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ABSTRACT. We consider a degenerate Garnier system of the first Painlevé
type on P!(C) x P'(C). Around a singular locus of irregular type, we present
a three-parameter family of solutions of it. Restriction of them to a certain
hyperplane yields asymptotic solutions of the fourth order version of the first
Painlevé equation.

1. INTRODUCTION

Suppose that the linear differential equation
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has non-logarithmic singular points at x = A, As. Then K; and K, are given by

I (M) [y Hi 5 3 2
3K, = — — 9N} — 9t Ay — 3ty ),
1 k:ZLQ H6()\k;) (:uk: Hl ()\k:) k 1L 2 k:>

1
3K, — k;; o0 (1 — 9% = 90% = 38203
with

Mo(§) = (€= A)(E—A2), TL(E) =&— A — X

The isomonodromic deformation with respect to the parameters ¢, t5 yields the
completely integrable Hamiltonian system
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which is equivalent to
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with the Hamiltonians
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Here the new unknowns and variables are given by
(q1,q2) = (M2 — 11/3, M1 + Ag),

(p1,p2) = (lh — ,U2’ Aipa — )\2#2>’
Ao — A1 A=A
(S’t) = (tlv _tZ)
(see [1]). This system may be regarded as a two-variable version of the first
Painlevé equation PI. Let us consider (G) on P(C) x P!(C) (3 (s,t)). Then,

(G) admits singular loci along s = 0o and t = co. Restricting (G) to the complex
line s = sg (€ C), we obtain the fourth order nonlinear differential equation

8
(P1,) ¢ = 20qq" + 10(¢')* — 40¢°® — 8s¢q — gt (" =d/dt, q:= @),

which belongs to the PI-hierarchy. For the Pl-hierarchy written in the Hamilton-
ian form containing a large parameter, Y. Takei ([6]) constructed instanton-type
formal solutions containing many free parameters, by reducing to the Birkhoff
normal form. For Painlevé equations PI, ..., PV, two-parameter families of so-
lutions were obtained near irregular singularities ([3], [4], [5], [7]). Furthermore,
H. Kimura et al. ([2]) gave a reduction theorem for a class of Hamiltonian systems
containing a Garnier system of PVI type around a regular singular locus.

In this paper, we give a three-parameter family of solutions of (G) near the
singular locus ¢t = oo, by constructing a canonical transformation which reduces

(G) to
0Q; 0L, 0P, 0Ly
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with the Hamiltonians
L, = Agl)(t)lel + Aél)(t)Q2P2,
Ly = AP (5, )Qu Py + A (5,4) Q2 Py
+ 1 (k2o (Q1P1)? + k11Q1P1Q2 P + Koz (Q2P2)?).

Here
AV () = —(aVB) gt A (1) = (VB) Nip*
A?)(s,t) = —pt/% — (8vB)LipPst™V/2,
AP (s,t) = —pt"/® + (8VB) ipPst ™1/

with

‘ 1
(1.2) pi=irge ™, rg.= 23415112 = §tan_1(1/\/g) € (0,7/4),
koo = (=74 2V51)/24, k11 = 2V30/5, kKo = Fao -

Furthermore, restricting solutions of (Gg) to the hyperplane s = s;, we obtain
asymptotic solutions of (Pl;) near ¢ = oo. In the final section, we sketch the
process of construction of the formal canonical transformation. We employ the
standard method for obtaining such transformations ([2], [5], [6]).

2. RESuULTS

To state our results, we explain the following notation:
(a) Consider the matrix

0 28/3 0 2/3
—6 0 183 0

2.1 =

(2.1) Jo 0 2/3 0 0
186 0  —95% 0

with

(2.2) B:=—15713

The eigenvalues of Jy are £p, £p, and we have

T()_l‘]OTO = dlag[—p, Py —Ps ﬁ]?
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where
(2.3) Ty = (2v/5)7Y2DyQ,

_ 6 6 _ 3
Dy i= diag|ry 25", V25 YO, gy, Sne7p2],

2 3" 2
o—3iw/2  p=Biw/2 Biw/2 B3iw/2
_e—iw/Z e—iw/2 _eiw/Z 6iw/2
Q= _Z'eiw/Q _Z'eiw/Q Z'e—iw/Z ie—iw/?
_Z'63iw/2 ieSiw/? Z'e—3iw/2 _Z'e—Siw/Q

(b) We fix the arguments of the eigenvalues of Jy in such a way that
—m < arg(—p) < —g <argp<0<argp< g < arg(—p) <,

where arg p = —arg p, arg(—p) = m — arg p, arg(—p) = —7 + arg p. Let Xy be
the sector in the t-plane defined by

7
(2.4) Yo - —argp<6argt<7r—arg P
(c) For an arbitrary sector X in the ¢-plane, and for a function f(s,t) holomor-
phic for (s,t) € C x X, we write
f(s,1) € A(%),

if, for any positive number R, the function f(s,t) admits the asymptotic repre-

sentation
Flst) ~ > fuls)t™/"

v>0
uniformly for |s| < R as t — oo through 3, where f,(s) is an entire function of s.

