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1 Introduction

In this note, we review our recent result with S. Okumura that algebraic solutions of

the Painlevé equations from the second to the fifth are obtained by pullback transfor‐

mations of conuent hypergeometric equations.
It is useful to study special solutions to understand the Painlevé equations. Es‐

pecially, algebraic solutions and the Riccati solutions (hypergeometric‐type solutions)
are studied by many researchers. Now all of algebraic solutions of the Painlevé equa‐

tions are classied except for the sixth equation. The Riccati solutions are completely
classied for all the Painlevé equations.

The Painlevé equations can be obtained by isomonodromic deformations of the

linear ordinary equations. But special solutions are mainly studied without isomon‐

odromic deformation method. In this note we will show that algebraic solutions of

the Painlevé equations from the first to the fifth can be computed by using pullback
transformations of conuent hypergeometric equations.

Many algebraic solutions of the sixth Painlevé equation can be computed by using
pullback transformations of the Gauss hypergeometric equations by Kitaev [15]. Such

pullback transformations were used by R. Fuchs [4] at first. He proposed the following
problem:

When can we transform a linearization of a Painlevé function y(t)

\displaystyle \frac{d^{2}v}{dz^{2}}=Q(t, y(t), z)v
into an equation without the deformation parameter t

\displaystyle \frac{d^{2}u}{dx^{2}}=\tilde{Q}(x)u
by a suitable transformation x=x(z, t) , v=\sqrt{dz}/dxu?
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He showed that the linear equation can be transformed to the Gauss hypergeometric
equation for three, four and six divided points of Picard�s solutions. See also [5].

While R. Fuchs and Kitaev studied only the sixth Painlevé equation, we study other

types of Painlevé equations. We classify pullback transformations of the conuent

hypergeometric equations, because the linear equations corresponding to the Painlevé

equations from the first to the fifth have irregular singularities. We remark that we

use not only the standard Whittaker conuent hypergeometric equation but also a

degenerate conuent hypergeometric equation.
In section two, we review isomonodromic deformations associated with the Painlevé

equations. In [16], Okamoto presented a coalescent diagram of the Painlevé equations
using conuence of singularities. We extend his coalescent diagram to include irregular
singularities whose Poincaré rank are half‐integers. We call linear equations in our

coalescent diagram equations of the Painlevé type.
In section three, we list up all of rational transformations of the conuent hypergeo‐

metric equations to linear equations of the Painlevé type. Such rational transformations

give most of all algebraic solutions of the Painlevé equations from the first to the fifth

and symmetric solutions, which are non‐algebraic solutions of the first, second and

fourth Painlevé equations [14], [9]. Although two of the algebraic solutions are not

obtained by rational transformations of the conuent hypergeometric equations, they
can also be obtained by non‐rational pullback transformations. Thus we can obtain

all of algebraic solutions of the Painlevé equations except for the sixth equation by
pullback transformations of conuent hypergeometric equations.

Since the monodromy representations for these two algebraic solutions are com‐

pletely reducible, they cannot be obtained by rational transformations of conuent

hypergeometric equations.
Some part of this paper is written while the author stayed at the Issac Newton

Institute in Cambridge for the summer programme \backslash (\mathrm{T}\mathrm{h}\mathrm{e} Painlevé Equations and Mon‐

odromy Problem�. The author expresses his best gratitude to the Newton Institute.

2 Coalescent diagram of the Painlevé equations

In this section, we extend the coalescent diagram of the Painlevé equations given by
Okamoto [16]. This section is a review of [18].
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We list the Painlevé equations:

P1) y'' = 6y^{2}+t,
P2) y'' = 2y^{3}+ty+ $\alpha$,

P4) y'' = \displaystyle \frac{1}{2y}y^{\prime 2}+\frac{3}{2}y^{3}+4ty^{2}+2(t^{2}- $\alpha$)y+\frac{ $\beta$}{y},
P3) y'' = \displaystyle \frac{1}{y}y^{\prime 2}-\frac{y'}{t}+\frac{ $\alpha$ y^{2}+ $\beta$}{t}+ $\gamma$ y^{3}+\frac{ $\delta$}{y},
P5) y'' = (\displaystyle \frac{1}{2y}+\frac{1}{y-1})y^{\prime 2}-\frac{1}{t}y'+\frac{(y-1)^{2}}{t^{2}}( $\alpha$ y+\frac{ $\beta$}{y})+ $\gamma$\frac{y}{t}+ $\delta$\frac{y(y+1)}{y-1},
P6) y'' = \displaystyle \frac{1}{2}(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t})y^{\prime 2}-(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t})y'

+\displaystyle \frac{y(y-1)(y-t)}{t^{2}(t-1)^{2}}[ $\alpha$+ $\beta$\frac{t}{y^{2}}+ $\gamma$\frac{t-1}{(y-1)^{2}}+ $\delta$\frac{t(t-1)}{(y-t)^{2}}] .

