e_{1}b_{1} , eb, eb, e_{4}b_{2} and b_{1}b_{2} ).

Let l=([l];v_{1}, v_{2}) be a bidirectional segment and b an end point of [l] . The

set [v_{1}, v_{2}]\backslash fthe interior of [l] } consists of two connected components. We dene

 $\tau$(l, b) and $\tau$^{a}(l, b) as:

\bullet  $\tau$(l, b) denotes one of the turning point v_{1} or v_{2} which belongs to the con‐

nected component containing b.

\bullet $\tau$^{a}(l, b) denotes the other turning point.

Intuitively  $\tau$(l, b) is a turning point v_{1} or v_{2} which is located in the same side as

b with respect to l.

Figure 5: A bidirectional binary tree.

Denition 5.3 (A bidirectional binary tree) A tree T=(B, E, L,  $\rho$) is called

a bidirectional binary tree in the Stokes geometry G(V, U) if the following
conditions are satised:

1. (B, E, L) is a binary tree.

2. There exist a set \hat{L} of bidirectional segments in G(V, U) ,
a bijective map

 $\rho$ :  L\rightarrow\hat{L} and a family of topological immersions \{$\rho$_{l}\}_{l\in L} which satisfy the

following:

14



(a) [(l)] is the image of a topological immersion $\rho$_{l} : l\rightarrow[(l)] for each

l\in L ,
and

(b) \{$\rho$_{l}\}_{l\in L} preserves connectedness of the graph, that is, if l_{1}, l_{2}\in L share

a branching node b\in B ,
then $\rho$_{l_{1}}(b)=$\rho$_{l_{2}}(b) holds.

3. For each edge l\in L ,
its end point p\in B\cup E and the corresponding bidi‐

rectional segment  $\rho$(l)=([ $\rho$(l)];v_{0}, v_{1})\in\hat{L} ,
if the end point $\rho$_{l}(p) of the

segment  $\rho$(l) coincides with a turning point v_{0} or v_{1} (see the lower example
in Fig. 3), then p is a leaf node and $\rho$_{l}(p) should be an ordinary turning
point. If $\rho$_{l}(p) is dierent from either v_{0} nor v_{1}, p is a branching node.

4. Let b be a branching node and let l, l_{1} and l_{2} be the edges with end point
b in common. Let v_{l}, v_{l_{1}} and v_{l_{2}} respectively denote the turning point
 $\tau$( $\rho$(l), $\rho$_{l}(b)) , $\tau$^{a}( $\rho$(l_{1}), $\rho$_{l}(b)) and $\tau$^{a}( $\rho$(l_{2}), $\rho$_{l}(b)) . The Stokes curve s(v)
is coherent at $\rho$_{l}(b) with respect to Stokes curves s(v) and s(v) (cf. Fig.
6).

Figure 6: The condition 4.

When all bidirectional segments of \hat{L} are eective, we say T is eective.

In what follows, we identify the bidirectional segment  $\rho$(l)\in\hat{L} in the Stokes

geometry G with the edge l\in L of the graph (B, E, L) by the maps  $\rho$ and  $\rho$_{l}.

We will give a few examples of bidirectional binary trees. For details, see

Honda [H1] pp. 33‐52 (Fig. III‐I‐I \sim \mathrm{F}\mathrm{i}\mathrm{g}. III‐1‐20) where the reader can observe

an eective bidirectional binary tree �grows� so that its degree increases from 2

to 5; for example the simple turning point a in Fig. III‐1‐3 hits the Stokes curve

connecting b_{1} and b_{2} in Fig. III‐1‐2 so that the corresponding tree �grows� from

the tree consisting of 2 leaf nodes ( b_{1} and b_{2} ) to that consisting of 3 leaf nodes (b_{1},
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b_{2} and b_{3} ) in Fig. III‐1‐4, and so on. We show below the�growing� of the tree from

degree 3 to degree 4; the tree T_{3} clearly visualizes the importance of virtual turning
points and new Stokes curves as we discuss below. The reader readily finds how

complicated the actual world is; without introducing the graph‐theoretic notions,
it should be formidable to trace the change of the congurations.