(d) For a vector v = (vy, ..., U,), we denote by Zv the transpose of it, and for
a multi-index k = (ky, ..., k) € (NU{0})™, we write
K| =k + -+ ko, V=00

m

The formal canonical transformation is given by the following:
Theorem 2.1. There exists a formal canonical transformation
(2.5) (a,p) =U(s,1,Q,P),

a=(q,¢);, P=(pp), Q=(Q1,Q), P=(P, 1),
which reduces (G) into (Go). The right-hand side of (2.5) is a formal series given
by
U(s,t,Q,P) = T(u(s, t),v(s, 1))
+ 8T, (Fo(s, H+ Y ij(s,t)Qij) (Q,P).

ljl+[k|>1
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Here
(i) u = (uy,ug) and v = (v1,v9) satisfy

t=2Buy, 7Py, 230, Y30, € A(S));
(ii) Iy and Ly are 4 by 4 matrices such that each entry of
Ly =1I(s) + Ot %), t(7/12)(|j|+|k|—2)pjk

belongs to A(Xo), where 1(s) is a diagonal matriz satisfying det I(s) # 0 with
entries entire in s;
(iii) To is given by (2.3) and

Ay = diag[1/12, —1/4, —1/12, 1/4].

It is easy to see that system (Gg) admits a general solution

©341/2
Q1 = ®1(Cy, Oy, 5,1) 1= Oy TGl oxp (—6 (75— 1 i >,

7T TN

6 ipstt/?
P1 = \111(01, CQ, S, t) = Cgt_QKQOClcQ_K“CSC4 eXp(—pt7/6 + P ),

7 45

6_ ip°stl/?
Qs = ®y(C3, Cy, 5, 1) 1= Cyt?r02 BT oxp (—?thﬁ + —p4\/5 >,
iﬁ?’stm)

W5

where C; (1 < j < 4) are integration constants. For generic values of C;, there is
no direction in t-plane along which &, ¥, ®,, ¥, are simultaneously bounded. In
the sector X, however, there exists a curve tending to oo such that ®,(Cy, Cy, s, 1),
U, (Ch, Oy, 8,t), Do(C5,0, 8,t), and Wo(C3,0,s,t) = 0 are bounded. Indeed, along
the ray (7/6) arg t = m/2—arg p, we have arg(pt’/%) = 7/2—2arg p, implying that
Re (—pt™/%) < 0. Substituting these into the formal transformation of Theorem
2.1, and rearranging the terms, we get a three-parameter family of solutions of
(Go). The asymptotic property is justified by using the method of successive
approximation together with Borel-Ritt type reasoning (see [8]).

6
Py = Uy(C3,Cy, 5,t) 1= Cyt 72028 eXp(;ﬁtWG -

Theorem 2.2. Let Ry be an arbitrary positive number, and let oy be an arbitrary
small positive number. Then system (G) admits a family of solutions:

a,p) = "(u(s, 1), v(s,1))
+ tAOT() E(S, t, t_1/12q)1(01, CQ, S, t), t_l/lz\yl(cl, Cg, S, t), t_1/12q)2(03, O, S, t)),

(01,02,03) € Cg, |0102| < 51
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for (s,t) in the domain given by
(2.6) |(7/6) arg ¢ — (x/2 — arg p)]| < G,
(2.7)
7 12®(Cy, Ca, 5, )| + [t/ 201 (Cy, Ca, 5, 8)| + [t/ 1285(C5, 0, 5,)| < Ry,
|s| < R,

where 01 is a sufficiently small positive number. The vector function = is written
in the form

E(S’ t7 Xl; }/17 XZ) = t1/12 [FO(S’ t) + F(87 t7 Xl; }/17 X2)1| T(Xla th X27 0)7
where the vector function F admits the asymptotic representation

F(s,t, X1,Y1,X3) ~ ) Ty (s, X1, Yy, Xp)t /0

v>1
as t — oo through the sector (2.6) uniformly for (s, X1, Y1, Xa) satisfying
|s| < Ro,  [t[°1XaYa] < &1, [Xa| + Vil + [ Xa| < Ro.

