Construction of the auxiliary functions for the
value distribution of the fifth Painlevé
transcendents in sectorial domains

Yoshikatsu SASAKI*

Mathematical Subject Classification 2000: Primary 34M55; Secondary 30D35, 32A22

1 Introduction.
1.1 Value distribution of the fifth Painlevé transcendents
in sectorial domains
Consider the fifth Painlevé equation Py
2 2 _1\2
d?y (1+ 1 )(d_y) _ldy (-1 (ay+§)+y+5y(y+l)'

dz? 2 y—-1)\dz zdz 2 T y—-1

1)
Note that the generic Py has the parameters (a, 8,7, )€ C* satisfying

(, B8) # (0,0) and (7,9) # (0,0); (2)

when (a, 8) = (0,0), Py is reduced to P ([1], [2]Chap.8), and when (v,d) =
(0,0), Py is integrable ([3], [2]Chap.8).
We studied in [5] the value distribution of solutions of By in the sector

S(¢, 7, R) = {z||argz| < ¢ < 7,7 < |2| < R} (3)

as r - 0 or R — oo, in the case where Py is generic; namely, Py under the
condition (2). Defining

n(y, ¢) T R) = #{2‘ € S(¢1 7, R)ly(z) == 1}7
where the number is counted with multiplicities, we settled in [5]
Theorem. If (a,) # (0,0) and (v,8) # (0,0), then there ezists a positive

constant C, independent of (a, 3,7, 6), such that for any solution y = y(z) of
(1), one has

n(ya ¢$ 7 R) = O(T-c) asr—0,
n(y’ ¢1 7, R) = O(Rc) as B — oo.
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1.2 Key lemma, cases and transformations.
To prove the theorem, in [5], we obtained the following lemma:
Lemma 1.1. Let u(t) be a solution of

i = 14 90(t,0) + 916, 0+ )i (= 3 @

around t = 0. Suppose g;(t,u)(j = 0,1,2) is analytic in Dy = {(t,u) € C?||t| <
1, lu| < Ro}, 0 < Ro < 1. Suppose |go(t,u)| < 1/200, |g1(t,u)| < K, |g2(t,u)| <
K in Dy, where K is some positive number. Put 6 := min{ R(I,/ 2 /4, (200K)~1/2,
(200K)~'}. If [uw(0)| < 62/8, then |u(t)| < 1562 in the disk |t| < po and
lu(t)| > 6%/4 on the circle |t| = 3po/4, where

46 if [2(0) < 6,
QL if [a(0)] > 6.

This key lemma is an improvement of a similar lemma established in [6], and
a basic idea of its proof is essentially due to M. Hukuhara(see [4]) as Shimomura
wrote in [6]. Hukuhara's logic plays an essential role in my paper [5] as well.
And, applying the lemma to Py with & # 0, we obtain

Lemma 1.2. For each (o, 3,7,8) € C* satisfying § # 0 , there ezists a quartet
of positive numbers To, p # 1, A and Ay, each of them independent of y(z),
with the properties: for x = a satisfying |a| > T, if |y(a) — p| < A, then

(1) |ly(z) — p| > 2A on the circle |z — a| = €,

(ii) y(x) # 1 in the disk |z — a| < ¢,. Here, €, > 0 satisfies

€ < Ao, €' < Ao(1+ |y (a)]). (5)

By this lemma, we are able to construct a path on which the auxiliary
function

po'-,

?y(z) 201 - play'(a)
y(@)y(z) -1 (y(z) - D(y(z) — n)
28 2yz 26z%y(z)
+ 6
@ P vo-1t e @
(# # 0,1, 00) is holomorphic. This function is used for global estimation of the
derivative of a fifth Painlevé transcendent.

¥(p,z) =

—2ay(z) +

The aim of this article is to present a new method in order to handle the
problem systematically, and to construct the auxiliary functions suitably for
the new method.