The following Fig. 7 to Fig. 12 describe the Stokes geometry of NYL_{4} where

the deformation parameter t is one of 3 points t_{1}, t_{2} and t_{3} lying on a formal

Stokes curve of NY_{4} (the point t_{1} is the nearest to the turning point and t_{3} is the

farthest). In all figures below, the turning points s_{1}, s_{2} , S3 and s_{4} (resp. v_{1}, v_{2},

:.

:, v_{6}) are ordinary (resp. virtual).

Figure 7: The Stokes geometry of

NYL_{4} at t=t_{1} ([H1] Fig. III‐1‐6).
Figure 8: Only Stokes curves related to

the tree T_{1} have been drawn (t=t_{1}) .

The tree T_{1} (resp. T_{2} ) of Fig. 8 (resp. Fig. 10) is an eective bidirectional

binary tree with degree 3. The tree T_{1} consists of 3 leaf nodes ( s_{1}, s_{2} and s_{3} ),
1 branching node (b) and 3 bidirectional segments ( s_{1}b_{1}, s_{2}b_{1} and s_{3}b_{1} ). For

example, the bidirectional segment s_{1}b_{1} lies in a common portion of two Stokes

curves s(S) emanating from s_{1} and s(v) emanating from v_{1} . In this way, each

bidirectional segment of T_{1} lies in a common portion of two Stokes curves. An

important feature of T_{1} is, for example, that the Stokes curve s(v) is coherent at

the branching node b_{1} with respect to the two Stokes curves s(S) and s(s_{3}) . In

the same way, s(v) (resp. s(v) ) is also coherent at the branching node b_{1} with

respect to two Stokes curves s(S) and s(S) (resp. s(S) and s(s_{2}) ).
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Figure 9: The Stokes geometry of

NYL_{4} at t=t_{2} ([H1] Fig. III‐1‐7).

Figure 11: The Stokes geometry of Figure 12: Only Stokes curves related

NYL_{4} at t=t_{3} ([H1] Fig. III‐1‐9). to the tree T_{3} have been drawn (t=t_{3}) .

Figure 10: Only Stokes curves related

to the tree T_{2} have been drawn (t=t_{2}) .
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Remark that in Fig. 10, the simple turning point s_{4} is located quite close to

the bidirectional segment s_{3}b_{1} of the tree T_{2} . In fact, when the parameter t moves

from t_{2} to t_{3} along the formal Stokes curve of NY_{4} ,
the turning point s_{4} crosses

the segment s_{3}b_{1} and the tree T_{2} grows.

The degree of the tree T_{3} of Fig. 12 becomes 4 because the turning point s_{4}

joins in the tree as a new leaf node after s_{4} hits against the segment of the tree.

The tree T_{3} consists of 4 leaf nodes ( s_{1}, s_{2} , S3 and s_{4} ), 2 branching nodes (b_{1} and

b_{2}) ,
and 5 bidirectional segments ( s_{1}b_{1} , sb, sb, s_{4}b_{2} and b_{1}b_{2} ). In particular,

the segment b_{1}b_{2} is in a common portion of two new Stokes curves s(v) and s(v_{6}) .

Therefore new Stokes curves and virtual turning points play an important role in

the tree T_{3} . Branching nodes b_{1} and b_{2} enjoy the same special order relations as

the branching node b_{1} of the tree T_{1}.

6 Several properties of trees

Let T=(B, E, L,  $\rho$) be a bidirectional binary tree. To dene integration on

a tree, we make some preparations. We first equip each segment of T with an

arbitrary orientation. We introduce some conventions related to the orientation of

T.

1. For any bidirectional segment l=([l];v_{l,s}, v_{l,e}) ,
we always choose turning

points v_{l,s} and v_{l,e} so that the direction v_{l,s}\rightarrow v_{l,e} along the curve is coincident

with the orientation given in the tree T.

2. If a segment [l] is an integral curve of a real dierential 1‐form  $\omega$={\rm Im}($\lambda$_{i_{s}(l)}-
$\lambda$_{i_{e}(l)})dx ,

we always choose two indices i(l) and i(l) satisfying

{\rm Re}\displaystyle \int_{l}($\lambda$_{i_{s}(l)}-$\lambda$_{i_{e}(l)})dx>0.
We dene the total integral value  $\Phi$(T) of a bidirectional binary tree T as

follows:

 $\Phi$(T)=\displaystyle \sum_{l\in L}\int_{l}($\lambda$_{i_{s}(l)}-$\lambda$_{i_{e}(l)})dx.
The following lemma gives us the most basic property of a bidirectional binary

tree.

