
Chaos in the Sixth Painlevé Equation
*

Katsunori Iwasaki and Takato Uehara

Graduate School of Mathematics, Kyushu University
6‐10‐1 Hakozaki, Higashi‐ku, Fukuoka 812‐8581 Japany

Abstract

In our previous paper [10] an ergodic theory of Painlevé VI is developed and

the chaotic nature of its Poincaré return map is discovered. This article outlines

the main contents of that work and describes the principal ideas leading to its

main results. An announcement of new results is also given along with some open

problems to be discussed in the future.

1 Introduction

In [10] the authors developed an ergodic theory of the sixth Painlevé equation and dis‐

covered the chaotic nature of its Poincaré return map along almost every loop in the

space of a time variable. As a résumé of [10], this article outlines the main contents of

that work and describes the principal ideas leading to its main results, presenting a few

remarks and discussions which could not be included in [10]. An announcement of some

advances made after the completion of [10] is also given along with some open problems
to be discussed in the near future.

The work [10] is built upon two foundations; one is the algebraic geometry of the

sixth Painlevé equation [7, 8, 9], especially its moduli‐theoretical formulation based on

geometric invariant theory [12]; the other is the ergodic theory of birational maps on

surfaces recently developed in [1, 3, 4, 5]. These two ingredients are combined fruitfully
via a Riemann‐Hilbert correspondence to reveal the chaotic nature of the sixth Painlevé

dynamics. Here our main objective is to construct an invariant measure which is mixing,
hyperbolic and of maximal entropy and to count the number of periodic points of the

Poincaré return map.

2 The Sixth Painlevé Equation

The sixth Painlevé equation \mathrm{P}() is a Hamiltonian system of dierential equations

\displaystyle \frac{dq}{dx}=\frac{\partial H( $\kappa$)}{\partial p}, \frac{dp}{dx}=-\frac{\partial H( $\kappa$)}{\partial q} , (1)
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Figure 1: A schematic picture of the sixth Painlevé dynamics

with a time variable x\in X :=\mathbb{P}^{1}-\{0, 1, \infty\} and unknown functions q=q(x) , p=p(x) ,

depending on complex parameters  $\kappa$= (; $\kappa$_{1}, $\kappa$_{2}, $\kappa$_{3}, $\kappa$_{4}) in the 4‐dimensional ane space

\mathcal{K}:=\{ $\kappa$=($\kappa$_{0}, $\kappa$_{1}, $\kappa$_{2}, $\kappa$_{3}, $\kappa$_{4})\in \mathbb{C}^{5}:2$\kappa$_{0}+$\kappa$_{1}+$\kappa$_{2}+$\kappa$_{3}+$\kappa$_{4}=1\},

where the Hamiltonian H( $\kappa$)=H(q, p, x; $\kappa$) is given by

x(x-1)H( $\kappa$) = (q_{0}q_{1}q_{x})p^{2}-\{$\kappa$_{1}q_{1}q_{x}+($\kappa$_{2}-1)q_{0}q_{1}+$\kappa$_{3}q_{0}q_{x}\}p+$\kappa$_{0}($\kappa$_{0}+$\kappa$_{4})q_{x},

with q_{v}:=q-v for v\in\{0, 1, x\} . It is known that \mathrm{P}() has the analytic Painlevé

property, that is, any meromorphic solution germ to equation (1) at a base point x\in X

admits a unique global analytic continuation along any path emanating from x as a

meromorphic function.

3 Algebraic Geometry of Painlevé VI

The equation (1) is only a fragmentary appearance of a more intrinsic object constructed

algebro‐geometrically [7, 8, 9], where \mathrm{P}() is formulated as a holomorphic, uniform,
transversal foliation on a fibration of certain smooth quasi‐projective rational surfaces

$\pi$_{ $\kappa$}:\mathcal{M}( $\kappa$)\rightarrow X:=\mathbb{P}^{1}-\{0, 1, \infty\},

whose fiber \mathcal{M}_{x}( $\kappa$) :=$\pi$_{ $\kappa$}^{-1}(x) over x\in X ,
called the space of initial conditions at time

x
,

is realized as a moduli space of stable parabolic connections (see Figure 1). In this

formulation the uniformity, namely, the geometric Painlevé property of the Painlevé foli‐

ation is a natural consequence of a solution to the Riemann‐Hilbert problem, especially
of the properness of the Riemann‐Hilbert correspondence [7]. Then equation (1) is just a

coordinate expression of the foliation on an ane open chart of \mathcal{M}( $\kappa$) and the analytic
Painlevé property for equation (1) is an immediate consequence of the geometric Painlevé
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property and the algebraicity of the phase space \mathcal{M}( $\kappa$) . Moreover, there exists a natu‐

ral compactication \mathcal{M}_{x}( $\kappa$)\mapsto\overline{\mathcal{M}}_{x}( $\kappa$) of the moduli space \mathcal{M}_{x}( $\kappa$) into a moduli space

\overline{\mathcal{M}}_{x}( $\kappa$) of stable parabolic phi‐connections.
Here we include a very sketchy explanation of the terminology used in the last para‐

graph. A stable parabolic connection is \mathrm{a} (rank 2) vector bundle with a Fuchsian connec‐

tion and a parabolic structure, satisfying a sort of stability in geometric invariant theory.
On the other hand, a stable parabolic phi‐connection is a variant of a stable parabolic
connection allowing a \backslash (\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{x}‐valued Planck constant� called a phi‐operator  $\phi$ such that

the generalized Leibniz rule

\nabla(fs)=df\otimes $\phi$(s)+f(s)

is satised, where the field  $\phi$ may be degenerate or simi‐classical. Then the moduli space

\mathcal{M}_{x}( $\kappa$) can be compactied by adding some semi‐classical objects, that is, some stable

parabolic phi‐connections with degenerate phi‐operator  $\phi$.
There is the following characterization of our moduli spaces (see Figure 2).