In [5], we explained into details the behavior as R — oo under § # 0; the
behavior as R — oo under § = 0 and as r — 0 are omitted in order to save the
pages.

Now we present a new method: to study the value distribution of the function
which has the same 1-points with multiplicities as those of a given fifth Painlevé
transcendent. This method allows us to apply the key lemma systematically,
and then all auguments progress in parallel to the case where R — oo under
4 # 0. And, if we use the new method, we have to construct a new auxiliary
function suitably for a new function in each case.



We firstly show the list of cases, transformations and auxiliary functions. And
secondly, we explain how to construct the auxiliary functions. For the study of
behavior around z = 0o, we devide into 2 cases;

Case (i) 0 #0: let y—1=n—-1L,u=2,u=n—p, z=a+k"2s and k = 64;
Case (i) d=0: lety—1=(n—-1)/z, p=2,u=0—p, ¢ =a+k /23 and
k=~y(#0).

The 1-points of y(x) coincide with the 1-points of n(z), i.e. n(y,¢,r, R) =
n(n, &, 1, R) in each case. That’s all of the cases. Because (,4) = (0,0) means
Py is integrable; namely each solution of Py can be written concretely as a
classical function. So in this case we need not use the value distribution theory.

And, for the study of behavior around z = 0, we make the change of variables
z = 1/z. Then we are able to treat as behavior around z = 0o as well. That is
convenient. So we add 2 cases as follows:

Case (ili)) 6 £ O: lety—1=(n—-1)/22, p=2, u=0—p, z=a+k /25 and
k = 2¢;
Case (iv) 6 =0: let y—1=(n—1)/2%, p=2, u=n—p, z=a+k 2s and

k= ~(#0).
Then, in each case, we obtain
d%u du du?
T 1 aa g +awe) () +0ow+0u/a),

that is just in the form of Lemma 1.1.

2 List of the auxiliary functions.
Now we present the auxiliary function ¥ ;) for Case (7) (j = i, ii,iii, iv):

2 201 - p)zy
nn-12  (n-1)(n-p)
28 2yz 26x2n
-—2an+7+ 7—1 + m—17 (¢ #0,1,00),
m2(n')2 + 1
I+m-1)/z)n-1) 1+(n-1)/=

_2:1:1;'{ 1 +1_n—1}
n1—-111+(n-1)/z n—p

2
-2a(14+ (p-1)/z) + 1_‘_(,’2‘3 1)/z + 72;7—:”1
(ﬂ,# 1 "x011s°0)$

Yiy(p,z) =

Yay(u,z) =

22(n)? 4
Yan(n?) = Gra=n/mm -1 T Tra-1/=
+{ 2 PR S } 225
(1+(@m-1)/22)(n-1) n-1 n-p
20m 28 2vz | 2622(1 + (n—1)/2%)

Z "Tx@-0/Z  n-1 - 1)
(“# 1—2371100):




_ 22()? 9
vy 2) = A+ m-0/Dm=17 1+ m-1/3

+{ 3 PR }2z’
A+-0/n-1) -1 g-pnf

n—-1 28 2vz
_2a(1+ 2 )+1+(n—1)/z3+n—1
(”761_zgala°°):

where ' =d/dz and * =d/dz.

In Case (iii), for example, the points satisfying n(z) = 1 — 23,1,00 are
singularities of Py however, the auxiliary function W iii) (1, ) is singular not at
7(z0) = 1 — 22,1, 00, but at n(29) = u. So is in every other case, too.

Moreover, ¥(;)(u, z) satisfies the 1** order linear differential equation

d¥;)(u, )
dz

where P(z) and Q(z) are singular only at n(z¢) = p as well. Then, by use of
elementary calculus, we obtain

= P(z)¥;(n,z) + Q(z),

Uiy(u,z) = of Pla)dz (/ Q(z)dx +oonst.)

and this integral is able to be estimated on the path on which n(z) does not
coincide to p.