The coefficients ', are vector functions whose entries are polynomials in X1, Y7,
Xy with coefficients entire in s.

Let us denote by ¢z = x(C1, Cy, Cs, s,t) the second entry of each solution given
above. For (Ply) with sy € C, we immediately obtain the following:

Corollary 2.3. Equation (Ply) admits a family of solutions:
g =x(C1,Cy,Cs,50,t), (C1,Cs,C5) € C* |C1Cy| < b,

fort in the domain given by (2.6) and (2.7) with s = sy, where b1 is a sufficiently
small positive number depending on 6y and sg.

Remark. In the sectors

7

Y —ﬂ—argp<6argt<—a,rgp,
7

Yo —7T—|—argp<6a,rgt<a,rgp,

7
Y3 argp<6argt<7r—|-argp,

we can construct analogous formal canonical transformations, which yield asymp-
totic solutions corresponding to the triples

(i) @1(C1,Co,8,t), U i(Ch,Co,s,t), Wy(0,C4, s,1),
(11) @1(01,0,3,1‘;), ®2(C3704a3at)a \D2(03a04737t)a

(lll) \Dl(O,CQ,S,t), (I)Z(C3a0473’t)7 W?(C3704a37t)a
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respectively.

3. CONSTRUCTION OF THE FORMAL TRANSFORMATION

The construction of (2.5) is divided into several steps, and it is obtained by
composing the transformations given in these steps. For the simplicity of de-
scription, in every step, we use the following common notation: we denote initial
Hamiltonians and variables by Hy and ¢;, p; (j,k = 1,2), namely an initial Hamil-
tonian system by

8(]]‘ . 8H1 3pj . 8H1
os  Op;’ 0s  Jg;’
8(]]‘ _ 8H2 3pj _ 6H2
ot N 8pj’ ot N 8q]‘
a canonical transformation by
(3.1) (g5, p5) = (Qj, Py);

and the resultant Hamiltonians by K}, (k = 1,2) with variables @);, P;. Note that
transformation (3.1) is canonical, if

(3.2) > dp; Adg; =) dP; A dQ;.
J J

Then, K} are computed by using the identity

(3.3) > _dp; Adg; — dHy Ads — dHy A dt

J

= dP; AdQ; — dKy Ads — dEKy A dt.

J

In each step, our computation is concentrated on H,. The corresponding expres-
sion of H; is derived by using the completely integrable condition.

3.1. Step 1. To eliminate the term —3tqy of 3Hs, we put
¢ = Q1+ at?? B = Qs+ Bt'? (o, B €C).

It is easy to see that this is a canonical transformation. Substitution into Hy for
(G) yields

3H, := Q,P? + ft'*P? + 2P, P,
+9(Q4 + 48703 = 30103 + (65” — 30)/* Q) — 6317 Q1Qs + Q3

+ (=36% 4+ 2a)t*3Q, — ng + (483% — 6af — %)tQ2>.
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Choosing 8 = —15713 o = 33%/2 (cf. (2.2)), and using (3.3), we have the
Hamiltonian of the resultant system:

(3.4) 3Ky =3H,—2at™' 2P, — pt%*p,
= Qo P} + Bt'*P} + 2P, Py

+ 9(@% +48t3Q5 — 30195 + at??Q3 — 658t2Q1 Qs + Q%)
—3sQ; — 2at™ V3P, — pt73 P,

3.2. Step 2. To make the quadratic part non-degenerate, we apply the sharing
transformation

@ =t""Q1, p=t""PP, q=t"Qy p=1t""P,
which is canonical. Then by (3.4) and (3.3), we have
(3.5) 3K =9t7'Q3+ 1t (Q2P] +368Q5 — 27Q1Q3)
27
+ 15(BP? + 2PuPy + 9Q} — 545Q1Qs + S°03)

1 3
+t7! (_Zlel + ZQ2P2) — 3st/12Q, — 75_5/12(352131 + BP5,).

3.3. Step 3. Observe that the quadratic part of (3.5)

27
£1/6 (B} + 2p1p2 + 9¢; — 54Bq1qs + 75261%)

corresponds to the matrix Jy (cf. (2.1)), which is a coefficient of the linear
part of the Hamiltonian system for H,. The matrix Ty satisfying T, *JoTy =
diag|—p, p, —p, p] is chosen so that the transformation

T(Ch,Pl, Q2;P2) =Ty T(Ql; P, Qo, Pz)

is canonical, namely that it satisfies (3.2). Then we have

\/_7“_3/25 1/2
2V5)?

