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Abstract. Recent developments on some higher order generalizations of Painlevé
equations are summarized from the points of view of their symmetry and holomor-
phy properties.

1. INTRODUCTION

A series of differential equations with affine Weyl group symmetry of type AS)
(n > 2) was introduced in [3]. First two members of the series with n = 2,3
are the fourth and fifth Painlevé equation respectively and remaining ones can
be considered as a higher order generalization of them. Since the sixth Painlevé
equation has affine Weyl group symmetry of type Dfll) [5], the generalization to D,(})
(and EV, .. -) cases has been naturally expected.

The Bécklund transformations of the Painlevé equations have the universal de-
scription to any root systems[4]. Since this universal Biacklund transformation has
Lie theoretic origin, similarity reduction of Drinfeld-Sokolov hierarchy admits such
Backlund symmetry. The explicit construction of such a differential system is,
however, very complicated in general.

The above situation was conquered in a recent work[6], where a series of dif-
ferential systems with symmetry of type D,(ll) was constructed. The crucial idea
of this work was to use the “holomorphy” characterization of Painlevé equations,
which can be considered as a generalization of Takano’s theory[8]. The aim of this
note is to explain why and how the holomorphy approach works well for the above
problem.

The paper is organized as follows. In section 2, we explain the term “symme-
try” and “holomorphy” in case of the sixth Painlevé equation. In section 3, the
case of AﬁP is reviewed from the symmetry and holomorphy points of view. The
coupled Py and Pyp systems with W(D%l)) symmetry [6] are described in section
4. A relation between the holomorphy and symmetry conditions are discussed in
section 5. Holomorphy conditions of the Garnier system and the Eél)-system[lo]
are discussed in sections 6 and 7. In section 8, we show the coupled Py system in
terms of general form where the positions of four time variables are not specialized.
The results in sections 5,6,7,8 are new.



2. THE CASE OF PAINLEVE VI

The sixth Painlevé equation Py can be written as the Hamiltonian system
dq - 8HVI dp - 8HVI

dt ~ dp  dt  9q (1)
t(t —1)Hvi = q(q — 1)(q¢ — t)p* — { (a0 — 1)a(g — 1)
+asq(qg—1t) + as(qg — 1) —t}p+a2a1+a2)
where parameters ayg, ..., a4 are normalized as ag + a1 + 2as + az + ag4 = 1.

Let A = (asj)o<i,j<a be the Cartan matrix of type Dfll):
2 -1
2 -1
A= -1-12 —1-1|. 2)
-1 2
-1 2

The affine Weyl group W(Dfll)) is defined as
W(D{M) = (s0,... 54 | 57 = (sisy)™ =1), (3)

where m;; = 2 (for a;; = 0), m;; = 3 (for a;; = —1).
By the work of Okamoto[5], it is known that the Pyr equation has the affine
Weyl group symmetry W(Dfll)):

@0
so(ai) = i — aipao, so(p) =p — gt
s1(oi) = o — a0,
lo%)
52(ai) = O — Gi2002, 82(61) =q+ —, (4)
pa3
ss(ai) = ai —aas, s3(p) =p——7,
b
sa(0) = oy — aaay, s4(p) =p— R

Here and in the followings, we omit identical transformations s(x) = x. The sym-
metry can be extended to W(DS)) by including the diagram automorphisms. For
explicit formulas, see [2] for example.

The Hamiltonian Hvyr (1) is a polynomial in the canonical variables p, ¢. In this
sense we call the system (1) as a polynomial Hamiltonian system. Consider the

following birational symplectic transformations r; (i = 0,. .. , 4):
rop) = =, 10(a) = ¢~ p(pla — t) — v).
ﬁ(q)Zi r(p) = —q(gp + a1 + a2),
r2(q) = i r2(p) = —q(gp + a2), (5)
7“3(1?):%’ r3(q) =1 —p(p(g — 1) — as),
) = 7. rala) = ~p(pa — ).

Since the transformation r; is symplectic, the system (1) is transformed into a
Hamiltonian system whose Hamiltonian may have poles. It is remarkable that the
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transformed system is again a polynomial system for any ¢ = 0, ... ,4. Furthermore,
this holomorphy property uniquely characterizes the Py equation[8].