Theorem 1 ([7, 8, 9])

(1) The compactied moduli space \overline{\mathcal{M}}_{x}( $\kappa$) is isomorphic to an 8‐point blow‐up of the

Hirzebruch surfa ce $\Sigma$_{2}\rightarrow \mathbb{P}^{1} of degree 2.

(2) \overline{\mathcal{M}}_{x}( $\kappa$) has a unique eective anti‐canonical divisor \mathcal{Y}_{x}( $\kappa$) ,
which is given by

\mathcal{Y}_{x}() =2E_{0}+E_{1}+E_{2}+E_{3}+E_{4} , (2)

where E_{0} is the strict transfo rm of the section at innity and E_{1}, E_{2}, E_{3}, E_{4} are

the strict transfO rms of the fibers over the points 0 , 1, x, \infty\in \mathbb{P}^{1} of the Hirzebruch

surfa ce $\Sigma$_{2}\rightarrow \mathbb{P}^{1}.

(3) The support of the divisor \mathcal{Y}_{x}( $\kappa$) is exactly the locus where the phi‐operator  $\phi$ is

degenerate, with the coecients of formula (2) being the ranks of degeneracy of  $\phi$.
In particular,

\mathcal{M}_{x}( $\kappa$)=\overline{\mathcal{M}}_{x}( $\kappa$)-\mathcal{Y}_{x}( $\kappa$) .

This theorem implies that \overline{\mathcal{M}}_{x}( $\kappa$) is a generalized Halphen surface of type D_{4}^{(1)} in [14]
and (\overline{\mathcal{M}}_{x}( $\kappa$), \mathcal{Y}_{x}( $\kappa$)) is an Okamoto‐Painlevé pair of type \overline{D}_{4} in [13].

4 Poincaré Return Map

Since the Painlevé foliation is uniform (the geometric Painlevé property [7]), each loop  $\gamma$\in

$\pi$_{1}(X, x) admits global horizontal lifts along the foliation and induces an automorphism

$\gamma$_{*}:\mathcal{M}_{x}( $\kappa$)\rightarrow \mathcal{M}_{x}( $\kappa$) Q\mapsto Q' , (3)

called the Poincaré return map along the loop  $\gamma$ (see Figure 2). Then the main issues

discussed in [10] are the following.
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\mathcal{Y}_{x}( $\kappa$) : vertical leaves

()

Figure 2: Poincaré return map $\gamma$_{*}:\mathcal{M}_{x}( $\kappa$)\mathcal{O} along a loop  $\gamma$\in$\pi$_{1}(X, x)

Problem 2 Given a loop  $\gamma$\in$\pi$_{1}(X, x) ,

(1) explore the dynamical nature of the Poincaré return map $\gamma$_{*}:\mathcal{M}_{x}( $\kappa$)\mathcal{O} ; is it chaotic

?

(2) Count the number of periodic solutions of period N\in \mathbb{N} along  $\gamma$ ,
that is, the

cardinality of the set \mathrm{P}\mathrm{e}\mathrm{r}_{N}( $\gamma$; $\kappa$) :=\{Q\in \mathcal{M}_{x}( $\kappa$) : $\gamma$_{*}^{N}Q=Q\} of all initial

conditions that come back to the original positions after the N‐fold iterations of the

Poincaré return map $\gamma$_{*} . In particular, find the growth rate of \#\mathrm{P}\mathrm{e}\mathrm{r}_{N}(;  $\kappa$) as the

period N tends to innity.

Roughly speaking, our main results in [10] can be stated as follows.

The Poincaré return map (3) is chaotic along every non‐elementary loop  $\gamma$\in$\pi$_{1}(X, x)

This statement will be made precise in Theorem 6. Here the meaning of the adjective
\backslash chaotic� will be explained in §5, while the term �non‐elementary loop� is used in the

following sense.

‐Non‐elementary loop: Let $\gamma$_{1}, $\gamma$_{2}, $\gamma$_{3} be loops as in Figure 3. Since X=\mathbb{P}^{1}-\{0, 1, \infty\},
the fundamental group of X with base point at x is represented as

$\pi$_{1}(X, x)=\langle$\gamma$_{1}, $\gamma$_{2}, $\gamma$_{3}|$\gamma$_{1}$\gamma$_{2}$\gamma$_{3}=1\rangle . (4)

Denition 3 A loop  $\gamma$\in$\pi$_{1}(X, x) is said to be elementary if  $\gamma$ is conjugate to the loop
 $\gamma$_{i}^{m} for some index i\in\{1 , 2, 3 \} and some integer  m\in Z. Otherwise,  $\gamma$ is said to be

non‐elementary.
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Figure 3: Three basic loops  $\gamma$_{1}, $\gamma$_{2}, $\gamma$_{3} in X=\mathbb{P}^{1}-\{0, 1, \infty\}

5 Chaos in Surface Dynamics
Let f : S\rightarrow S be a holomorphic map on a complex surface S (in our case, S=\mathcal{M}_{x}( $\kappa$)
and f=$\gamma$_{*}) . By the word \backslash (chaos� we mean the following.