Here  $\alpha$,  $\beta$,  $\gamma$,  $\delta$ are complex parameters.
As usual, we write the coalescent diagram of the Painlevé equations as follows:

(2 + 2)

(1 + 1 + 1 + 1) (7/2)
@R

(1 + 3)

P6 \rightarrow P5 \backslash \nearrow
P3

@R P2 P1

P4

This diagram is well‐known since Painlevé [21]. But from the viewpoint of the

isomonodromic deformations, it is more natural to extend the diagram so that it in‐

cludes irregular singularities whose Poincare rank are half‐integers.
Let

\displaystyle \frac{d^{2}u}{dx^{2}}+p_{1}(x)\frac{du}{dx}+p_{2}(x)u=0 , (1)

be a second‐order linear equation where p(x) and p(x) have the expansion

 p_{1}(x)=c_{0}x^{k}+c_{1}x^{k-1}+\cdots , p_{2}(x)=d_{0}x^{l}+d_{1}x^{l-1}+\cdots ,

around  x=\infty with non‐zero constants  c_{0} and d_{0} . If

r=\displaystyle \max(k+1, (l+2)/2)
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is positive,  x=\infty is an irregular singularity of (1) and the number  r is called the

Poincaré rank of (1) at  x=\infty . The Poincaré rank  r may be a half integer. If  x=\infty is

an irregular singularity with the Poincaré rank  r
, (1) has a solution with asymptotics

u_{j}\sim\exp($\kappa$_{j}x^{r}) .

We list all types of the singularities and corresponding Painlevé equations:

(2)(3=2) (3=2)
@R @R

(4) (7=2)

(2)

(1) (3=2)(1) (1) (2)
@R@R

(1)(3) (1)(5=2)

\mathrm{P}3(\mathrm{D}^{(1)} \mathrm{P}3(\mathrm{D}^{(1)} \mathrm{P}3(\mathrm{D}^{(1)}
@R @R

P6 P5 deg‐P5 P2 P1

@R @R
P4 P34

Here the symbol (1) means a regular singularity and the symbol (n) means an

irregular singularity with the Poincaré rank n-1 . The symbol (1) means four regular
singularities. The singularity type (1) gives P6, which is shown in [3].

We explain the label of Painlevé equations. For the third Painlevé equation

y''=\displaystyle \frac{1}{y}y^{\prime 2}-\frac{y'}{t}+\frac{ $\alpha$ y^{2}+ $\beta$}{t}+ $\gamma$ y^{3}+\frac{ $\delta$}{y}
we divide into four types:

(P3‐A)  $\gamma$\neq 0,  $\delta$\neq 0
(P3‐B)  $\gamma$\neq 0,  $\delta$=0 or  $\gamma$=0,  $\delta$\neq 0
(P3‐C)  $\gamma$=0,  $\delta$=0

(P3‐D)  $\alpha$=0,  $\gamma$=0 or  $\beta$=0,  $\delta$=0.

(P3‐A), (P3‐B) and (P3‐C) are called \mathrm{P}3(D_{6}^{(1)}) , \mathrm{P}3(D_{7}^{(1)}) and \mathrm{P}3(D_{8}^{(1)}) , respectively.
We exclude (P3‐D) from a family of the Painlevé equations, since it is quadrature. In

the usual setting we fix  $\gamma$=4,  $\delta$=-4 for \mathrm{P}3(D_{6}^{(1)}) ,  $\alpha$=2,  $\gamma$=0,  $\delta$=-4 for \mathrm{P}3(D_{7}^{(1)})
and  $\alpha$=4,  $\beta$=-4,  $\gamma$=0,  $\delta$=0 for \mathrm{P}3(D_{8}^{(1)}) . These three dierent types of the third

equations were noticed by Painlevé [20]. For \mathrm{P}3(D_{7}^{(1)}) and \mathrm{P}3(D_{8}^{(1)}) ,
see also [19].
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We use another form of the third Painlevé equation \mathrm{P}3'( $\alpha$,  $\beta$,  $\gamma$,  $\delta$)

q''=\displaystyle \frac{1}{q}q^{2}-\frac{q'}{x}+\frac{ $\alpha$ q^{2}+ $\gamma$ q^{3}}{4x^{2}}+\frac{ $\beta$}{4x}+\frac{ $\delta$}{4q},
since P3� is is suited to isomonodromic deformations better than P3. We can change
P3 to P3� by x=t^{2}, ty=q.