Remark 2.1. If we look for a polynomial Hamiltonian system which admits the
symmetry (4), we have to consider huge polynomial in variables ¢, p,t, a;. On the
other hand, in the holomorphy requirement (5), we only need to consider polyno-
mials in ¢, p. This reduces the number of unknown coefficients drastically.

3. SYSTEMS OF TYPE AS)

Let f; and oy (i € Z/(n + 1)Z) be variables and parameters. We set Zai =1

=0
and
n
Z fz = t, (n = 2]{})
% i (6)
Zer = —t, Zf2T+1 = —s&. (n =2k + 1)
r=0 r=0
The following systems of differential equations were introduced in [3]*.
d k
Zfi=fi > (firar—1 = fivzr) + i (n=2k) (7)
r=1
d
afi =fi Z (fir2r—1fiv2s — firorfitos+1)
tsrsssk (n=2k+1) (8

k k
+ (_1)Zf’b Z Q2pr41 =+ «; Z fi+27“-
r=0 r=0

Affine Weyl group W(A%l)) is defined similarly as (3). Corresponding Cartan
matrix A = (a;j)o<ij<n is given by
2 —1 -1
-1 2 -1
a=| | ©)
-1 2 -1
-1 -1 2

The systems (7)(8) have the extended affine Weyl group symmetry W(AS))[?,]
The action of the generators s; (i € Z/(n + 1)Z) and « is given as follows:

si(ay) = aj — ajz‘aoz'} (o) = g1, o
si(fir1) = finn+ =, silfic1) = fior — o
fz fz (10)
m(fi) = fit+1, (n = 2k)
7T(f2r) = ng'r’-‘rlv 7T(f2r—1)

S
1In case of n = 2k + 1, the normalization of f; are slightly modified from [3].
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Due to the constraints (6), both the systems (7)(8) are of degree 2k effectively.
In fact that the AS) systems can be written as Hamiltonian systems

dg;  OHAY  dp dHAY

- , =T (i=1,... .k 11
at - op dt o ) (1)
in terms of canonical variables
pi=fau, @i=-—Y fo1. (12)
=1

The non-vanishing Poisson brackets of f; are {f;, fiz1} = £1.
The following fact has been observed by the first author a few years ago.

Proposition 3.1. The A(l) [A sip1 Tesp.] system is written as coupled Pry [Py
resp.] equations as follows:

AD
Az _ZHIV QZapzaCVQzaZan 1 +2 Z qiPiPj,

1<i<j<k
k+1
Azt Z Hv (g, pi; ov2i, Z 51, Z ogj—1) + 2 Z Pip;ai(q —s\13)
1<i<j<k
where
Hrv(q,p;a,b) = pg(p — g — t) — aq — bp, (14)

Hy(g,p;a,b,¢) = p(p +t)q(q — s) + atq + bsp — cpq.
Define birational transformations r; (i € Z/(n + 1)Z) as

1

ri(fic1) = fi1 — + fiv1,
fir1
T’L(fz) = _fz-i-l(fz-i-lfz + az) (15)
ri(fig1) =
fz+1
ri(fir2) = fire + fi + firr (firr fi + ).
In terms of the canonical variables, ry is simply written as
1
ri(p1) = g ri(q) = —pi(prqr — ). (16)

The transformations r; are symplectic.

Proposition 3.2. Fach of the transforms preserves the holomorphy of the system
(7)(8). The system (7) [(8) resp.] is unique one of degree 3 [4 resp.] satisfying this
holomorphy property.

Remark 3.3. For Afll) case, the transformations r; are essentially the same as that
n [11].



4. SYSTEMS OF TYPE DS«})

Introduce root parameters a; (i = 0,...,n): ag + a1 + 2(ae + -+ + ap—2) +
ap_1 +a, = 1. The D,(ll) Cartan matrix (a:;j)o<ij<n IS

2 -1
2 -1
-1-1 2 -1
-1 2 -1
N (17)
-1 2 -1
-1 2 —-1-1
-1 2
-1 2

The following discussion is separated into two cases: n = 2k + 1 and n = 2k + 2.
In both cases, we introduce canonical variables q;,p; (i =1,... k).