Denition 4 The dynamical system f : S\rightarrow S is said to be chaotic if there exists

an f‐invariant Borel probability measure  $\mu$ on  S such that the following conditions are

satised:

(C1) f has a positive entropy h_{ $\mu$}(f)>0 with respect to the measure  $\mu$.

(C2) f is mixing with respect to the measure  $\mu$ ,
that is,  $\mu$(f^{-n}(A)\cap B)\rightarrow $\mu$(A)(B) as

 n\rightarrow\infty for any Borel subsets  A, B of S . In particular, f is ergodic with respect to

 $\mu$.

(C3) The ergodic measure  $\mu$ is a hyperbolic measure of saddle type, that is,  L_{-}(f)<0<
L_{+}(f) ,

where L_{\pm}(f) are the Lyapunov exponents of f with respect to  $\mu$ . Moreover,
 $\mu$ has a product structure with respect to local stable and unstable manifolds.

(C4) hyperbolic periodic points of  f are dense in the support of  $\mu$.

Remark 5 (Three requirements for \backslash 

chaos�) While there are many possible deni‐

tions of \backslash (chaos� (see [2, 11, 15]), the denition adopted here is a typical one possessing
the following three ingredients usually required for \backslash (chaos�

(1) unpredictability: sensitive dependence on initial values (C1) and (C3);

(2) indecomposability: ergodicity and its related properties (C2);

(3) an element of regularity: periodic points which are dense (C4).
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Figure 4: Dynkin diagram of type D_{4}^{(1)}

6 Ane Weyl Group
In order to state the main results of [10] we review the ane Weyl group structure acting
on the parameter space \mathcal{K} . To this end we note that the ane space \mathcal{K} can be identied

with the linear space \mathbb{C}^{4} by the isomorphism

\mathcal{K}\rightarrow\sim \mathbb{C}^{4},  $\kappa$\mapsto($\kappa$_{1}, $\kappa$_{2}, $\kappa$_{3}, $\kappa$_{4}) ,

through which the standard (complex) Euclidean inner product on the latter space \mathbb{C}^{4} is

transferred to the former space \mathcal{K} . For each i\in\{0 , 1, 2, 3, 4 \} ,
let w_{i}\mathrm{c}\sim \mathcal{K} be the orthogonal

ane reection in the hyperplane \{ $\kappa$\in \mathcal{K} : $\kappa$_{i}=0\} . Then the group generated by w_{0}, w_{1},

w_{2} , W3, w_{4} is an ane Weyl group of type D_{4}^{(1)} corresponding to the Dynkin diagram in

Figure 4:

W(D_{4}^{(1)}):=\langle w_{0}, w_{1}, w_{2} ,
W3, w_{4}\rangle.

Let Wall be the union of the reecting hyperplanes of all reections in the group W(D_{4}^{(1)}) .

Explicitly these hyperplanes are given by ane linear relations

$\kappa$_{i}=m, $\kappa$_{1}\pm$\kappa$_{2}\pm$\kappa$_{3}\pm$\kappa$_{4}=2m+1 (m\in \mathbb{Z}, i\in\{1,2,3,4\}) .

In [10], Problem 2 was discussed only under the condition that  $\kappa$ is generic, i.e., only
when  $\kappa$\in \mathcal{K} —Wall, and the nongeneric case  $\kappa$\in Wall was not treated. See Theorem

6 for the results in the generic case. As to the nongeneric case, some progress was made

after the completion of [10], which will be announced in the final section of this article

(see Theorem 13).

7 Chaos in Painlevé VI

Under the set‐up mentioned above the main results of [10] are stated in the following
manner.

Theorem 6 ([10]) Assume that  $\kappa$\in \mathcal{K} —Wall. For any non‐elementary loop  $\gamma$\in

$\pi$_{1}(X, x) ,
the Poincaré return map $\gamma$_{*}:\mathcal{M}_{x}( $\kappa$)\mathcal{O} is chaotic, that is, there exists a natural

$\gamma$_{*} ‐invariant Borel probability measure $\mu$_{ $\gamma$} such that all the conditions (C1) -(\mathrm{C}4) in Def‐
inition 4 are satised. Moreover, there is a real number  $\lambda$( $\gamma$)>1 ,

called the dynamical
degree along  $\gamma$ , such that

(1) measure‐theoretic entropy: the measure‐theoretic entropy of the Poincaré return

map  $\gamma$_{*}:\mathcal{M}_{x}( $\kappa$)\mathcal{O} with respect to the invariant measure $\mu$_{ $\gamma$} is given by

h_{$\mu$_{ $\gamma$}}($\gamma$_{*})=\log $\lambda$( $\gamma$) ,
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(2) number of periodic points: the cardinality of the set \mathrm{P}\mathrm{e}\mathrm{r}_{N}(;  $\kappa$) is given by

\#\mathrm{P}\mathrm{e}\mathrm{r}_{N}( $\gamma$; $\kappa$)= $\lambda$( $\gamma$)^{N}+ $\lambda$( $\gamma$)^{-N}+4.
In particular the number \#\mathrm{P}\mathrm{e}\mathrm{r}_{N}(;  $\kappa$) grows exponentially with the growth rate  $\lambda$( $\gamma$) .

(3) There exists an algorithm to calculate  $\lambda$( $\gamma$) in terms of the reduced word for a min‐

imal representative of  $\gamma$ in the alphabet  $\gamma$_{1}, $\gamma$_{2}, $\gamma$_{3} (see Algorithm 10). Moreover the

dynamical degree  $\lambda$( $\gamma$) is a quadratic unit admitting a lower bound

 $\lambda$( $\gamma$)\geq 3+2\sqrt{2} (5)

where the equality holds if and only if  $\gamma$ is an eight‐loop introduced in Example 7.