For the fifth Painlevé equation

y''=\displaystyle \frac{1}{y}y^{\prime 2}-\frac{y'}{t}+\frac{ $\alpha$ y^{2}+ $\beta$}{t}+ $\gamma$ y^{3}+\frac{ $\delta$}{y},
we divide into three types:

(P5‐A)  $\delta$\neq 0
(P5‐B)  $\gamma$\neq 0,  $\delta$=0

(P5‐C)  $\gamma$=0,  $\delta$=0.

The case (P5‐A) is a generic P5 and we denote (P5‐B) as deg‐P5, which is equivalent
to \mathrm{P}3(D_{6}^{(1)})[7] . We exclude (P5‐C) from a family of the Painlevé equations, since it

is quadrature. In the usual setting we fix  $\delta$=-1/2 for (P5‐A) and  $\gamma$=-2,  $\delta$=0 for

(P5‐B).

2.1 The Flaschka‐Newell form

We have obtained ten dierent types of singularities. But it occurs that two dierent

types of singularities give the same Painlevé equations. There are two such examples;
(2)2 gives standard P3 while (1) (3/2) gives degenerate P5 with  $\delta$=0

,
but standard

P3 and degenerate P5 are equivalent. Similarly (4) gives standard P2 while (1) (5/2)
gives degenerate P4, but they are also equivalent. The degenerate P4 is nothing but

P34 in Gambier�s list [6]. It is known that P34 is equivalent to P2. We also show that

(1) (5/2) is equivalent to the Flaschka‐Newell form of P2 [2], [12], [13].
There are two dierent isomonodromic deformations of P2:  y''=2y^{3}+ty+ $\alpha$ . One

is by Miwa‐Jimbo [8] and the other is by Flaschka‐Newell [2]. In the matrix form

\displaystyle \frac{\partial Y}{\partial x}=A(x, t)Y, \frac{\partial Y}{\partial t}=B(x, t)Y,
the Flaschka‐Newell form (FN) is

A^{FN}(x, t)=-4\displaystyle \left(\begin{array}{ll}
x^{2} & yx\\
yx & -x^{2}
\end{array}\right)+\left(\begin{array}{ll}
t+2y^{2} & -2z\\
2z & -t-2y^{2}
\end{array}\right)-\displaystyle \left(\begin{array}{ll}
0 &  $\alpha$\\
 $\alpha$ & 0
\end{array}\right)\frac{1}{x},
(2)

B^{FN}(x, t)=\left(\begin{array}{ll}
1 & 0\\
0-1 & 
\end{array}\right)x+\left(\begin{array}{ll}
0 & y\\
y & 0
\end{array}\right)
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while the Miwa‐Jimbo form (MJ) is

A^{MJ}(x, t)=\displaystyle \left(\begin{array}{ll}
1 & 0\\
0-1 & 
\end{array}\right)x^{2}+\left(\begin{array}{ll}
0 & u\\
\frac{-2}{u}z & 0
\end{array}\right)x+(_{\frac{-2}{u}( $\theta$+yz)}z+\displaystyle \frac{t}{2} -z-\frac{t}{2}-uy) ,

(3)

B^{MJ}(x, t)=\displaystyle \frac{x}{2}\left(\begin{array}{ll}
1 & 0\\
0-1 & 
\end{array}\right)+\displaystyle \frac{1}{2}\left(\begin{array}{ll}
0 & u\\
-\frac{2}{u}z & 0
\end{array}\right)
A^{FN}(x, t) has an irregular singularity of the Poincaré rank three at  x=\infty and a regular
singularity at  x=0. A^{MJ}(x, t) has an irregular singularity of the Poincaré rank three

but has no other singularities. They are not connected by any rational transform of

the independent variable.