4.1. The case of n = 2k + 1. : Let us put

fo=p+t, fi=p1,
foi =@ — qiv1,  foir1 =Dit1, (1<i<k—1) (18)
fn—lZQk_l» fn:qk'

Following [4], we define the actions s; (i =0,...,n) as
.
si(oy) = aj — ajioi,  si(g) =g+ f{ga fits (9=ar,pw), (19)

where { , } is the Poisson bracket such that {g;,p;} = d;;. These actions define the
representation of affine Weyl group W(DS)).
Define birational symplectic transformations r; (i =0, ... ,n) as follows:

1
ro(q1) = o ro(p1) = —t — (@1 (p1 +t) + o),

ri(q1) = o’ ri(p1) = —qi(qipr + 1),

1

1
r2i(pi) = — r2i(¢i) = Qi1 — Pi(Pi(@i — Q1) — @2:),

(3

1
i (i =p; ;i — — i =1,... k-1
T24 (pz—i—l) pz+11+ bi pi’ (Z 5 ) ) (20)
r2i11(qiv1) = ,
qi+1 )

7"2i+1(pi+1) =1 _Qi+1(Qi+1pi+1 + 02i+1)7 (2 =1,...,k— 1)
Tn-1(Pr) = o Tn-1(qr) = 1 — pr(pr(ar — 1) — an—1),
T (pr) = p_k’ rn(qr) = =Pk (Prak — an).

Theorem 4.1. [6] There exists a unique polynomial Hamiltonian system of degree

4, which is holomorphic in each coordinates r; (i = 0,...,n). The system is in-

variant under the Weyl group W(D,(ll)) and given by the following Hamiltonian (the
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coupled Py ):

k k—1 k—1
tH = Hy(qi pisan+ Y 0, 02i 1,0 1+ an+2 > _(azj+0n;11))
i=1 j=1 j=1
+2 Z piqj(pj(qj — 1) +azj—1), (21)
1<i<j<k
where
Hv (g, p;a,b,c) = q(q — 1)p(p +t) + ap + btq — cpq. (22)

4.2. The case of n = 2k 4+ 2. : Let us put
fo=q—t, fi=q —oo,
foi =pis frir1 =@ —qiv1, (1<i<k—1) (23)
faci=a—1, fn=aq.

The Weyl group representation s; € W(Dsll)) is defined by the same formulas (19).

Define birational symplectic transformations r; (i =0, ... ,n) as follows:
1
ro(p1) = o7 ro(q1) =t — p1(p1(q1 — t) — ao),
1
ri(q1) = q_’ r1(p1) = —qi(q1po + a1 + az),
1
1 .
r2:(qi) = ;, roi(pi) = —aqi(@ips + 2i), (1=1,...,k)
T
1
r2iv1(pi) = . r2i41(¢) = Qi1 — Pi(Pi(@ — Gig1) — @2i41), (24)
T

1 )

72i41(Pit1) = Pit1 +Di — o0 (i=1...,k=1)

1 7
Tn-1(Pk) = o rn-1(qk) = 1 — pr(pe(gk — 1) — an—1),

n

1

r(pk) = —,  7Tn(gk) = —Pr(Pegr — an).
Theorem 4.2. [6] There exists a unique polynomial Hamiltonian system of degree
5, which is holomorphic in each coordinates r; (i = 0,...,n). The system is in-
variant under the Weyl group W(D%l)) and given by the following Hamiltonian (the
coupled Pyy):

k
t(t —1)H = Hvi(gi, pii ai,bi, i, d;)
i=1 (25)
+2 > pilai -ty [pj(qj —1)+ azj},
1<i<j<k
where
Hvi(q,p;a,b,c,d) = q(q — 1)(q — t)p* (26)

—{(a—1)glg —1) +bg(q —t) + c(g — 1)(q — t) }p + dq,
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and
i—1

k-1
b; Oy
ai=ao+y agjpr, { S F={ "7 p D a,
i1 3 n —
! i—1 i—1 = (27)
di = agi(aq + ag + QZazj + Zazj+1)-
j=1 j=1

5. A RELATION BETWEEN 7; AND s;

In all the previous examples, there exist as many transformations r; as symme-
tries s;. They enjoy the relations r% =1 and r;s; = s;r;. We have seen that the
Hamiltonian system characterized by the holomorphy condition w.r.t. r;’s has the
Backlund symmetry under s;’s. Here, we will explain a reason of these fortunate
phenomena. The following argument is also applicable in case of many variables
q1,P1, 42, P2, - - - and many parameters a, b, ¢, - - -, we consider a Hamiltonian system
with Hamiltonian H = H(p, ¢, t; a,b) for simplicity.