We present two examples to illustrate Theorem 6. In what follows we write  h( $\gamma$) :=

h_{$\mu$_{ $\gamma$}}

Example 7 We put x_{1}=0, x_{2}=1,  x_{3}=\infty (see Figures 3 and 5).

(1) An eight‐loop is a loop conjugate to $\gamma$_{i}$\gamma$_{j}^{-1} for some indices \{i, j, k\}=\{1 , 2, 3 \} . For

any eight‐loop  $\gamma$ ,
one has

 h( $\gamma$)=\log(3+2\sqrt{2}) , \#\mathrm{P}\mathrm{e}\mathrm{r}_{N}(;  $\kappa$)=(3+2\sqrt{2})^{N}+(3+2\sqrt{2})^{-N}+4.
The eight‐loop is the most

\backslash 

(elementary� loop among all non‐elementary loops in

the sense that the lower bound is attained in (5).

(2) A Pochhammer loop is a loop conjugate to the commutator [; $\gamma$_{j}^{-1}]=$\gamma$_{i}$\gamma$_{j}^{-1}$\gamma$_{i}^{-1}$\gamma$_{j}
for some indices \{i, j, k\}=\{1 , 2, 3 \} . For any Pochhammer loop \wp ,

one has

 h(\wp)=\log(9+4\sqrt{5}) , \#\mathrm{P}\mathrm{e}\mathrm{r}_{N}(\wp; $\kappa$)=(9+4\sqrt{5})^{N}+(9+4\sqrt{5})^{-N}+4.

Remark 8 We showed that the Poincaré return map is chaotic along every non‐elementary
loop. It is natural to ask how it is along an elementary loop. The answer is that it is

integrable! The moduli space \mathcal{M}_{x}( $\kappa$) has a natural symplectic structure and, for every

 $\gamma$\in$\pi$_{1}(X, x) ,
the Poincaré return map $\gamma$_{*}:\mathcal{M}_{x}( $\kappa$)\mathcal{O} is a symplectic automorphism. Now,

if  $\gamma$ is elementary, then it turns out that  $\gamma$_{*} preserves a Lagrangian fibration. In this sense

it is Liouville integrable.

8 Algorithm to Calculate Dynamical Degree

The algorithm to calculate the dynamical degree  $\lambda$( $\gamma$) is given in terms of the reduced

word for a minimal representative of the conjugacy class of the loop  $\gamma$\in$\pi$_{1}(X, x) and also

in terms of the universal Coxeter group of rank 3 and its geometric representation.
‐ Minimal representative of a loop. Any loop  $\gamma$\in$\pi$_{1}(X, x) admits an expression

 $\gamma$=$\gamma$_{j_{1}}^{$\epsilon$_{j_{1}}}$\gamma$_{j_{2}}^{$\epsilon$_{j_{2}}}\cdots$\gamma$_{j_{m}}^{$\epsilon$_{j_{m}}} , (6)

with some positive integer m\in \mathbb{N} ,
some indices (jl, .

::, j_{m} ) \in\{1, 2, 3\}^{m} and some signs
($\epsilon$_{j_{1}}, . ::, $\epsilon$_{j_{m}})\in\{\pm 1\}^{m} . The expression (6) is said to be reduced if the length m is minimal

among all feasible expressions. The length \ell_{ $\pi$}1() of the loop  $\gamma$ is dened to be the length
 m of the reduced expression (6) of  $\gamma$.
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Figure 5: An eight‐loop (left) and a Pochhammer loop (right)

Denition 9 A loop  $\gamma$\in$\pi$_{1}(X, x) is said to be minimal if it has the minimal length
among all loops conjugate to  $\gamma$.

‐ Universal Coxeter group of rank 3: Consider the universal Coxeter group of rank

3, that is, the free product of three copies of \mathbb{Z}_{2},

G= UCG(3) := \langle $\sigma$_{1}, $\sigma$_{2}, $\sigma$_{3}|$\sigma$_{1}^{2}=$\sigma$_{2}^{2}=$\sigma$_{3}^{2}=1\rangle\cong \mathbb{Z}_{2}*\mathbb{Z}_{2}*\mathbb{Z}_{2} . (7)

Any element  $\sigma$\in G is uniquely represented as

 $\sigma$=$\sigma$_{i_{1}}$\sigma$_{i_{2}}\cdots$\sigma$_{i_{n}} , (8)

with some n\in \mathbb{N} and some indices (il, . .

:; i_{n} ) \in\{1, 2, 3\}^{n} such that every neighboring
indices i_{v} and i_{v+1} are distinct. The expression (8) is called the reduced expression of  $\sigma$

and the number \ell_{G}( $\sigma$) :=n is called the length of  $\sigma$ . An element  $\sigma$\in G is said to be even

if the length \ell_{G}( $\sigma$) is an even integer. Let G(2) be the subgroup of all even elements in G.