—-1/2
V3 ey 3 B2 /51/2 A2 (L) 12 53/2,-5/12 (1.2)

6
3Ky = prg 0 Y b St R 3 O



where KéA‘), ... are homogeneous polynomials in @)1, P, ()2, P> given by

K§4) = ePQIP 4+ e Q3 Py +4Q1Qo P Py + - - -

KY = (44+ V5™ (Q + P)Q1 Py + (4 — V5i)e /2(Qy + P)Qo Py
+ 2V6ie* 2 (Qy + P Qo Py — 2V6ie ¥/ (Qy + Py) Q1 Py + - - - |

Kéz’l) = —ph PL — pQao P,

K = —e Q7 = PY) =

K2(1,1) = ¢ 732(Q) 4 P) + 392(Qy + Py),

K3 = a1(Qi— P) + as(Q2 — P»)  (ay, a2 € C).

3.4. Step 4. We would like to eliminate the linear parts of the Hamiltonians H;
(7 = 1,2). Using a classical result for nonlinear equations (see e.g. [8]), we can
choose the canonical transformation

G =Q1+u, @=Qs+uy pi=P+vi, pr=DP+uv

(for uj, v; cf. Theorem 2.1) such that tY/12y;, t*/12y; € A(X), where X is some
sector satisfying ¥ D ¥y and |X| > 7 (|| denotes the opening of ¥). By this
transformation, we have

Ky = Z tl/G_(7/12)(|j|+|k|_2)hjk(s,t)Qij

2<]jl+k|<4
with hj(s,t) € A(X); in particular, for |j| + |k| = 2,
b o0 (s,8) = A (s,1) + O(7T7%),
tY0h 101 (s, 1) = AP (1) + OT/"),
tY/0hy (s, ) = O(t~/?) (otherwise).
By a further linear canonical transformation, we have
hi(s,t) =0 for [j| + k| =2, (j.k) # (1,0,1,0), (0,1,0,1).

Using the completely integrable condition and the fact |¥| > 7, we can check
that the linear terms of H; are simultaneously eliminated by the transformation
above. For example,

Ky = (AP + fils) + 0 9) Qi Py
+ (A1) + fals) + O ) QuPy + -+

with some polynomials f;(s) (j = 1,2).
9



3.5. Step 5. We eliminate higher order terms in Hy for j # k. Suppose that
hi(s,t) = 0 for j, k satisfying j # k and |j| + |k| < 19— 1 (0 > 3). Put

W = Qip1 + Qapa + Z fix(s, ) QPp*.
lil+Ik|=t0
ik

Then
Q1:WP1’ qZZWPQ’ Pl:WQl? Py = WQ2

is a canonical transformation, and

Ky = Hy — s Z kl — J)A A (k2 — Jz) )kaQJP

+ > hpQp* = > (0 fu/0)Qp* + -

Choose fix(s,t) so that

O fix/Ot = hjx + (k1 — ]1)A + (k2 — J2)A éQ))fjk-
Since j # k, there exists fjk such that

t(7/12)(bo—2)fjk’ 4 1/6+(7/12)(e0—2) (0fii/0t) € A(Siw),
for some sector Yji, |Xj| > 7. Thus we get the canonical transformation

Map)="QP)+ > onls QP
lil+k[>0—1
i = O~ T/12HIK-1)

such that the coefficients of the terms in Ky for |j| + |k| = to, j # k vanish.
Applying the procedure above, we inductively obtain the required transformation.

3.6. Step 6. By a transformation of the form

Q1 exp (S:(Q1P1, Qal%))
T _ Q2 exp (Sy(Q1P1, Qo))
(a.p) = Py exp (=S.(Q1P1, Q21))
)

P, exp (—Sy(Q1P1, Q2P )
(S, = 8S/0x, S, = 9S/dy) with

S(ﬂ?,y) = Z wj(S,t)le’ij, j = (jlan)v

i1
t'0; € A(),
1/6 il =1,
d(j) == 42/3 il =2,
(7/6)(ljl =2) il =3,
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we get the reduced system (Gy).

Composing the transformations given above, we obtain the formal power series
in Q, P given in Theorem 2.1, whose coefficients are functions expressible by
asymptotic series in ¢ uniformly valid for s.
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