3 Construction of the auxiliary functions.

Shimomura investigated in [6] the value distribution of the modified Py:

d2w 1 1 dw)? 2 8 v | 0e®w(w+1)
m—(%‘l'w—"—"hl) (a) +(w—1) (aw-i—-t;)-i-‘ye +—w_1 )
M

which is uniformization of Py by £ = e*. Note that any solution of mPy is
meromorphic on C ([3]).

The auxiliary function ¥, is obtained by that of mPy given in [6]; by
substituting eV = z and y(e¥) = w(v).

Or, we can obtain ¥ directly from the power series expansion of solutions
of Py by eliminating branches and higher order terms.

For example, in Case (iii), 7(2) has series expansions at () = 1—22,1,00
w.r.t. local parameter Z := z — zg

1+\/—_25z—2—5ﬂ%°f:1f§?ﬂ+0(z3) atn=1,
M2)=91-23+(-2+V=28)20Z +hZ2+ O(2%) atn=1-2},
is-Z£a+h-i-0(2) at 1 = oo,
where h is an arbitrary constant called a resonance.

First, we move away 4 from the auxiliary function; we have ¥, + 2zy'/(y —
p). By the transformation y — 1 = (n — 1)/2%, ¥ + 2zy'/(y — p) yields the



following function:

z ,_ 2(n)? 4
Yol = G goyae -0 T TR
—4z1n + 2zn
(1 +(n-1)/2%)(n-1) n-1
-1 2ﬁ 2vz  25(1+(n—1)/2%)
~~20‘(” 2 )+ T+-1/2 n-1"

(n—1)?

gy M g 1-s
.‘_%,_ + 40_252«2_'.0_ atp=1,
= zo(~2+\/2z_a—zo\/2_a) at n = oo,
0

otherwise,

where “=" means equivalence modulo O(1).
Here we have

_20(2-1)n _ {‘/—2——"1*‘51"—‘“2 at 7 = oo,

22 0

otherwise,
_25(22-1) _ fgzll- atn=1,
m-12% "~ o otherwise,
(-1 _ [RPEE apg=,
2(n-12 7 o otherwise,
and then
- 20(z—1)p  26(z2 1)  26(z2—1) _|-22 atyn=o0,
Y+ ==+ e e - otherwise,
And we also have
) 1/Z atnp=1,
#E -1/Z atn= o0,
0 otherwise.
So, if we have a fractional linear transformation f = (a'r) +b)/(cn+ d) which
maps 7 =

1(oo o tesp) — f = 0(—~2,00 resp.), then \Il(m)(z) + ﬂ%—lm +
255: —-12 26(z3-1

oo t 5 ZL f is singular only at g. Such a transformation f =
—~2(r) -1}/(n—p)is e&sﬂy obtained.

Now we have
- 20(z—1 26(22 1)  26(z2 -1
Yaiy(2) + a(zz2 Jn + (,(72_ 1)2) 222:, — 1)22 + n— l'f
_ 22()? + 4
A+ @-1/2)n-1? T 1+ (n-1)/22

+{ 2 P S }2z17
(1+(n—1)/z2)(n—1) -1 n—p

14+{(y-1)/22
2yz 1+(n-1)/22 22-1 22-1
e 25{ m—1) (n—l)2+z2(n—1)}
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which is a function singular at = g and holomorphic at elsewhere except for
n = p, especially n = 1 — 22,1,00. And eliminating some holomorphic terms,
we obtain the auxiliary function ¥;;)(u, z) as above.

In any other cases, we obtain the auxiliary function ¥ ;) in a similar way.

Outline of calculation. Once the auxiliary function is defined suitably, con-
struction of an integral path, the estimation of the derivative of the fifth Painlevé
transcendents and the estimation of the 1-points in a sectorial domain are similar
to Case (i); that is precisely explained in [5].
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