Then the change of alphabets \{$\gamma$_{1}^{\pm 1}, $\gamma$_{2}^{\pm 1}, $\gamma$_{3}^{\pm 1}\}\rightarrow\{$\sigma$_{1}, $\sigma$_{2}, $\sigma$_{3}\} according to the translation

rule

$\gamma$_{1}^{\pm 1}\mapsto\{ $\sigma$_{2}$\sigma$_{1}$\sigma$_{1}$\sigma$_{2} $\gamma$_{2}^{\pm 1}\mapsto\{ $\sigma$_{3}$\sigma$_{2}$\sigma$_{2}$\sigma$_{3} $\gamma$_{3}^{\pm 1}\mapsto\left\{\begin{array}{l}
$\sigma$_{3}$\sigma$_{1}\\
$\sigma$_{1}$\sigma$_{3}
\end{array}\right. (9)

induces an isomorphism of groups

$\pi$_{1}(X, z)\rightarrow\sim G(2)\subset G,  $\gamma$\mapsto $\sigma$.

If the expression (6) is reduced in $\pi$_{1}(X, x) ,
then the resulting word (8) is also reduced

in G
,

and hence the reduced expression (6) is unique for a given loop  $\gamma$ and one has

\ell_{G}( $\sigma$)=2\ell_{ $\pi$}1() ,
where  $\sigma$\in G(2) is the element corresponding to the loop  $\gamma$.

‐ Gemetric representation. Any Coxeter group admits its geometric representation
[6]. We apply this construction to our particular group G . Let V:=\mathbb{R}e_{1}\oplus \mathbb{R}e_{2}\oplus \mathbb{R}e_{3} be

the 3‐dimensional vector space endowed with the nondegenerate symmetric bilinear form

B(e_{i}, e_{j})=\left\{\begin{array}{ll}
1 & (i=j) ,\\
-1 & (i\neq j) .
\end{array}\right.
For each index i\in\{1 , 2, 3 \} ,

we dene a reection r_{i} : V\rightarrow V by

r_{i}(v) :=v-2B(e_{i}, v)e_{i} (v\in V) .
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Then there exists a faithful representation  $\rho$ :  G\rightarrow GL(V) such that  $\rho$($\sigma$_{i})=r_{i} for each

i\in\{1 , 2, 3 \} ,
which is referred to as the geometric representation of G . Through this

representation the group G may be identied with the reection group \langle r_{1}, r_{2},  r_{3}\rangle acting
on (V;, B) .

For each i\in\{1 , 2, 3 \} ,
we dene an endomorphism s_{i} : V\rightarrow V by the mean of the

identity and the i‐th basic reection r_{i} , namely,

s_{i}(v) :=\{v+r_{i}(v)\}/2=v-B(e_{i}, v)e_{i} (v\in V) .

Then the algorithm to calculate the dynamical degree  $\lambda$( $\gamma$) is given in the following
manner.

Algorithm 10 ([10]) Given a non‐elementary loop  $\gamma$\in$\pi$_{1}(X, x) ,

(1) choose a minimal representative of the conjugacy class of  $\gamma$ and call it  $\gamma$ again.

(2) Take the reduced expression of  $\gamma$ as in (6).

(3) Change alphabets \{$\gamma$_{1}^{\pm 1}, $\gamma$_{2}^{\pm 1}, $\gamma$_{3}^{\pm 1}\}\rightarrow\{$\sigma$_{1}, $\sigma$_{2}, $\sigma$_{3}\} according to the rule (9) to obtain

the corresponding element  $\sigma$\in G(2) , together with its reduced expression as in (8).

(4) To the indices (il, . . .

, i_{n} ) in (8), associate the endomorphism  s_{ $\gamma$}:=s_{i_{n}}\cdots s_{i_{2}}s_{i_{1}}\in
End  V.

(5) Take its trace  $\alpha$( $\gamma$)=\mathrm{T}\mathrm{r}[s_{ $\gamma$} : V\rightarrow V] ,
which turns out to be an integer \geq 6.

(6) Finally, let  $\lambda$( $\gamma$) be the largest root of the quadratic equation $\lambda$^{2}- $\alpha$( $\gamma$) $\lambda$+1=0.

9 Riemann‐Hilbert Correspondence

As is mentioned in the Introduction, the work [10] is based on an interplay between the

algebraic geometry of the sixth Painlevé equation and the ergodic theory of birational

maps on complex surfaces, connected via a Riemann‐Hilbert correspondence. Following
[7, 8, 9] we review the formulation of it together with a solution to the Riemann‐Hilbert

problem.
Generally speaking, a Riemann‐Hilbert correspondence is the map from a moduli space

of flat connections to a moduli space of monodromy representations, sending a connection

to its monodromy. In our case, the moduli spaces of monodromy representations (with
fixed local monodromy data) are realized as ane cubic surfaces S( $\theta$)=\{x\in \mathbb{C}_{x}^{3} :

f(x,  $\theta$)=0\} with

f(x,  $\theta$):=x_{1}x_{2}x_{3}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-$\theta$_{1}x_{1}-$\theta$_{2}x_{2}-$\theta$_{3}x_{3}+$\theta$_{4},

parametrized by the 4‐dimensional ane space  $\Theta$:=\mathbb{C}_{ $\theta$}^{4} . There exists a holomorphic map

rh :\mathcal{K}\rightarrow $\Theta$,

called the Riemann‐Hilbert correspondence in the parameter level [7]. It is a W(D_{4}^{(1)}) ‐
covering ramifying along Wall and mapping Wall onto the discriminant locus of the
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Figure 6: Riemann‐Hilbert correspondence in the parameter level
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Figure 7: Stratication by Dynkin subdiagrams

cubic surfaces (see Figure 6). Then our Riemann‐Hilbert correspondence is formulated as

a holomorphic map

\mathrm{R}\mathrm{H}_{x, $\kappa$} : \mathcal{M}_{x}( $\kappa$)\rightarrow S() with  $\theta$=\mathrm{r}\mathrm{h}( $\kappa$) . (10)

The singularity structure of the cubic surfaces S( $\theta$) can be described in terms of the

stratication of \mathcal{K} by Dynkin subdiagrams. For each proper subset I\subset\{0 , 1, 2, 3, 4 \} ,
we

put

\mathcal{K}_{I} = W(D_{4}^{(1)}) ‐translates of the subset \{$\kappa$_{i}=0(i\in I), $\kappa$_{i}\neq 0(i\not\in I)\},
D_{I} = Dynkin subdiagram of D_{4}^{(1)} that has nodes \bullet exactly in  I.