Proposition 5.1. If the polynomial Hamiltonian system has a t-independent Bédcklund
symmetry

s:(p,q.t;a,0) — (p— g,q,t; —a,b), (28)
then r(H) is also polynomial in p,q, where
1
r:(p,q,t;a,0) — (5, —p(pq — a), t,a,b). (29)

Proof. Since the transformation s is t-independent, the symmetry requires the
polynomiality of

dH%:H@—gﬂm—mU) (30)

By changing the parameters a — —a, b’ +— b, this condition is equivalent to the
polynomiality of

Hip+ =0, t50,0) = F(p,g.t:0,0). (31)
Changing the variables p — p — g, we have

H(p,q,t;a,b)=F(p—g,q,t;a,b)- (32)

Applying the transformation r on this equation, we get

T(H) :H(]—lj,—p(pq—a),t,(l,b) :F( ,—p(pq—a),t,a,b) (33)

pPg—a
Then this expression should be polynomial since H(p,q,---) and F(p,q,---) are
polynomials. 1
This proposition says that the holomorphy is a necessary condition for the sym-
metry. This is a reason why the holomorphy approach is effective to find the
differential system with desired symmetry.
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6. GARNIER SYSTEMS

Here we give a characterization of Garnier system via holomorphy conditions.
We give an example in case of 3-variables. n-variable case is similar (the 2-variable
case was first obtained in [7]). Let us define birational symplectic transformations:

1 4 .
ri(a) =—, nlg) =2 (j=23)
q1 q1
3
ri(p) =-ad_gpi+0), ) =pia, (G=23)
j=1
o = 7“1|p~>1p+196+1
r3(p1) = o r3(q1) = —p1(prqr — V1),
1
T =—, r =— —9a),
a(p2) w 1(q2) = —pa(p2g2 — ¥2) (34)
r5(p3) = o’ r5(q3) = —p3(p3gs — I3),
1 1 .
r6(p1) = ot r6(pj) = pj + o TP (1=2,3)
re(q) = 11— @ —q—n (pl(qtl +1qz +q3—1) —5),
ri(p) = —, o) =pj+ (= —p1), (j=2.3)
1 q2 qs ti o q1 q2 q3
=t (1- 2By (LB y,).
r7(qr) = t1( ' t3) p1(p1 1(t1 + s + s ) — D4)
The parameters satisfy the Fuchs relation:
6
20+ Y ;i =0. (35)
=1

Theorem 6.1. There exist unique polynomials K; for i = 1,2,3, such that the
Hamiltonian system
aqi - 8Kj api - aKj
ot N op; ot N dq;’

(27] = 172a3) (36)

is transformed into a polynomial Hamiltonian system under the action of each ry.
This system coincides with the Garnier system in 3 variables (equation (1.9) [9]).

Remark 6.2. We have checked similar characterization of the n-variable Garnier
systems for n < 4. General cases are, however, not proved yet.

7. SYSTEM WITH W(Eél))—SYMMETRY

Canonical variables (¢;,p;), (i = 1,2,3), parameters «;, (i = 0,...,6) and de-
pendent variable t. We put ag + a1 + 2ag + 3as + 2a4 + a5 + 2a6 = 1.
The invariant divisors are

fo=a—t fi=q, fo=p,
f3=qq0 —q —q+aqs, (37)
fa=p2, fs=q, fo=ps3

8



Define the actions s; (i =0, ... ,6) by the same formulas as (19) with the Cartan

matrix for Eél) :

2 ~1
2 —1
-1 2 -1
-12 -1 -1]. (38)
-1 2 -1
-1 2
~1 ~1 2

These actions define the representation of affine Weyl group W(Eél)).
Define birational symplectic transformations r; (0 < ¢ < 6) as follows:

ro(ps) = pi?)a ro(g3) =t — p3(psfo — ao),

ri(p1) = pll’ ri(q) = —pi(prfi — o),

@) = . ) =~ e+ o).

r3(ps) = plga r3(g3) = —q1q2 + @1 + g2 — p3(p3fs — a3),

o2 =p+ (L= @)lpa = =), ralpr) =p+ (L= @)on — o), (39)
ra(q2) = qlg’ ra(p2) = —q2(g2f1 + o),

rs5(p2) = piz’ r5(q2) = —p2(p2fs — s),

r6(q3) = q%a r6(p3) = —a3(asfo + ).