Lemma 6.1 (cf. [Sa2, p.74 (Lemma 1)], [AKSST, Appendix \mathrm{B}] ) For any

bidirectional segment l of T
,

we have

 $\Phi$(T)=\displaystyle \int_{v_{l,s}}^{v_{l,e}}($\lambda$_{i_{s}(l)}-$\lambda$_{i_{e}(l)})dx.
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In \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}_{\backslash } the integral value of the right hand side of the above equality does

not depend on a choice of segments l of the tree T.

Now let us consider deformations of bidirectional binary trees. The dierential

system under consideration has a deformation parameter t in a simply connected

domain V_{t} which satises the same condition as that given in Section 2. Moreover

we assume that the Stokes geometry G_{k}(U;t) of the level k satises the finiteness

condition.

We fix a point t_{0}\in V_{t} ,
and let T=(B, E, L,  $\rho$) be a bidirectional binary

tree in G_{k}(U;t_{0}) . By the denition of a bidirectional binary tree, we can change
the path of the total integral value of T to a closed path which passes all leaf

nodes of T . Therefore the total integral value  $\Phi$(T) of the tree T denes a germ

of holomorphic function $\phi$_{T}(t) at t=t_{0} with $\phi$_{T}(t_{0})= $\Phi$(T) . Moreover $\phi$_{T}(t) can

be analytically continued to any point in V_{t}.
We introduce the following condition:

Condition (#) : For any branching node b of T
,

all segments of T sharing the

end point b mutually intersect transversally at b.

Let H\subset V_{t} denote an analytic set near t_{0} dened by

H=\{t\in V_{t};{\rm Im}$\phi$_{T}(t)=0\}.

Proposition 6.2 Assume that T satises the condition (#) and the degree of T

is less than or equal to k+2 . Then there exist a neighborhood W\subset V_{t} of t_{0}
and a bidirectional binary tree T(t)=(B(t), E(t), L(t),  $\rho$(t)) in G_{k}(U;t) for any

t\in H\cap W which satisfy:

1. T(t_{0})=T ,
and when t moves continuously along H\cap W

,
the tree T(t) is

also deformed continuously, that is, the following hold:

(a) The binary tree (B(t), E(t), L(t)) dose not depend on t

(i.e. (B(t), E(t), L(t))=(B, E, L) ) and,

(b) for each edge l\in L ,
the topological immersion  $\rho$(t)_{l} : l\rightarrow[((t))(l)] is

a continuous function of t.

2. For any t\in H\cap W ,
we have $\phi$_{T}(t)= $\Phi$(T(t)) where  $\Phi$(T(t)) is the total

integral value of the tree T(t) .

Next we investigate the eectiveness of deformed trees. Since the eectiveness

of a tree depends on global informations of the Stokes geometry, we first introduce

a notion of stability of the Stokes geometry. Let  $\tau$ : [0, 1]\rightarrow V_{t} be a smooth curve,

and t_{1}= $\tau$($\theta$_{1}) and t_{2}= $\tau$($\theta$_{2}) two points in the curve  $\tau$ . Let  I=(t_{1}, t_{2}) denote an
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open segment \{ $\tau$( $\theta$);$\theta$_{1}< $\theta$<$\theta$_{2}\} of the curve  $\tau$ . In the following two denitions,
the types of both objects in question are assumed to be not disjoint.

Denition 6.3 The Stokes geometry  G_{k}(U;t) is said to be geometrically stable

in an open segment I if the following conditions are satised when t moves in the

open segment I.

1. (Stability of turning points) No turning point coincides with an ordinary
turning point nor a boundary point of U.

2. (Stability of Stokes curves) Ordinary turning points never hit against any

Stokes curves. A Stokes curve which terminates at an ordinary turning point
continues to terminate at the same turning point.

3. (Stability of intersection points) Any two Stoke curves are neither tangent
nor intersecting at a point of the boundary of U . Furthermore each Stokes

curve is not tangent with the boundary of U.

Remark that under the geometrical stability assumption, all intersection points
of Stokes curves continuously move.

