
Toward the exact WKB analysis for instanton‐type
solutions of Painlevé hierarchies

Yoshitsugu Takei *

Research Institute for Mathematical Sciences

Kyoto University, Kyoto 606‐8502, Japan
E‐mail: takei@kurims.kyoto‐u.ac.jp

1 Introduction

Together with T. Aoki, T. Kawai, T. Koike and partly with Y. Nishikawa, as a

generalization of the exact WKB analysis for traditional (i.e., second order) Painlevé

equations, we have now been trying to develop a program to analyze (P_{J})(J=
I, II or IV) hierarchies of higher order Painlevé equations. After the venue of the

conference held at Toulouse in 2003, where Kawai first proposed the program, we

named this program \backslash (\mathrm{t}\mathrm{h}\mathrm{e} Toulouse Project�. The purpose of this paper is to discuss

to what extent the Toulouse Project is carried out and what kind of open problems
there are in conjunction with this Project.

Recently the so‐called instanton‐type formal solutions of higher order Painlevé

equations are constructed first for the (P) hierarchy ([T5]) and later for the (P_{\mathrm{I}\mathrm{I}}) and

(P_{\mathrm{I}\mathrm{V}}) hierarchies as well (cf. [Ko]). The construction of instanton‐type solutions is

one of the most important steps in the Toulouse Project; the instanton‐type solutions

are expected to be suitable formal solutions for the description of Stokes phenomena
for the (P_{J}) hierarchies, as is suggested by the explicit connection formula for the

traditional (P) equation given in [T1]. The final goal of the Toulouse Project is to

give the connection formula for the (P) hierarchies explicitly in terms of instanton‐

type solutions.

Roughly speaking, instanton‐type solutions of higher order Painlevé equations
play the role of WKB solutions of linear ordinary dierential equations with a large
parameter. Our exact WKB analysis for instanton‐type solutions of Painlevé hierar‐

chies is, however, NOT a straightforward generalization of the exact WKB analysis
for linear dierential equations. Rather the exact WKB analysis for Painlevé hier‐

archies is a generalization of the asymptotic analysis for integral representations of

solutions of linear equations; we make full use of the underlying Lax pair (i.e., the

*This work is supported in part by JSPS Grants‐in‐Aid No. 17340042 and No. 18540174.
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associated isomonodromic deformation) as a substitute of integral representations.
Note that the existence of the Lax pair is an expression of the \backslash 

(integrability� of

(higher order) Painlevé equations. In this paper we discuss the exact WKB analysis
for instanton‐type solutions of the (P_{J}) hierarchies from this viewpoint.

The concrete plan of the paper is as follows: In Section 2 we first recall the

denition of the (P) hierarchy and review the construction of its instanton‐type so‐

lutions. (In this paper we mainly discuss the (P) hierarchy for the sake of simplicity
and deniteness.) Then, after making a very brief review of the exact WKB analysis
for linear dierential equations in Section 3, we explain the relevance of the under‐

lying Lax pair (i.e., the associated isomonodromic deformation) in the denition of

the Stokes geometry of higher order Painlevé equations and the mechanism how the

Stokes phenomena for instanton‐type solutions occur in Section 4. Finally in Section

5 we discuss conjectures, results obtained so far, and some important open problems
toward the determination of the connection formula for instanton‐type solutions.

2 (P) hierarchy and its instanton‐type solutions

The main object of the discussion in this paper is the (P) hierarchy studied by
Kudryashov ([\mathrm{K}\mathrm{u}, \mathrm{K}\mathrm{u}\mathrm{S}\mathrm{o}]) ,

Gordoa and Pickering ([GP]), Shimomura ([S1, S2]) and

so on. In what follows we use the following expression (P_{\mathrm{I}})_{m}(m=1,2, \ldots) of the

hierarchy, which is obtained through a slight modication of that of Shimomura

([S2]) and appropriate introduction of a large parameter  $\eta$(>0) .

(P_{\mathrm{I}})_{m} \left\{\begin{array}{l}
\frac{du_{j}}{dt}=2 $\eta$ v_{j}\\
\frac{dv_{j}}{dt}=2 $\eta$(u_{j+1}+u_{1}u_{j}+w_{j})
\end{array}\right. (j=1, \ldots, m) .