Proposition 1 The Flaschka‐Newell form of P2 is a double cover of the linear equation
of the singularity type (1)(5/2). If we write the equation of the type (1)(5/2) as a single
equation, the apparent singularity satises P34()

y''=\displaystyle \frac{y^{\prime 2}}{2y}+2y^{2}-ty-\frac{ $\alpha$}{2y}.
Remark. The name the thirty‐fourth Painlevé equation comes from Gambier�s classi‐

cation [6].

Proof. We consider the following deformation equation.

\displaystyle \frac{dZ}{dw}=[\left(\begin{array}{ll}
0 & 2w\\
0 & 0
\end{array}\right)+\displaystyle \left(\begin{array}{llll}
-2y & -y^{2} & -z & -t/2\\
2 &  & 2y & 
\end{array}\right)+\left(\begin{array}{llll}
+1/2- $\alpha$ &  &  & 0\\
-2y^{2}+2z & -t &  $\alpha$ & -1/2
\end{array}\right)\displaystyle \frac{1}{2w}]Z,
\displaystyle \frac{@Z}{\partial t}=\left(\begin{array}{ll}
y & -w\\
-1 & -y
\end{array}\right)Z.

(4)
By the compatibility condition, we obtain \mathrm{P}2()

y'=z, z'=2y^{3}+ty+ $\alpha$.

If we change w=x^{2} and Z=RY with

R= (_{-1/\sqrt{x}}\sqrt{x} 1/\sqrt{x}\sqrt{x}) ,

we obtain the FN form (2). Since the exponents of (4) at  w=\infty coincide, the Poincaré

rank at  w=\infty of the equation (4) is 3/2.
We will rewrite (4) as a single equation of the second order. We set

 Z=\left(\begin{array}{l}
u_{1}\\
u_{2}
\end{array}\right), u_{1}=w^{1/4- $\alpha$/2}u,
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and change the variables

w\displaystyle \rightarrow\frac{w}{2}, z\rightarrow p^{2}+q-\frac{t}{2}, y\rightarrow-p.
Eliminating u_{2} ,

we get a single equation for u=u_{1} :

\displaystyle \frac{d^{2}u}{dw^{2}}+p_{1}(w, t)\frac{du}{dw}+p_{2}(w, t)u=0,
(5)

\displaystyle \frac{@u}{\partial t}=a(w, t)\frac{@u}{\partial w}+b(w, t)u,
where

p_{1}(w, t)=-\displaystyle \frac{1}{w-q}+\frac{1/2- $\alpha$}{w}, p_{2}(w, t)=-\frac{w}{2}+\frac{t}{2}+\frac{\mathcal{H}_{34}}{w}+\frac{pq}{w(w-q)},
a(w, t)=-\displaystyle \frac{w}{w-q}, b(w, t)=\frac{pq}{w-q},

\displaystyle \mathcal{H}_{34}=-qp^{2}+( $\alpha$+\frac{1}{2})p+\frac{q^{2}}{2}-\frac{1}{2} tq :

The isomonodromic deformation (5) is described by the Hamiltonian system with the

Hamiltonian \mathcal{H}_{34} . If we eliminate p from the Hamiltonian system, we obtain \mathrm{P}34(( $\alpha$+
1/2)^{2}) for q.

The first equation of (5) has a regular singularity w=0 and an irregular singularity
of the Poincaré rank 3/2 at  w=\infty . It also has an apparent singularity at  w=q . When

we write isomonodromic deformation of a linear equation associated with the Painlevé

equation in the form of a single equation of the second order, it has an apparent

singularity, which gives the Painlevé function. Moreover

p={\rm Res}_{w=q}p_{2}(w, t)

is a canonical coordinate [16]. In the Flaschka‐Newell case, the apparent singularity q

satises P34 but not P2. \square 

3 Pullback of conuent hypergeometric equations

In this section we show that algebraic solutions of the Painlevé equations from the first

to the fifth can be obtained by rational transformations of conuent hypergeometric
equations. This section is a survey of [17]. In subsection 3.1, we review classical so‐

lutions (in the sense of Umemura [22]) of the Painlevé equations from the first to the

fifth. We also explain symmetric solutions of P1, P2 and P4. In subsection 3.2, we

review conuent hypergeometric equations. We also use a degenerate form of conuent

hypergeometric equations which have an irregular singularity with the Poincaré rank
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1/2 at the innity. In subsection 3.2, we list up all rational transformations of the

conuent hypergeometric equations that give linear equations in the extended coales‐

cent diagram. We call a linear equation in our extended coalescent diagram a linear

equation of the Painlevé type.
By using rational transformations of conuent hypergeometric equations, we obtain

almost all algebraic solutions of the Painlevé equations, but not all of them. In addition

we obtain some non‐algebraic solutions of the Painlevé equations, which are called

symmetric solutions [14], [9]. The linear equations of the symmetric solutions are

reduced to pullback of conuent hypergeometric equations only for a special initial

value.