For example one has the big open \mathcal{K}_{\emptyset}=\mathcal{K}- Wall when  I=\emptyset . Other examples are given
in Figure 7. Then there is a very neat solution to the Riemann‐Hilbert problem.

Theorem 11 ([7, 8, 9]) Given any  $\kappa$\in \mathcal{K} , put  $\theta$=\mathrm{r}\mathrm{h}( $\kappa$)\in $\Theta$ . Then,

(1) if  $\kappa$\in \mathcal{K}_{I} then S( $\theta$) has Kleinian singularities of Dynkin type D_{I},

(2) the Riemann‐Hi lbert correspondence (10) is a proper surjective map that is an ana‐

lytic minimal resolution of singularities.

For example, on the big open, namley, if  $\kappa$\in \mathcal{K}- Wall then S( $\theta$) is smooth and \mathrm{R}\mathrm{H}_{x, $\kappa$} is

biholomorphic, while if  $\kappa$= (0,0,0,0,1) then S( $\theta$) has a Kleinian singularity of type D_{4}
and \mathrm{R}\mathrm{H}_{x, $\kappa$} is an analtytic minimal resolution as depicted in Figure 8.
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Figure 8: Resolution of singularities by Riemann‐Hilbert correspondence

10 Invariant Measure

In this section a brief account of how to establish Theorem 6 is given with emphasis on

how to construct the invariant measure $\mu$_{ $\gamma$} . The main strategy consists of the following
procedures:

(1) to recast the Poincaré return map $\gamma$_{*}:\mathcal{M}_{x}( $\kappa$)\mathcal{O} to an automorphism on S( $\theta$) arising
as an action of braids on the moduli space of monodromy representations;

(2) to extend the automorphism to a birational map on the projective cubic surface

\overline{S}( $\theta$) which is a compactication of the ane cubic surface S( $\theta$) ;

(3) to apply the ergodic theory of birational maps on complex surfaces;

(4) to pull back the obtained result to the moduli space \mathcal{M}_{x}( $\kappa$) and the Poincaré return

map on it via the Riemann‐Hilbert correspondence to reach our final goal.

Some of the ingredients in these procedures are explained below. At this stage an overview

of the sixth Painlevé dynamics as in Figure 9 may be helpful in grasping their total images.
First we explain how to recast the Poincaré return map $\gamma$_{*}:\mathcal{M}_{x}( $\kappa$)\mathcal{O} to an automor‐

phism  $\sigma$ :  S( $\theta$)\mathcal{O} . We begin by the case where  $\gamma$ is one of the basic loops  $\gamma$_{1}, $\gamma$_{2}, $\gamma$_{3} in

(4). This case is closely related to the (2, 2, 2)‐structure of the affine cubic surface S( $\theta$) ,

namely, to the fact that its dening equation f(x,  $\theta$)=0 is a quadratic equation in each

variable x_{i}, i\in\{1 , 2, 3 \} . This implies that the line through a point x\in S( $\theta$) parallel to

the x_{i}‐axis passes through a unique second point x'\in S( $\theta$) (see Figure 10), which denes

three involutions

$\sigma$_{i} : S( $\theta$)\rightarrow S( $\theta$) , x\mapsto x^{0}, (i=1,2,3) .

It is shown in [10] that the group generated by $\sigma$_{1}, $\sigma$_{2}, $\sigma$_{3} is a universal Coxeter group of

rank 3, and hence it may be thought of as a concrete realization of the abstract group in

(7). Then via the Riemann‐Hilbert correspondence (10), the basic Poincaré return maps

are transferred to automorphisms on S( $\theta$) in such a manner as

$\gamma$_{1*}^{\pm 1}\mapsto\{ $\sigma$_{2}$\sigma$_{1}$\sigma$_{1}$\sigma$_{2} $\gamma$_{2*}^{\pm 1}\mapsto\{ $\sigma$_{3}$\sigma$_{2}$\sigma$_{2}$\sigma$_{3} $\gamma$_{3*}^{\pm 1}\mapsto\left\{\begin{array}{l}
$\sigma$_{3}$\sigma$_{1}\\
$\sigma$_{1}$\sigma$_{3}
\end{array}\right. (11)
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\bullet invariant measure  v_{ $\sigma$}=v_{ $\sigma$}^{+}\wedge v_{ $\sigma$}^{-}

Figure 9: An overview of the sixth Painlevé dynamics

which agrees with the translation rule (9). Then for a general loop  $\gamma$ ,
the passage from

the Poincaré return map  $\gamma$_{*}:\mathcal{M}_{x}( $\kappa$)\mathcal{O} to an automorphism  $\sigma$ :  S( $\theta$)\mathcal{O} proceeds just as

in the procedure from formula (6) to formula (8) in Algorithm 10.