Here u_{j} and v_{j} are unknown functions (we conventionally assume u_{m+1}\equiv 0 ) and w_{j}
denotes a polynomial of \{u_{k}, v_{l}\}_{1\leq k,l\leq j} recursively dened by the following relations:

(1) w_{j}=\displaystyle \frac{1}{2}\sum_{k+l=j+1}u_{k}u_{l}+\sum_{k+l=j}u_{k}w_{l}-\frac{1}{2}\sum_{k+l=j}v_{k}v_{l}+c_{j}+$\delta$_{jm}t,
where c_{j} is a constant and $\delta$_{jm} stands for Kronecker�s delta. For example, the first

member of the hierarchy

(2) \left\{\begin{array}{l}
\frac{du_{1}}{dt}=2 $\eta$ v_{1},\\
\frac{dv_{1}}{dt}= $\eta$(3u_{1}^{2}+2c_{1}+2t) ,
\end{array}\right.
that is,

(3) \displaystyle \frac{d^{2}u_{1}}{dt^{2}}=$\eta$^{2}(6u_{1}^{2}+4c_{1}+4t) ,
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is equivalent to the traditional first Painlevé equation (P) by appropriate scaling and

translation of the independent variable t . (This is the reason why we call (P_{\mathrm{I}})_{m} �the

(P) hierarchy�.) Similarly, the second member (P_{\mathrm{I}})_{2} is equivalent to the following
fourth order nonlinear equation for u=u_{1} :

(4) \displaystyle \frac{d^{4}u}{dt^{4}}=$\eta$^{2}(20u\frac{d^{2}u}{dt^{2}}+10(\frac{du}{dt})^{2})-$\eta$^{4}(40u^{3}+16cu-16t)
As (P_{\mathrm{I}})_{m} contains a large parameter  $\eta$ in a singular‐perturbative manner, we can

easily construct a formal power series (in  $\eta$^{-1} ) solution of (P_{\mathrm{I}})_{m} of the form

(5) ûj (t,  $\eta$)=u_{j,0}(t)+$\eta$^{-1}u_{j,1}(t)+\cdots , \hat{v}_{j}(t,  $\eta$)=v_{j,0}(t)+$\eta$^{-1}v_{j,1}(t)+\cdots .

Note that the top order part (u_{j,0}(t), v_{j,0}(t)) of (5) satises a system of algebraic
equations and the higher order part (u_{j,l}(t), v_{j,l}(t))(l\geq 1) is uniquely determined

in a recursive manner once (u_{j,0}(t), v_{j,0}(t)) is fixed (cf. [KKoNT]). The solution

(5) is called ( (\mathrm{a}0‐parameter solution� of (P_{\mathrm{I}})_{m} . The 0‐parameter solutions are,

however, not sucient to discuss the Stokes phenomena for (P_{\mathrm{I}})_{m} since they contain

no free parameters. A wider class of formal solutions of (P_{\mathrm{I}})_{m} recently constructed

in [T5] are expected to play the fundamental role in the description of the Stokes

phenomena: They contain 2m free parameters and have the following form:

(6) \left\{\begin{array}{l}
u_{j}(t,  $\eta$; $\alpha$) = u_{j,0}(t)+$\eta$^{-1/2}\sum_{1\leq k\leq 2m}$\alpha$_{k}\exp( $\eta$\int^{t}v_{k}dt)u_{jk,1/2}(t)+\cdots,\\
v_{j}(t,  $\eta$; $\alpha$) = v_{j,0}(t)+ $\eta$
\end{array}\right.-1/2\displaystyle \sum_{1\leq k\leq 2m}$\alpha$_{k}\exp( $\eta$\int^{t}v_{k}dt)v_{jk,1/2}(t)+\cdots,
where $\alpha$_{k}\in \mathbb{C} (k=1, \ldots; 2m) are free parameters and v_{k}=v_{k}(t) denote the eigen‐
values of the leading coecient C(t) of the following linearized equation (\triangle P_{\mathrm{I}})_{m} of

(P_{\mathrm{I}})_{m} at a 0‐parameter solution (û; \hat{v}_{j} ):

(\triangle P_{\mathrm{I}})_{m} \displaystyle \frac{d}{dt}\left(\begin{array}{l}
\triangle u_{1}\\
\vdots\\
\triangle v_{m}
\end{array}\right)= $\eta$(C_{0}(t)+$\eta$^{-1}C_{1}(t)+\cdots)\left(\begin{array}{l}
\triangle u_{1}\\
\vdots\\
\triangle v_{m}
\end{array}\right) .