Although two of the algebraic solutions are not obtained by rational transforma‐

tions of the conuent hypergeometric equations, they can be obtained by non‐rational

pullback transformations. Thus we can obtain all of algebraic solutions of the Painlevé

equations except for the sixth equation by pullback transformations of conuent hy‐
pergeometric equations. Kitaev and Vidunas constructed many algebraic solutions of

the sixth Painlevé equation by pullback of hypergeometric equations.

3.1 Special solutions of the Painlevé equations

We study special solutions of the Painlevé equations from the first to the fifth. Classical

solutions in the sense of Umemura are either algebraic or the Riccati type solutions.

They are all classied for the first to the fifth Painlevé equations.

Theorem 2 1) All solutions of P1 are transcendental.

2) P2(0) has a rational solution y=0. P2(-1/2) has a Riccati type solution y=-u'/u.
Here u is any solution of the Airy equation u''+tu/2=0.

3) P34 (( $\alpha$+1/2)^{2}) is equivalent to P2( $\alpha$) . P34(1/4) has a rational solution y=t/2.
P34(1) has Riccati type solutions.

4) P4(0, -2/9) has a rational solution y=-2t/3 . P4 (1-s, -2s^{2}) has a Riccati type
solution y=-u'/u . Here u is any solution of the Hermite‐Weber equation u''+2tu'+
2su=0 . If s=1, P4(0, -2) has a rational solution y=-2t ,

which is reduced to the

Hermite polynomial.

5) P3'(D_{6})(a, -a, 4, -4) has an algebraic solution y=-\sqrt{t}. P3'(D_{6})(4h, 4(h+1), 4, -4)
has a Riccati type solution y=u'/u . Here u is any solution of tu''+(2h+1)u'-4tu=0.

6) P3'(D_{7})( $\alpha$,  $\beta$,  $\gamma$, 0) does not have a Riccati type solution. P3'(D_{7})(0, -2, 2, 0) has an

algebraic solution y=t^{1/3}.

7) P3'(D_{8})( $\alpha$,  $\beta$, 0, 0) does not have a Riccati type solution. P3'(D_{8})(8h, -8h, 0, 0) has

an algebraic solution y=-\sqrt{t}.

8) P5(a, -a, 0,  $\delta$) has a rational solution y=-1. P5(($\kappa$_{0}+s)^{2}/2, -$\kappa$_{0}^{2}/2, -(s+1), -1/2)
has Riccati type solutions y=-tu/($\kappa$_{0}+s)u . Here u is any solution of t^{2}u''+t(t-
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s-2$\kappa$_{0}+1)u'+$\kappa$_{0}($\kappa$_{0}+s)u2=0 . If $\kappa$_{0}=1, P5((s+1)^{2}/2, -1/2, -(s+1), -1/2) has

a rational solution y=t/(s+1)+1 ,
which is reduced to the Laguerre polynomial.

9) deg-P5($\alpha$_{1}^{2}/2, -$\beta$_{1}^{2}/2, -2, 0) is equivalent to P3(D_{6})(4($\alpha$_{1}-$\beta$_{1}), -4($\alpha$_{1}+$\beta$_{1}-1), 4, -4) .

deg-P5(h^{2}/2, -8, -2,0) has an algebraic solution y=1+2\sqrt{t}/h. deg-P5( $\alpha$, 0,  $\gamma$, 0) has

Riccati type solutions.

10) All of the classical solutions of P1 to P5 are equivalent to the above solutions up

to the Bäcklund transfO rmations.

It is known that the first, second and fourth Painlevé equations have a simple
symmetry:

P1 y\rightarrow$\zeta$^{3}y, t\rightarrow $\zeta$ t, ($\zeta$^{5}=1)
P2 y\rightarrow $\omega$ y, t\rightarrow$\omega$^{2}t, ($\omega$^{3}=1)
P4 y\rightarrow-y, t\rightarrow-t,

There exist symmetric solutions invariant under the action of the simple symmetry
above. The symmetric solutions are studied by Kitaev [14] for P1 and P2 and by
Kaneko [9] [10] for P2 and P4. Since these symmetric solutions exist for any parameter
of the Painlevé equations, they are not algebraic for generic parameters.