The next step is to compactify the ane cubic surface S( $\theta$) by the standard embedding

S( $\theta$)\mapsto\overline{S}( $\theta$)\subset \mathbb{P}^{3}, x=(x_{1}, x_{2}, x_{3})\mapsto[1:x_{1}:x_{2}:x_{3}],

where \overline{S}( $\theta$)=\{X\in \mathbb{P}^{3} : F(X,  $\theta$)=0\} is the projective cubic surface with dening
equation

F(X,  $\theta$)=X_{1}X_{2}X_{3}+X_{0}(X_{1}^{2}+X_{2}^{2}+X_{3}^{2})-X_{0}^{2}($\theta$_{1}X_{1}+$\theta$_{2}X_{2}+$\theta$_{3}X_{3})+$\theta$_{4}X_{0}^{3}.

The projective surface \overline{S}( $\theta$) is obtained from the ane surface S( $\theta$) by adding the tri‐

tangent lines L=L_{1}\cup L_{2}\cup L_{3} at innity (see Figure 11), where the line L_{i} is dened

by
L_{i}=\{X\in \mathbb{P}^{3}:X_{0}=X_{i}=0\} (i=1,2,3) .

Now a crucial fact is that any element  $\sigma$ of  G=\langle$\sigma$_{1}, $\sigma$_{2}, $\sigma$_{3}\rangle ,
which is an automorphisms

of  S( $\theta$) ,
extends to a birational map on \overline{S}( $\theta$) . On th other hand, it cannot be expected that

the Poincaré return map $\gamma$_{*} ,
which is an (analytic) automorphism of the quasi‐projective

surface \mathcal{M}_{x}( $\kappa$) ,
does extend to a bimeromorphic map on the projective surface \overline{\mathcal{M}}_{x}( $\kappa$) ,
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\mathrm{x} ‐axis

Figure 10: Involutions of the (2, 2, 2)‐surface S( $\theta$)

since the Painlevé flow and its Poincaré return map are too transcendental to admit such

an extension. Thus one of the important roles of the Riemann‐Hilbert correspondence is

that it reduces the highly transcendental Poincaré return map $\gamma$_{*} into a more tractable

birational map  $\sigma$ on \overline{S}( $\theta$) ,
to which some recent advances [1, 3, 4, 5] in the ergodic theory

of birational maps are applicable.
We procced to the ergodic theory. As in [10], assume that  $\kappa$ is generic, i.e.,  $\kappa$\in

\mathcal{K} —Wall. Theorem 11 then implies that S( $\theta$) is smooth and the Riemann‐Hilbert cor‐

respondence (10) is biholomorphic, and further it is not hard to see that the projective
cubic surface \overline{S}( $\theta$) is also smooth. Applying the methods in [1, 3, 4, 5] to our situation

enables us to calculate the induced action of the birational map  $\sigma$ : \overline{S}( $\theta$)\mathcal{O} on the closed

positive (1, 1)‐currents and also on the (1, 1)‐cohomology group. Moreover, it enables us

to think of the stable and unstable currents v_{ $\sigma$}^{\pm} for the birational map  $\sigma$ and to legitimate
their wedge product as a measure

 v_{ $\sigma$}=v_{ $\sigma$}^{+}\wedge v_{ $\sigma$}^{-} . (12)

It should be pointed out that the famous twenty‐seven lines and related geometry on a

smooth projective cubic surface also play an important part in these arguments.

Theorem 12 ([10]) Assume that  $\kappa$\in \mathcal{K} —Wall. For any non‐elementary loop  $\gamma$\in

$\pi$_{1}(X, x) ,
let  $\sigma$ : \overline{S}( $\theta$)\mathcal{O} be the birational map corresponding to the Poincaré return

map $\gamma$_{*}:\mathcal{M}_{x}( $\kappa$)\mathcal{O} via the Riemann‐Hi lbert correspondence (10). Then aft er a suitable

renormalization, the wedge product (12) yields a  $\sigma$ ‐invariant Borel probability measure on

\overline{S}( $\theta$) such that

(1) all the conditions (C1) -(\mathrm{C}4) in Denition 4 are satised,

(2) v_{ $\sigma$} puts no mass on any algebraic curve on \overline{S}( $\theta$) ,

(3) the measure‐theoretic entropy of  $\sigma$ with respect to  v_{ $\sigma$} is given by h_{v_{ $\sigma$}}() =\log $\lambda$( $\sigma$) ,

where  $\lambda$( $\sigma$) is the spectral radius of the induced map $\sigma$^{*} on the cohomology group

H^{1,1}(\overline{S}( $\theta$)) .

Since the tritangent lines at innity, L=L_{1}\cup L_{2}\cup L_{3} ,
are an algebraic curve on \overline{S}( $\theta$) ,

it follows from property (2) of Theorem 12 that the v_{ $\sigma$} ‐measure of L is zero. Hence the
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Figure 11: Tritangent lines at innity on \overline{S}( $\theta$)

probability measure v_{ $\sigma$} can be restricted to the ane cubic surface S( $\theta$)=\overline{S}()L without

losing any mass. Then the resulting measure v_{ $\sigma$}|_{\mathrm{S}( $\theta$)} ,
which is a probability measure on

S( $\theta$) ,
can be pulled back to the moduli space \mathcal{M}_{x}( $\kappa$) to yield a probability measure

$\mu$_{ $\gamma$}=\mathrm{R}\mathrm{H}_{x, $\kappa$}^{*}(v_{ $\sigma$}|_{\mathrm{S}( $\theta$)}) on \mathcal{M}_{x}() (13)

via the Riemann‐Hilbert correspondence (10), since it is a biholomorphism. This last

measure is exactly what we have mentioned in Theorem 6. From property (3) of Theorem

12 one has h_{$\mu$_{ $\gamma$}}($\gamma$_{*})=\log $\lambda$( $\sigma$) and the latter quantity  $\lambda$( $\sigma$) can be calculated according to

Algorithm 10.