(Note that the eigenvalues \{v_{k}\}_{1\leq k\leq 2m} can be numbered so that v_{l}+v_{l+m}=0 holds

for l=1
,

.

::, m.) The solution (6) is called \backslash (\mathrm{a}\mathrm{n} instanton‐type solution� of (P_{\mathrm{I}})_{m}.

Outline of the construction of instanton‐type solutions

In [T5] instanton‐type solutions of (P_{\mathrm{I}})_{m} are constructed by using reduction to

Birkhoff normal form. To be more specic, we first express (P_{\mathrm{I}})_{m} in the form of

a Hamiltonian system with an appropriately chosen canonical variable (q_{j}, p_{j}) and
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next consider the \backslash localization� at a 0‐parameter solution (\hat{q}_{j},\hat{p}_{j}) corresponding to

(û; \hat{v}_{j} ):

(7) q_{j}=\hat{q}_{j}+$\eta$^{-1/2}$\psi$_{j}, p_{j}=\hat{p}_{j}+$\eta$^{-1/2}$\varphi$_{j}.
It is readily conrmed that ($\psi$_{j}, $\varphi$_{j}) also satises a Hamiltonian system of the form

(8) \displaystyle \frac{d$\psi$_{j}}{dt}= $\eta$\frac{\partial K}{\partial$\varphi$_{j}}, \frac{d$\varphi$_{j}}{dt}=- $\eta$\frac{\partial K}{\partial$\psi$_{j}}.
We then consider the reduction of (8) to its Birkhoff normal form, that is, we

construct \mathrm{a} (formal) canonical transform

(9) $\psi$_{j}=\displaystyle \sum_{k=0}^{\infty}$\eta$^{-k/2}$\psi$_{j}^{(k)}(t,\tilde{ $\psi$},\tilde{ $\varphi$}, $\eta$^{-1/2}) , $\varphi$_{j}=\sum_{k=0}^{\infty}$\eta$^{-k/2}$\varphi$_{j}^{(k)}(t,\tilde{ $\psi$},\tilde{ $\varphi$}, $\eta$^{-1/2})
in such a way that (8) is transformed into

(10) \displaystyle \frac{d\tilde{ $\psi$}_{j}}{dt}= $\eta$\frac{\partial\tilde{K}}{\partial\tilde{ $\varphi$}_{j}}, \displaystyle \frac{d\tilde{ $\varphi$}_{j}}{dt}=- $\eta$\frac{@\tilde{K}}{\partial\tilde{ $\psi$}_{j}} with \tilde{K}=\tilde{K}(t, $\rho$_{1}, \ldots, $\rho$_{m}, $\eta$^{-1/2})_{$\rho$_{j}=\tilde{ $\psi$}_{j}\tilde{ $\varphi$}_{j}}
Since the Birkhoff normal form (10) can be easily solved, by substituting its solution

into (9) we obtain a formal solution of (8) and hence that of (P_{\mathrm{I}})_{m} . This is an outline

of the construction of instanton‐type solutions.

For example, an instanton‐type solution of (4) (i.e., the second member (P_{\mathrm{I}})_{2} of

the hierarchy) is given as follows:

u(t,  $\eta$; $\alpha$,  $\beta$)=u_{0}(t)+

(11) $\eta$^{-1/2}[\displaystyle \frac{$\alpha$_{1}}{(v_{1}^{2}\triangle)^{1/4}}$\theta$_{11}^{$\alpha$_{1}$\beta$_{1}}$\theta$_{12}^{$\alpha$_{2}$\beta$_{2}}e^{ $\eta$\int^{t}v_{1}dt}+\frac{$\alpha$_{2}}{(v_{2}^{2}\triangle)^{1/4}}$\theta$_{21}^{$\alpha$_{1}$\beta$_{1}}$\theta$_{22}^{$\alpha$_{2}$\beta$_{2}}e^{ $\eta$\int^{t}v_{2}dt}+
\displaystyle \frac{$\beta$_{1}}{(v_{1}^{2}\triangle)^{1/4}}$\theta$_{11}^{-$\alpha$_{1}$\beta$_{1}}$\theta$_{12}^{-$\alpha$_{2}$\beta$_{2}}e^{- $\eta$\int^{t}v_{1}dt}+\frac{$\beta$_{2}}{(v_{2}^{2}\triangle)^{1/4}}$\theta$_{21}^{-$\alpha$_{1}$\beta$_{1}}$\theta$_{22}^{-$\alpha$_{2}$\beta$_{2}}e^{- $\eta$\int^{t}v_{2}dt}]+\cdots,