Theorem 7.1. There exists a unique polynomial Hamiltonian system of degree 5,
which is also polynomial in the transformed coordinates given by r; (0 < i < 6).
This system has the affine Weyl group symmetry W(Eél)) given above, and the
Hamiltonian is explicitly given by

tit—1)H

= Hvi(q1, 15 3560, 34, 1, 202346

+Hv1(q2, p2; 21360, 23, (5, X4 ¥2346)

+Hv1(g3, p3; @0, 234, 135, X62346 ) (40)

+(t = Da1p1g2p2 — q1(p1(q1 — 1) + az2)qz(p2(gz — 1) + aa)

+a1p1(gs — 1)(p3(g3 —t) + o) + qi(p1(qn — 1) + a2)(g3 — t)ps3

+qop2(g3 — 1)(p3(g3 — t) + o) + q2(p2(g2 — 1) + aa)(g3 — t)ps,

where Hvi(q,p : a,b,c,d) is given in (26) and cj.., = o + o + - + .

Remark 7.2. The Hamiltonian system with Hamiltonian (40) was discovered by
T.Suzuki [10] through a similarity reduction of Drinfeld-Sokolov hierachy of type

E.
8. DEMOCRATIC FORM OF THE COUPLED Py SYSTEM

For n = 2k + 2, the system (25) with W(DS)) symmetry can be described more
symmetric way by introducing independent variables ¢, (x = 1,...,4). Then the
9



original system (25) is obtained under the specialization (t1, t2, t3,t4) = (¢, 00,1,0).
In case of k = 1 (original Pyr) this result corresponds to the work by Kawamuko[1].
Let us put

fo=a—t1, fi=aq 1
foi=pis foiri =@ — @iy, (1<i<k—1) (41)
foc1=ax—t3, fn=qx—ts.

The Weyl group representation s; € W(DS)) is defined by the same formulas (19).

Define birational symplectic transformations r; (i =0, ... ,n) as follows.
ro(p1) :pll’ ro(q1) = t1 — p1(pr{qr — t1) — a0),
r1(p1) = pil’ ri(q) =tz — pr(pr(@ — t2) — ),
r2i(¢qi) = %, r2i(pi) = —qi(qipi + a2i), (20 =2,4,...,n—2)
roi41(i) = i, r2i41(qi) = @iy1 — Pi(Pi(@ — Giv1) — @2i41), (42)

1 )
r2i41(Pit1) = Pit1 + pi — o (2i4+1=3,5,...,n—3)
T
1
Tn—1(pk) = o Tn-1(qr) = t3 — pr(pr(gr — t3) — an—1),

1

rn(pr) = —,  Tn(qr) =ta — pr(Pr(qe — ta) — an).
Pk

We have confirmed the following up to k& < 4.

Conjecture 8.1. There exists a unique polynomial Hamiltonian system of degree
6, which is also holomorphic for r; (42) (0 < i < n). This system has W(DS))
symmetry and explicitly given as follows:

aqi - 8HH 8])1‘ - _8HM

= - L =1,k p=0,....,4 43
ot,  opi ot 5. U a ) (43)
where
4
1
H,u, = H ¢ Cip—Cip—1s
v(FEm=1 " "
k
H=Y Hy+2 Y W
i=1 1<i<j<k
4 ‘.
1
Hy = H(Qi —ty) l ?—piz m _“t ]
p=1 p=17 (44)
2 4
+ a2iq; [Z(Cm + cip)(qi — tu) + Z(Cifs +cip) (@i — ty) — a2iqi |
n=1 n=3

Weijy = |pilai —t1)(qi — t2) + aos(qs — Qj)]
X |pj(a; — t3)(qj — ta) + azj(q; — Qi)] — Q2i02¢iq;,

10



and

C; «
{7 y={ acl) Ptaztas+-+agio,

C; Qgy—
{ 7Y = agip1 +aoigz + -+ a1 +{ ; s (45)
n

cis = 2(02 + g + -+ agi—2) + a,
cig = i + 2(agiq2 + agipa + -+ agg).
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