Denition 6.4 The Stokes geometry G_{k}(U;t) is said to be stable in an open

segment I if the following conditions hold:

1. G_{k}(U;t) is geometrically stable in I
,

and

2. for any Stokes curve l in G_{k}(U;t) ,
no coherent point of the curve l collides

with any other intersection points of the curve l with other Stokes curves

when t moves in the segment I.

Let v be a turning point in CT_{k}(U;t_{0}) for some t_{0}\in I . We also say that v is

stable as a constructible turning point of the level k in I if the germ v(t) of

v at t_{0} belongs to CT_{k}(U;t) for any t\in I (that is, no �napping� occurs when \mathrm{t}

moves in I).
From our experience ([H1]) the stability of the Stokes geometry is violated

when an ordinary turning point crosses a Stokes curve (cf. Case A in Section 7).
Although we encounter somewhat more delicate situations (cf. Case \mathrm{B} and Case

\mathrm{C} in Section 7), we can show the following:

Theorem 6.5 Assume that each Stokes curve does not continue to be tangent
with the other Stokes curves nor the boundary of U for all  t\in $\tau$ . There exists a

set  E=\{ $\tau$($\theta$_{1}), . ::,  $\tau$($\theta$_{r});$\theta$_{1}<\cdots<$\theta$_{r}\} of finite exceptional points in the curve

 $\tau$ for which the following hold:
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1. The Stokes geometry  G_{k}(U;t) is stable in each open segment ( $\tau$($\theta$_{i}),  $\tau$

(0\leq i\leq r) where we set $\theta$_{0}=0 and $\theta$_{r+1}=1 ,
and

2. any turning point of the Stokes geometry G_{k}(U;t) is stable as a constructible

turning point of the level k in each open segment ( $\tau$($\theta$_{i}),  $\tau$($\theta$_{i+1})) .

Let  $\phi$(t) be a holomorphic function in V_{t} and  $\tau$ : [0, 1]\rightarrow V_{t} a smooth curve.

We assume  $\tau$\subset ft \in V_{t};{\rm Im} $\phi$(t)=0 }. The following theorem is fundamental for

deformations of eective bidirectional binary trees.

Theorem 6.6 Let us assume that the Stokes geometry G_{k}(U;t) is stable in

I=( $\tau$(0),  $\tau$(1)) . If there is an eective bidirectional binary tree \hat{T} in G_{k}(U;t_{1})
for some t_{1}\in I satisfying the following:

1. The degree of \hat{T} is less than or equal to k+2 ,
and

2. the germ $\phi$_{\hat{T}}(t) of the total integral value of the tree \hat{T} coincides with  $\phi$(t)
near t=t_{1}.

Then there exists an eective bidirectional binary tree \hat{T}(t) in G_{k}(U;t) for any

t\in I which satises the following conditions:

1. \hat{T}(t_{1})=\hat{T} ,
and \hat{T}(t) is deformed continuously when t moves in I.

2. We have  $\Phi$(\hat{T}(t))= $\phi$(t) for any t\in I.

See [H4] for the proof.

Remark 6.7 We can weaken the stability condition of the theorem so that it suf‐

fices to consider only objects of G_{k}(U;t) connected with the eective bidirectional

binary tree by a
� Stokes walk path� (for the Stokes walk path, see Honda [H3]).

The condition (y) below helps simplify complicated discussions about the Stokes

geometry. We will use the condition in the next section. Let T be a bidirectional

binary tree (not necessarily eective).
Condition (  $\dagger$ ) : For any bidirectional segments  l=([l];v_{l,s}, v_{l,e}) of a bidirectional

binary tree T with end points p_{s} and p_{e} where the direction p_{s}\rightarrow p_{e} coincides with

the orientation given in the tree T
,

the following two conditions hold.

1. In an open segment (p_{s}, p_{e}) ,
there are no eective coherent points of the

underlying Stokes curves s(v_{l,s}) and s(v_{l,e}) .

2. In an open segment (v_{l,s}, p_{s}) (resp. (p_{e}, v_{l,e}) ), the state of the underlying
Stokes curve s(v_{l,s}) (resp. s(v_{l,e}) ) near p_{s} (resp. p) is dotted.