where u_{0} is the top order part of the 0‐parameter solution satisfying 40u_{0}^{3}+16cu_{0}-
16t=0, \pm v_{1} and \pm v_{2} denote the eigenvalues of the coecient C(t) of (\triangle P_{\mathrm{I}})_{2} which

are explicitly given by

(12) v_{1}^{2}=10u_{0}+2\sqrt{\triangle}, v_{2}^{2}=10u_{0}-2\sqrt{\triangle} with \triangle=-(5u_{0}^{2}+4c) ,

and $\theta$_{jk}(t) are functions of t dened by the following formulas:

(13) \left\{\begin{array}{l}
$\theta$_{11}=\exp(\int^{t}\frac{8v_{1}^{4}-27v_{1}^{2}v_{2}^{2}+15v_{2}^{4}}{v_{1}^{4}v_{2}^{2}\triangle}dt) ,\\
$\theta$_{12}=\exp(-\int^{t}\frac{12v_{1}^{4}-16v_{1}^{2}v_{2}^{2}+12v_{2}^{4}}{v_{1}^{3}v_{2}^{3}\triangle}dt)=$\theta$_{21}^{-1},\\
$\theta$_{22}=\exp(-\int^{t}\frac{15v_{1}^{4}-27v_{1}^{2}v_{2}^{2}+8v_{2}^{4}}{v_{1}^{2}v_{2}^{4}\triangle}dt) .
\end{array}\right.
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Generally speaking, some exponentially small terms should be added to an

original asymptotic solution in the Stokes phenomenon. In the expression (6) of

instanton‐type solutions exponential terms appearing in the coecients of $\eta$^{-1/2} are

expected to correspond to (the principal part of) such exponentially small terms. In

view of the concrete form of (6) we are thus led to the following denition of turning
points and Stokes curves of (P_{\mathrm{I}})_{m}.

Denition 1. (i) A turning point of (P_{\mathrm{I}})_{m} is, by denition, a point where v_{j} and

v_{j'} merge for some j\neq j^{0} . In particular, a point where v_{j} and v_{j+m} vanish for some

1\leq j\leq m is called a turning point of the first kind and a point where v_{j}=v_{j'} or

v_{j}=v_{j'+m} holds for some 1\leq j, j^{0}\leq m is called a turning point of the second kind.

(ii) A Stokes curve of (P_{\mathrm{I}})_{m} is a curve dened by the following relation:

(14) {\rm Im}\displaystyle \int_{ $\tau$}^{t}(v_{j}-v_{j'})dt=0.
Note that this denition of the Stokes geometry of (P_{\mathrm{I}})_{m} coincide with that given
in [KKoNT] thanks to the fact that v_{j} are nothing but the eigenvalues of C(t) of

(\triangle P_{\mathrm{I}})_{m}.
The goal of our Project is to analyze the Stokes phenomenon observed on a

Stokes curve dened by (14) and to give the connection formula which describes the

Stokes phenomenon explicitly.

3 Brief review of the exact WKB analysis for lin‐

ear ordinary dierential equations

Before discussing the Stokes phenomenon for the hierarchy (P_{\mathrm{I}})_{m} of higher order

Painlevé equations, let us briey review, as its prototype, the exact WKB analysis
for a linear ordinary dierential equation with a large parameter  $\eta$ of the form

(15) (\displaystyle \frac{d^{m}}{dx^{m}}+a_{1}(x) $\eta$\frac{d^{m-1}}{dx^{m-1}}+\cdots+a_{m}(x)$\eta$^{m}) $\psi$=0.
For Eq. (15) there exists a WKB solution