Theorem 3 1) For P1, we have two symmetric solutions

y = \displaystyle \frac{1}{6}t^{3}+\frac{1}{336}t^{8}+\frac{1}{26208}t^{13}+\frac{95}{224550144}t^{18}+\cdots,
 y = t^{-2}-\displaystyle \frac{1}{6}t^{3}+\frac{1}{264}t^{8}-\frac{1}{19008}t^{13}+\cdots

2) For  P2( $\alpha$) , we have three symmetric solutions

y = \displaystyle \frac{ $\alpha$}{2}t^{2}+\frac{ $\alpha$}{40}t^{5}+\frac{10$\alpha$^{3}+ $\alpha$}{2240}t^{8}+\cdots,
y = t^{-1}-\displaystyle \frac{ $\alpha$+1}{4}t^{3}+\frac{( $\alpha$+1)(3 $\alpha$+1)}{112}t^{5}+\cdots,
 y = -t^{-1}-\displaystyle \frac{ $\alpha$-1}{4}t^{3}-\frac{( $\alpha$-1)(3 $\alpha$-1)}{112}t^{5}+\cdots

They are equivalent to each other by the Bäcklund transfO rmations.

3) For  P4( $\alpha$, -8$\theta$_{0}^{2}) , we have four symmetric solutions

y = \displaystyle \pm 4$\theta$_{0}(t-\frac{2 $\alpha$}{3}t^{3}+\frac{2}{15}($\alpha$^{2}+12$\theta$_{0}^{2}\pm$\theta$_{0}+1)t^{5}+\cdots) ;

 y = \displaystyle \pm t^{-1}+\frac{2}{3}(\pm $\alpha$-2)t\mp\frac{2}{45}(-7$\alpha$^{2}\pm 16 $\alpha$+36$\theta$_{0}^{2}-4)t^{3}+\cdots :

They are equivalent to each other by the Bäcklund transfO rmations.

Symmetric solutions exist for P6 with special parameters [11]. But we do not treat

P6 in this paper.
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3.2 Transformations of linear equations

In this subsection we review conuent hypergeometric equations.
The conuent hypergeometric equation has two standard forms. One is the Kummer

type and the other is the Whittaker type. In this paper we use the Whittaker type of

conuent hypergeometric equations.

 W_{k,m} : \displaystyle \frac{d^{2}u}{dx^{2}}=(\frac{1}{4}-\frac{k}{x}+\frac{m^{2}-\frac{1}{4}}{x^{2}})u , (6)

DW_{m} : \displaystyle \frac{d^{2}u}{dx^{2}}=(\frac{1}{x}+\frac{m^{2}-\frac{1}{4}}{x^{2}})u . (7)

The second equation DW_{m} is a degeneration of the Whittaker equation. The author

does not know the standard name of DW_{m} , although the degeneration of the Kummer

equation

x\displaystyle \frac{d^{2}u}{dx^{2}}+c\frac{du}{dx}-u=0 , (8)

was studied by Kummer himself [1]. The solutions of (8) is

y=C_{0}F_{1}(c;x)+Dx^{1-c_{0}}F_{1}(2-c;x) .

3.3 Pullback of W_{k,m} and DW_{m}

The following lemma is well‐known but it is useful to construct pullback transforma‐

tions.

Lemma 4 For an equation

\displaystyle \frac{d^{2}u}{dx^{2}}=Q(x)u,
we set

x=x(z) , u(x)=\sqrt{\frac{dx}{dz}}v(z) .

Then v satises

\displaystyle \frac{d^{2}v}{dz^{2}}=(Q(x(z))(x'(z))^{2}-\frac{1}{2}\{x, z\})v . (9)

Here \{x, z\} is the Schwarzian derivative

\displaystyle \{x, z\}=\frac{x'''}{x'}-\frac{3}{2}(\frac{x''}{x'})^{2}
The following theorem is our main result. We list up all of rational transformations

x=x(z) which transform Whittaker or degenerate Whittaker equations into linear

equations of the Painlevé type or conuent hypergeometric equations of Weber, Bessel

or Airy type.
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Theorem 5 By a rational transfO rm x=x(z) , W_{k,m} or DW_{m} is transfO rmed to a

linear equation of the Painlevé type or a conuent hypergeometric equation if and only
if one of the following cases occurs.