21



For a bidirectional binary tree T satisfying the condition (  $\dagger$ ) ,
it is easy to prove

that the tree  T becomes eective by the denition of trees. The assumption seems

to be too restrictive. In the examples of the Noumi‐Yamada system given in [H1],
however, almost all bidirectional binary trees have no eective coherent points in

the open segments (v_{l,s}, p_{s}) and (p_{e}, v_{l,e}) ,
and hence the condition 2 is satiSed.

7 Deformations near exceptional points

Let T be an eective bidirectional binary tree in G_{k}(U;t_{0}) for some t_{0}\in V_{t} . Set

 $\phi$(t)=$\phi$_{T}(t) (remark that  $\phi$(t) is holomorphic in V_{t} ) and let  $\tau$ : [0, 1]\rightarrow V_{t} be

a smooth curve contained in \{t\in V_{t};{\rm Im} $\phi$(t)=0\} with  $\tau$(0)=t_{0} . Let a point
t_{1}= $\tau$($\theta$_{1})($\theta$_{1}>0) be the first exceptional point given by Theorem 6.5. Then

eective bidirectional binary trees T(t) in G_{k}(U;t) for t\in[t_{0}, t_{1} ) are deformations

of the tree T . We assume that the level k is suciently large.
In this section, we will study deformations T(t) of the tree T around the ex‐

ceptional point t_{1} . Since the problem has global nature, it seems to be dicult to

investigate the problem without any assumptions. As the first step of our study,
we assume the following:

Assumption 7.1 Bidirectional binary trees in question satisfy the condition (y)
near the exceptional points.

Here �trees in question� mean bidirectional binary trees whose germs of total

integral values are equal to  $\phi$(t) if exist. Under the assumption, the problem is

reduced to the existence of a bidirectional binary tree itself. When  $\theta$ tends to  $\theta$_{1}

( $\theta$<$\theta$_{1}) ,
for the tree T( $\tau$()) in  G_{k}(U; $\tau$ we find one of the following four cases

at  $\theta$=$\theta$_{1}.

\bullet (Case A) An ordinary turning point hits against a segment of the tree.

\bullet (Case B) The length of a segment of the tree becomes zero.

\bullet (Case C) At a branching node  b of the tree, some edges of the tree with an

end point b become tangent each other.

\bullet (Case D) For a segment  l=([l];v_{s}, v_{e}) of the tree, the portion [v_{s}, v_{e}] of

the Stokes curve touches the boundary of U.

To avoid diculties related to the case \mathrm{D} above, we also assume the following
condition:

Assumption 7.2 All turning points and portions of Stokes curves that are nec‐

essary to construct bidirectional binary trees are always contained in U.
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In what follows, we will investigate the problem for Case A and Case B. By
the following Lemma 7.3 below, it is enough to consider local deformations of the

tree near the segment in question.

Figure 13: A turning point hits against a Stokes curve.

Let l(t) be a Stokes curve and v(t) a simple turning point. We assume the type
of l(t) and that of v(t) have one and only one common index, and when t tends to

t_{1} ,
the turning point v(t) hits against the curve l(t) . We draw a suciently small

circle with the center at v(t) . The circle intersects with Stokes curves at 7 points
x_{1}(t) ,

. .

:, x(t) (see Fig. 13). See [AKSST, Appendix \mathrm{A} ] for its proof.

Lemma 7.3 Assume the Stokes curve l(t) and v(t) intersect transversally. Then

all intersection points x_{1}(t) ,
:.

:; X(t) are real analytic functions near t=t_{1}.

The above lemma implies that although the direction of the Stokes curve l(t)
abruptly changes in Fig. 13 (we here assume that the turning point from which l(t)
emanates is in the right hand side of Fig. 13) when t moves near t_{1} ,

if we take new

Stokes curves into accounts, all curves of Fig. 13 move continuously outside the

circle (see [AKSST, Section 1 Moreover the constructibility of virtual turning
points is preserved. Therefore the problem can be reduced to the inside of the

circle.

In what follows, we investigate cases A and B. We assume that the several cases

are not observed at the same time.

7.1 Case \mathrm{A}

Let us consider a situation where an ordinary turning point v hits against a bidi‐

rectional segment l=([l];v_{0}, v_{1}) of the tree at t=t_{1} . We assume that v is neither
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v_{0} nor v_{1} ,
and that the bidirectional segment l and v intersect transversally. The

case A is classied into the following 4 sub‐cases, A‐1, A‐2, A‐3 and A‐4.