(16) $\psi$_{j}=\displaystyle \exp( $\eta$\int^{x}$\lambda$_{j}(x)dx)\sum_{l=0}^{\infty}$\psi$_{j,l}(x)$\eta$^{-(l+1/2)} (j=1, . . . , m) ,

where $\lambda$_{j}(x) is a root of the characteristic equation

(17) $\lambda$^{m}+a_{1}(x)$\lambda$^{m-1}+\cdots+a_{m}(x)=0

of (15). In the exact WKB analysis a WKB solution (16), although being divergent,
is given an analytic meaning through the Borel resummation technique, that is,
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instead of (16) we consider its Borel sum

(18) $\Psi$_{j}=\displaystyle \int_{-y_{j}(x)}^{\infty}e^{- $\eta$ y}$\psi$_{j,B}(x, y)dy (where y_{j}(x)=\displaystyle \int^{x}$\lambda$_{j}(x)dx ).
Here $\psi$_{j,B}(x, y) denotes the Borel transform

(19) $\psi$_{j,B}(x, y)=\displaystyle \sum_{l=0}^{\infty}\frac{$\psi$_{j,l}(x)}{ $\Gamma$(l+1/2)}(y+y_{j}(x))^{l-1/2}
of $\psi$_{j} and the path of integration of (18) is conventionally taken to be parallel to

the positive real axis (cf. Fig. 1).
In the case of a linear equation (15) a Stokes curve is dened by a relation

{\rm Im}(y_{j}(x)-y_{j'}(x))=0 ,
whose true meaning is as follows: For example, let us consider

a simple turning point x=x_{0} where two characteristic roots $\lambda$_{j}(x) and $\lambda$_{j'}(x) merge.

Then in a neighborhood of x_{0} the Borel transform $\psi$_{j,B}(x, y) has singularity both

at y=-y_{j}(x) and at y=-y_{j'}(x) (cf. Fig. 1). (In general $\psi$_{j,B}(x, y) is expected
to have singularity at y=-y_{k}(x) ,

k=1
,

. .

:;
m. ) Hence at each point of a Stokes

\lrcorner y -y_{j'}(x)

-y_{j}(x)

Figure 1 : The path of integration for $\Psi$_{j} and singular points of $\psi$_{j,B}(x, y) .

curve the singular point y=-y_{j'}(x) crosses the path of integration of (18) and

consequently the Borel sum $\Psi$_{j} picks up the contour integral around the singular
point y=-y_{j'}(x) . This is the Stokes phenomenon for (the Borel sum of) a WKB

solution of (15) and such a phenomenon occurs on a Stokes curve. (For the details

see, e.g., [T3] and references cited therein.)
Our approach to the analysis of the Stokes phenomenon for \mathrm{a} (higher order)

Painlevé equation is, however, quite dierent from that for a general linear equation
(15); rather our approach for a Painlevé equation resembles more to the exact WKB

analysis for a linear equation whose solutions admit an integral representation of

the form

(20)  $\psi$=\displaystyle \int_{ $\Gamma$}e^{ $\eta$ f(x, $\zeta$)}g(x,  $\zeta$)d $\zeta$.
When such an integral representation exists, a WKB solution $\psi$_{j}

\backslash (lives� at a saddle

point of (20), i.e., a point $\zeta$_{j}=$\zeta$_{j}(x) satisfying (@f =@) (x; $\zeta$_{j})=0 . To be more

precise, the Borel sum $\Psi$_{j} of a WKB solution corresponds to a solution given by
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\lrcorner $\zeta$ \bullet

Figure 2 : Steepest descent path of {\rm Re} f(x,  $\zeta$) through a saddle point $\zeta$_{j}.

(20) with  $\Gamma$ being a steepest descent path of {\rm Re} f(x,  $\zeta$) passing through a saddle

point $\zeta$_{j} . Thus, in this case, a Stokes curve is characterized in the following way:

A point x lies in a Stokes curve if and only if two saddle points $\zeta$_{j}(x) and
(21)

$\zeta$_{j'}(x) are connected by asteepest descent path of {\rm Re} f(x,  $\zeta$) .

In view of (21) and the fact that each WKB solution $\psi$_{j} lives at a saddle point
(in the above sense), we can readily find that the Stokes phenomenon occurs on a

Stokes curve as a consequence of the topological change of conguration of steepest
descent paths. See [T2] for more detailed discussions.