1) Double cover

W_{k,m}
W_{k,1/4}

W_{k,1/4}
W_{0,1/2}
DW_{m}
DW_{m}

DW_{1/4}

W_{k,m}
W_{k,1/4}

W_{k,1/4}
W_{0,1/2}
DW_{m}
DW_{m}

DW_{1/4}

W_{k,m} (22)
W_{k,1/4} (22)

W_{k,1/4} (2|1+1)
W_{0,1/2} (1+12)
DW_{m} (22)
DW_{m} (1+12)

DW_{1/4} (2|1+1)

W_{k,m} (22)
W_{k,1/4} (22)

W_{k,1/4} (2|1+1)
W_{0,1/2} (1+12)
DW_{m} (22)
DW_{m} (1+12)

DW_{1/4} (2|1+1)

W_{k,m} (22) (0)(2)
W_{k,1/4} (22) (2)

W_{k,1/4} (2|1+1) (1)2
W_{0,1/2} (1+12) (0)(2)
DW_{m} (22) (0)(1)
DW_{m} (1+12) (1)2(2)

DW_{1/4} (2|1+1) ( 1/2 )^{}

W_{k,m} (22) (0)(2)
W_{k,1/4} (22) (2)

W_{k,1/4} (2|1+1) (1)2
W_{0,1/2} (1+12) (0)(2)
DW_{m} (22) (0)(1)
DW_{m} (1+12) (1)2(2)

DW_{1/4} (2|1+1) ( 1/2 )^{}

W_{k,m} (22) (0)(2)
W_{k,1/4} (22) (2)

W_{k,1/4} (2|1+1) (1)2
W_{0,1/2} (1+12) (0)(2)
DW_{m} (22) (0)(1)
DW_{m} (1+12) (1)2(2)

DW_{1/4} (2|1+1) ( 1/2 )^{}

P4‐sym
Weber

D6‐alg
P4‐Her
Bessel

P5‐rat

D8‐alg

2) Cubic cover

W_{k,1/3}
DW_{m}

DW_{1/6}
DW_{1/4}
DW_{1/6}

W_{k,1/3}
DW_{m}

DW_{1/6}
DW_{1/4}
DW_{1/6}

W_{k,1/3} (33)
DW_{m} (33)

DW_{1/6} (33)
DW_{1/4} (2+13)
DW_{1/6} (3|2+1)

W_{k,1/3} (33)
DW_{m} (33)

DW_{1/6} (33)
DW_{1/4} (2+13)
DW_{1/6} (3|2+1)

W_{k,1/3} (3|3) (3)
DW_{m} (33) (1)(3/2)

DW_{1/6} (3 | 3) (3/2)
DW_{1/4} (2+1|3) (0) (3/2)
DW_{1/6} (3|2+1) (1)(1/2)

W_{k,1/3} (3|3) (3)
DW_{m} (33) (1)(3/2)

DW_{1/6} (3 | 3) (3/2)
DW_{1/4} (2+1|3) (0) (3/2)
DW_{1/6} (3|2+1) (1)(1/2)

W_{k,1/3} (3|3) (3)
DW_{m} (33) (1)(3/2)

DW_{1/6} (3 | 3) (3/2)
DW_{1/4} (2+1|3) (0) (3/2)
DW_{1/6} (3|2+1) (1)(1/2)

P2‐sym
P34‐sym

Airy
P34‐rat
D7‐alg

(0)(3=2) P34‐rat

(1)(1=2) D7‐alg

3) Quartic cover

DW_{1/6}|(3+1|4)| (3) | P4‐rat

4) Quintic cover

DW_{1/10}DW_{1/5}\left|\begin{array}{l}
(5|5)\\
(5|5)
\end{array}\right| (5/2)(5/2)
5) Sextic cover

DW_{1/10}DW_{1/5}\left|\begin{array}{l}
(\\
(
\end{array}\right| (5/2)(5/2)
5) Sextic cover

DW_{1/10}DW_{1/5}\left|\begin{array}{l}
(\\
(
\end{array}\right| (5/2)(5/2)
5) Sextic cover

P1‐sym
P1‐sym

DW_{1/6}|(3+3|6)| (3) | P2‐rat

Here the first column is the starting linear equation. The second column is the type of
a rational transfO rm. The third column is the singularity type of the transfO rmed linear

equation. The fourth column is the solution of the Painlevé equation.