\bullet (Case A‐1) The type of  v and that of l are disjoint.

Disjoint situations do not cause any problem: the eective bidirectional bi‐

nary tree T(t) remains intact near t=t_{1}.

\bullet (Case A‐2) The type of  l and that of v are the same.

The bidirectional binary tree T(t) vanishes at t=t_{1} . The reverse order of

examples in [H1] pp. 53‐65 (Fig. III‐2‐12 \sim Fig. III‐2‐1) is considered to

give a corresponding example. This situation is related to a counterpart of

the Nishikawa phenomenon ([KKNT]) in the Noumi‐Yamada system.

 F$\Gamma$_{f^{ $\tau$}\mathrm{f}; $\iota$\cdot[t^{\mathrm{t}_{\dot{ $\iota$}}}1^{1\mathrm{r}^{\mathrm{b}}7^{L_{7}},}}\cdot\cdot $\nu$\cdot.l,f_{\mathrm{i}]} -\prime 4-|* $\iota$-1

Figure 14: Case A‐3.

\bullet (Case A‐3)  v is a simple turning point, and the type of v and that of l have

one and only one common index.

Let us consider the case A‐3 in detail. An eective bidirectional binary tree

T(t) only exists for t= $\tau$( $\theta$)( $\theta$>$\theta$_{1}) when the geometry near v is graphically
equivalent to \mathrm{A}-3-1 or \mathrm{A}-3-2 given in the Fig. 14. After v hits against l,
v becomes a new leaf node of T(t) ,

and the degree of T(t) increases. The

equality  $\phi$(t)= $\Phi$(T(t)) still holds near t=t_{1} where  $\Phi$(T(t)) is the total

integral value of the tree T(t) . Concrete examples of A‐3‐1 and A‐3‐2 are

given in [H1] pp. 68‐79 (Fig. IV‐I‐I \sim \mathrm{F}\mathrm{i}\mathrm{g}. IV‐3‐4).

\bullet (Case A‐4)  v is a double turning point, and the type of v and that of l have

one and only one common index.

The eective bidirectional binary tree T(t) continues to exist near t=t_{1}.

Examples of this case are given in [H1] pp. 93‐102 (Fig. V‐2‐1 \sim Fig. V‐2‐

10).
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7.2 Case \mathrm{B}

Let us consider a situation where the length of a bidirectional segment l of the tree

becomes zero at t=t_{1} . The case \mathrm{B} is classied into the two sub‐cases B‐1 and

B‐2.

\bullet (Case B‐1) One of the end points of  l is a leaf node.

Remark that the leaf node v of l is an ordinary turning point.

(Case \mathrm{B}-1-1 ) The leaf node v is a double turning point.
An eective bidirectional binary tree T(t) exists for t= $\tau$( $\theta$)( $\theta$>$\theta$_{1}) .

The degree of T(t) remains constant, and  $\phi$(t)= $\Phi$(T(t)) still holds.

Examples of (B‐l‐l) are given in [H1] pp. 93‐102 (Fig. V‐2‐1 \sim Fig.
V‐2‐10).

(Case \mathrm{B}-1-2 ) The leaf node v is a simple turning point.
An eective bidirectional binary tree T(t) exists for t= $\tau$( $\theta$)( $\theta$>$\theta$_{1}) .

Since the case B‐1‐2 is a reverse case of A‐3, the leaf node v will be

removed from the bidirectional binary tree T(t) ,
and the degree of T(t)

decreases. However  $\phi$(t)= $\Phi$(T(t)) still holds. Examples of B‐1‐2 are

given in [H1] pp. 83‐92 (Fig. V‐l‐l \sim Fig. V‐l‐ll).

\bullet (Case B‐2) Both end points of  l are branching nodes.

Figure 15: Case B‐2‐1.

As we have not yet studied all the cases exhaustively, we content ourselves

with the discussion about some basic case B‐2‐1 below.
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(Case \mathrm{B}-2-1 ) Assume that the geometry near the segment l is graph‐
ically equivalent to Fig. 15, where the type of v_{1} and that of v_{2} (resp.
w_{1} and w_{2} ) are disjoint. If they are not disjoint, the case A also occurs

at the same time. Remark that order relations of curves are uniquely
determined in this case.