4 Underlying Lax pair of (P_{\mathrm{I}})_{m} and Stokes phe‐
nomena for instanton‐type solutions

As is mentioned in the preceding section, the exact WKB analysis for a linear

equation whose solutions admit an integral representation can be regarded as a

prototype of our WKB analysis for \mathrm{a} (higher order) Painlevé equation. Then, what

is the integral representation for a (higher order) Painlevé equation
!? The answer

is the isomonodromic deformations (or the so‐called \backslash ( \mathrm{L}\mathrm{a}\mathrm{x} pair�) of linear equations
that underlie a Painlevé equation in question.

It is well‐known that each member (P_{\mathrm{I}})_{m} of the (P) hierarchy describes the

compatibility condition of the following system of first order 2\times 2 linear dierential

equations

(L_{\mathrm{I}})_{m} \displaystyle \frac{\partial}{\partial x}\vec{ $\varphi$}= $\eta$ A\vec{ $\varphi$}, \displaystyle \frac{\partial}{\partial t}\vec{ $\varphi$}= $\eta$ B\vec{ $\varphi$},
where

(22) A = \left(\begin{array}{lll}
 & V(x)/2 & U(x)\\
(2x^{m+1} & -xU(x)+2W(x))/4 & -V(x)/2
\end{array}\right),
(23) B = \left(\begin{array}{ll}
0 & 2\\
u_{1}+x/2 & 0
\end{array}\right),
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or, equivalently, the compatibility condition of the following two dierential equa‐

tions with one unknown function

(SL_{\mathrm{I}})_{m} (\displaystyle \frac{\partial^{2}}{\partial x^{2}}-$\eta$^{2}Q_{(\mathrm{I},m)}) $\psi$=0,
(D_{1})_{m} \displaystyle \frac{\partial $\psi$}{\partial t}=A_{(\mathrm{I},m)}\frac{@ $\psi$}{\partial x}-\frac{1}{2}\frac{\partial A_{(\mathrm{I},m)}}{\partial x} $\psi$,
where

(24) Q_{(\mathrm{I},m)} = \displaystyle \frac{1}{4}(2x^{m+1}-xU+2W)U+\frac{1}{4}V^{2}
-$\eta$^{-1}\displaystyle \frac{U_{x}V}{2U}+$\eta$^{-1}\frac{V_{x}}{2}+$\eta$^{-2}\frac{3U_{x}^{2}}{4U^{2}}-$\eta$^{-2}\frac{U_{xx}}{2U},

(25) A_{(\mathrm{I},m)} = \displaystyle \frac{2}{U}.
Here U=U(x) , V=V(x) and W=W(x) respectively denote the following
polynomials in x and U_{x} etc. designate their derivatives with respect to x :

(26) U(x) = x^{m}-u_{1}x^{m-1}-\cdots-u_{m},
(27) V(x) = v_{1}x^{m-1}+\cdots+v_{m},
(28) W(x) = w_{1}x^{m-1}+\cdots+w_{m}.
In our WKB analysis of (P_{\mathrm{I}})_{m} the underlying Lax pair (L_{\mathrm{I}})_{m} (or (SL_{\mathrm{I}})_{m} and (D_{\mathrm{I}})_{m} ;

in what follows we mainly use (SL_{\mathrm{I}})_{m} and (D_{\mathrm{I}})_{m} for the sake of convenience of

explanation) plays the same role as an integral representation of solutions in the

following sense.

We first substitute an instanton‐type solution (u_{j}(t,  $\eta$; $\alpha$), v_{j}(t,  $\eta$; $\alpha$)) into the

coecients of (L_{\mathrm{I}})_{m} (or (SL_{\mathrm{I}})_{m} and (D_{\mathrm{I}})_{m} ). Then we can verify

Proposition 1. (i) Let Q_{(I,m),0} denote the top order part of the potential Q_{(I,m)} of
(SL_{\mathrm{I}})_{m} (i.e., the top order part of the discriminant of the characteristic equation of
A

,
the coecient of the first equation of (L_{\mathrm{I}})_{m} ). Then it is fa ctorized as

(29) Q_{(I,m),0}=\displaystyle \frac{1}{4}(x+2u_{1,0})U_{0}(x)^{2},
where u_{1,0} and U(x) denote the top order part of u_{1}(t,  $\eta$; $\alpha$) and U(x) , respectively.
Hence (SL_{\mathrm{I}})_{m} (or the first equation of (L)) has one simple turning point at x=

-2u_{1,0} ,
which will be denoted by a(t) in what follows, and m double turning points

at zeros of U_{0}(x) ,
which will be denoted by b_{j}(t)(j=1, \ldots; m) as well.