Remark. The labels Weber, Bessel and Airy in the fourth column mean well‐known

relations between special functions [1]:

Weber: D_{2k-1/2}(z) =2^{k}z^{-1/2}W_{k,-1/4}(z^{2}/2) ,

Bessel: \mathrm{o}^{F_{1}}(c;x^{2}/16) =e^{-x/2}{}_{1}F_{1}(c-1/2,2c-1;x) ,

Airy: \mathrm{A}\mathrm{i}(x) =\displaystyle \frac{1}{3^{2/3} $\Gamma$(\frac{2}{3})}0^{F_{1}}(\frac{2}{3};\frac{z^{3}}{9})-\frac{x}{3^{1/3} $\Gamma$(\frac{1}{3})}0^{F_{1}}(\frac{4}{3};\frac{z^{3}}{9}) .

We explain the case of D_{7}‐alg in Theorem 5. The symbol (3|2+1) means that the

inverse image of x=0 consists of one branch point of order 3 and the inverse image
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of  x=\infty consists of one branch point of order 2 and one non‐branched point. The

map  x=(z+2t^{1/3})^{3}/32z is one of such pullbacks. See Figure 1. x=0 is a regular
singularity and the dierence of the local exponents is 1/3. Since the branch point
z=-2t^{1/3} is order 3, z=-2t^{1/3} is an apparent singularity.  x=\infty is an irregular
singularity with the Poincaré rank 1/2. Since the branch point  z=\infty is order 2,
 z=-2t^{1/3} is an irregular singularity with the Poincaré rank 1. z=0 is not a branch

point.
The pullback of DW_{1/6} is

\displaystyle \frac{\partial^{2}u}{\partial z^{2}}=V(z, t)u,
where

V(z, t)=\displaystyle \frac{t}{4z^{3}}-\frac{16+27t^{2/3}}{72z^{2}}+\frac{2}{3t^{1/3_{Z}}}+\frac{1}{8}+\frac{3}{4(z-t^{1/3})^{2}}-\frac{2}{3t^{1/3}(z-t^{1/3})}.
This gives an algebraic solution q(t)=t^{1/3} of \mathrm{P}3(0, -2,2,0) .

\mathrm{a}\mathrm{p}.

[1/2]

[1/2]1/3
Figure 1: D_{7}‐alg (3|2+1) from DW_{1/6}

For the Laguerre type solution of P5, we start from

\displaystyle \frac{d^{2}u}{dx^{2}}=\frac{h^{2}-1}{4x^{2}}u . (10)

The pullback of (10) by x=e^{t/(h(z-1))}(z-1) is

\displaystyle \frac{d^{2}u}{dz^{2}}=V(z, t)u(z) , (11)

where

V(z, t)=\displaystyle \frac{t^{2}}{4(z-1)^{4}}-\frac{ht}{2(z-1)^{3}}+\frac{h^{2}/4-1}{(z-1)^{2}}-\frac{3}{4(z-t/h-1)^{2}}-\frac{ht}{(z-1)^{2}(z-t/h-1)}.
12



This gives a rational solution y=t/h+1 for \mathrm{P}5(h^{2}/2, -1/2, -h, -1/2) . Since the

monodromy group of (11) is diagonal, it cannot be reduced to W_{k,m} nor DW_{m}.
The algebraic solution of deg‐P5, which does not appear in the list of Theorem 5,

is also obtained by a similar transformation from (10).
Theorem 5 gives an answer to R. Fuchs� problem for the first to the fifth Painlevé

equations. For algebraic solutions of the Painlevé equations, we can take a suitable

transformation x=x(z) such that the corresponding linear equation (9) is either W_{k,m},
DW_{m} or (10). Conversely, if we change the independent variable of W_{k,m} or DW_{m} so

that the singularity type is the same as one of the Painlevé equations, we obtain all of

the algebraic solutions and symmetric solutions except for the Laguerre type solution

of P5 and algebraic solutions of deg‐P5.
The linear equations of symmetric solutions are obtained by pullback only for t=0.

We remark that Kaneko and Okumura also showed that a similar result holds for

symmetric solutions of P6 [11].
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