Although the segment l will be replaced by another segment, an eective

bidirectional binary tree T(t) exists for t= $\tau$( $\theta$)( $\theta$>$\theta$_{1}) . The degree
of T(t) remains constant, and  $\phi$(t)= $\Phi$(T(t)) still holds. Examples of

B‐2‐1 are given in [H1] pp. 103‐110 (Fig. V‐3‐1 \sim Fig. V‐4‐4).

Summing up, for all sub‐cases of the case \mathrm{B} investigated here an eective

bidirectional binary tree T(t) exists for t= $\tau$( $\theta$)( $\theta$>$\theta$_{1}) . The author conjectures
that this fact always holds for the case B.

8 Formal Stokes curves of NY_{m}

We will apply the results obtained so far to the Noumi‐Yamada system NY_{m}.
Throughout this section, we always assume Assumptions 7.1 and 7.2.

Let  $\tau$ : [0, 1]\rightarrow \mathbb{C}_{t} be a portion of formal Stokes curve of NY_{m} emanating from

a turning point s= $\tau$(0) . The formal Stokes curve  $\tau$ is, by denition, the curve

dened by

{\rm Im}\displaystyle \int_{s}^{t}($\mu$_{+}-$\mu$_{-})dt=0,
where  $\mu$\pm are two roots of the characteristic equation of the linearized system of

 NY_{m} which merge at the turning point s
,

and we label $\mu$_{+} and $\mu$_{-} so that

{\rm Re}\displaystyle \int_{s}^{t}($\mu$_{+}-$\mu$_{-})dt>0
holds for t= $\tau$( $\theta$)( $\theta$>0) .

By a result of Takei [T2], for suciently small  $\theta$>0 there exists an eec‐

tive bidirectional binary tree T( $\tau$()) of the degree two in the Stokes geometry

 G_{k}(U; $\tau$ of  NYL_{m} which satises an integral relation

 $\Phi$(T( $\tau$( $\theta$)))=\displaystyle \frac{1}{2}\int_{s}^{ $\tau$( $\theta$)}($\mu$_{+}-$\mu$_{-})dt.
There are finitely many exceptional points E=\{ $\tau$($\theta$_{1}), . . :;  $\tau$($\theta$_{r});$\theta$_{1}<\cdots<$\theta$_{r}\}
in the Stokes curve  $\tau$

,
and we obtain the following:
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Theorem 8.1 Assume that at each exceptional point in  E
, only one of the cases

A‐1, A‐3‐1, A‐3‐2, A‐4, B‐1 or B‐2‐1 occurs, that is, we assume several cases do

not occur at the same time. Then there is an eective bidirectional binary tree

T( $\tau$()) in  G_{k}(U; $\tau$ for any  $\theta$>0 ,
and we have

 $\Phi$(T( $\tau$( $\theta$)))=\displaystyle \frac{1}{2}\int_{s}^{ $\tau$( $\theta$)}($\mu$_{+}-$\mu$_{-})dt.
Remark 8.2 In general, the tree T(t) grows or shrinks at an exceptional point
in E . Furthermore if the case A‐2 occurs at an exceptional point  $\tau$($\theta$_{j})\in E for

some j ,
the tree vanishes at that point and the portion \{ $\tau$( $\theta$); $\theta$>$\theta$_{j}\} of the

formal Stokes curve  $\tau$ is considered to become a dotted line. In fact, we can find

the similar situations for a Stokes curve generated by Nishikawa phenomena. The

author does not know such a thing really happens for a Stokes curve emanating
from a turning point of the first or the second kind in the sense of [KKNT].

9 Some comments

The study of degeneration of the Stokes geometry in view of eective bidirectional

binary trees has just begun. Although the title of this paper is �On the Stokes

geometry of the Noumi‐Yamada system�, almost all facts are established in a gen‐

eral framework. The reason why the author has chosen the title is that the initial

purposes of eective bidirectional binary trees were to understand very compli‐
cated Stokes geometry of the Noumi‐Yamada system well and clearly explain the

mechanisms of several strange phenomena of the system. For the Noumi‐Yamada

system, the initial purposes seem to have been achieved in a rather satisfactory
manner. However there still remain many problems to be attacked. In particular,
to handle the major behavior of eective bidirectional binary trees near exceptional
points is an important and further problem.
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