11 Some Open Problems

In the study of the sixth Painlevé equation as a chaotic dynamical system, there remain

many open problems yet to be discussed, some of which are presented in the end of this

article.

‐ Nongeneric case. In [10], Theorem 6 was established only under the condition that

 $\kappa$ is generic, that is, only when  $\kappa$\in \mathcal{K} —Wall. Now it is natural to ask what happens
if  $\kappa$\in Wall. The latter case is more dicult to treat, where the diculty lies in the

fact that the Riemann‐Hilbert correspondence (10) is not a biholomorphism but only
an analytic resolution of Kleinian singularities (see Theorem 11) and hence it does not

serve as a strict conjugacy. In order to get a strict conjugacy we should take a standard

algebraic minimal resolution of singularities  $\varphi$ : \overline{S}( $\theta$)\rightarrow S( $\theta$) and lift the Riemann‐Hilbert

correspondence (10) so as to induce the commutative diagram in Figure 12. Then the

lifted Riemann‐Hilbert correspondence

\overline{\mathrm{R}\mathrm{H}}_{x, $\kappa$}:\mathcal{M}_{x}( $\kappa$)\rightarrow\overline{S}( $\theta$)
is a biholomorphism and the Poincaré return map on \mathcal{M}_{x}( $\kappa$) is strictly conjugated to an

automorphism of \overline{S}( $\theta$) which can be extended to a birational map on the compactication
of \overline{S}( $\theta$) . In this manner we are still able to show that the chaotic nature of the Poincaré

return map carries over to the nongeneric case, as is announced in the following:
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\mathcal{M}_{x}( $\kappa$)\rightarrow^{\overline {}\mathrm{R}\mathrm{H}_{x,, $\kappa$}}\overline{S}( $\theta$)
\Vert \downarrow,

\mathcal{M}_{x}( $\kappa$)\rightarrow^{\mathrm{R}\mathrm{H}_{x,, $\kappa$}}S( $\theta$)

Figure 12: Lift of the Riemann‐Hilbert correspondence

Theorem 13 Even when  $\kappa$\in Wall Theorem 6 remains valid except for assertion (2).

However the issue treated in assertion (2) of Theorem 6, namely, calculating the num‐

ber \#\mathrm{P}\mathrm{e}\mathrm{r}_{N}(;  $\kappa$) of periodic points becomes subtle and yet to be explored. The subtlety
comes from the existence of the exceptional locus \mathcal{E}_{x}( $\kappa$)\subset \mathcal{M}_{x}( $\kappa$) for the resolution of

singularities by the Riemann‐Hilbert correspondence \mathrm{R}\mathrm{H}_{x, $\kappa$} . It may happen that an irre‐

ducible component of \mathcal{E}_{x}( $\kappa$) is a periodic curve of the Poincaré return map $\gamma$_{*}:\mathcal{M}_{x}( $\kappa$)\mathcal{O}.
In that case the cardinality of \mathrm{P}\mathrm{e}\mathrm{r}_{N}(;  $\kappa$) becomes innite and therefore the problem
should be replaced by the following:

Problem 14 Find the cardinality of \mathrm{P}\mathrm{e}\mathrm{r}_{\mathring{N}}(;  $\kappa$) :=\{Q\in \mathcal{M}_{x}( $\kappa$)-\mathcal{E}_{x}( $\kappa$) : $\gamma$_{*}^{N}Q=Q\}.

The finiteness of \#\mathrm{P}\mathrm{e}\mathrm{r}_{N}^{\mathrm{o}}(;  $\kappa$) is already shown but its concrete value is yet to be calcu‐

lated.

‐ Properties of invariant measures. The Poincaré return map $\gamma$_{*}:\mathcal{M}_{x}( $\kappa$)\mathcal{O} admits

(at least) two invariant measures; one is the geometric measure, that is, the symplectic
volume form vol() constructed geometrically, associated to the Hamiltonian structure

of \mathrm{P}_{\mathrm{V}\mathrm{I}}( $\kappa$) ; the other is the dynamical measure, that is, the Borel probability measure

$\mu$_{ $\gamma$} constructed dynamically as the �final state� of the innitely many iterations of the

Poincaré return map $\gamma$_{*} . Then it is interesting to discuss the relation between these two

measures. For example one may pose:

Problem 15 Is the dynamical measure $\mu$_{ $\gamma$} absolutely continuous with respect to the

geometric measure vol() ?

‐ Random Poincaré map. So far, the Poincaré return map $\gamma$_{*}:\mathcal{M}_{x}( $\kappa$)\mathcal{O} has been

considered for each individual loop  $\gamma$\in$\pi$_{1}(X, x) . A next step would be to discuss the

interaction of plural Poincaré return maps, namely, to consider the Poincaré return maps

$\gamma$_{*}:\mathcal{M}_{x}( $\kappa$)\mathcal{O} along various loops  $\gamma$\in$\pi$_{1}(X, x) together. A stochastic approach might be

eective in such a question.

Problem 16 Explore statistical properties of the Poincaré return map over the random

walks on the fundamental group $\pi$_{1}(X, x) or on the universal Coxeter group G=\mathrm{U}\mathrm{C}\mathrm{G}(3) .
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