(ii) At each point in a Stokes curve of (P_{\mathrm{I}})_{m} two turning points of (SL_{\mathrm{I}})_{m} are

connected by a Stokes curve of (SL_{\mathrm{I}})_{m} (cf. Fig. 3). More specically, a simple
turning point a(t) and a double turning point b(t) (resp., two double turning points

b(t) and b_{j'}(t) ) are connected by a Stokes curve of (SL_{\mathrm{I}})_{m} at a point in a Stokes

curve of (P_{\mathrm{I}})_{m} emanating fr om a turning point of the first kind (resp., the second

kind).
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\lrcorner t \lrcorner x: turning point

$\Omega$_{1}

Stokes curve

Figure 3: Degenerate conguration of the Stokes geometry of (SL_{\mathrm{I}})_{m}
observed on a Stokes curve of (P_{\mathrm{I}})_{m}.

For the proof see [KKoNT, Section 2]. Note that the claim (ii) of Prop. 1 is a

counterpart of (21).
In the case of a linear equation with an integral representation of solutions the

Stokes phenomenon on a Stokes curve is a consequence of (21), that is, it is caused by
the topological change of conguration of steepest descent paths of (20). For (P_{\mathrm{I}})_{m}
such a straightforward understanding of the Stokes phenomenon is not possible.
However, combining the claim (ii) of Prop. 1 with the isomonodromic property of

(SL_{\mathrm{I}})_{m} ,
we can explain the mechanism how the Stokes phenomenon occurs on a

Stokes curve also for (P_{\mathrm{I}})_{m} as follows.

Mechanism how the Stokes phenomenon for (P_{\mathrm{I}})_{m} occurs

As is schematically shown in Fig. 3, two Stokes regions $\Omega$_{1} and $\Omega$_{2} in t‐plane are

sharing a Stokes curve of (P_{\mathrm{I}})_{m} in question as a common boundary. Let (u_{j}(t,  $\eta$; $\alpha$) ,

v_{j}(t,  $\eta$; $\alpha$)) be an instanton‐type solution in $\Omega$_{1} and let us denote its analytic con‐

tinuation in $\Omega$_{2} across the Stokes curve by (u_{j}(t,  $\eta$;\tilde{ $\alpha$}), v_{j}(t,  $\eta$;\tilde{ $\alpha$})) . It is expected
that a Stokes phenomenon occurs on the Stokes curve and some exponentially small

terms are added to (u_{j}(t,  $\eta$; $\alpha$), v_{j}(t,  $\eta$; $\alpha$)) ; consequently the free parameter \tilde{ $\alpha$} of the

corresponding solution in $\Omega$_{2} may become dierent from the original parameter  $\alpha$.

We want to explain why such a change of free parameters occurs on a Stokes curve

and how an explicit formula describing it can be obtained.

Prop. 1, (ii) claims that on a Stokes curve of (P_{\mathrm{I}})_{m} (i.e., curve in t‐plane) two

turning points are connected by a Stokes curve of (SL_{\mathrm{I}})_{m} (i.e., curve in x‐plane).
Hence the conguration of Stokes curves of (SL_{\mathrm{I}})_{m} when t belongs to $\Omega$_{1} is dierent

from the conguration when t belongs to $\Omega$_{2} (cf. Fig. 4). Now, applying the exact

WKB analysis for linear ordinary dierential equations (cf. [KT1] and references

cited therein), we compute the monodromy data of (SL_{\mathrm{I}})_{m} when t\in$\Omega$_{1} and t\in$\Omega$_{2},
respectively. Since the computation of monodromy data through the exact WKB

analysis heavily depends on the conguration of Stokes curves, the concrete expres‐

sions of monodromy data thus obtained, which become functions of the parameters
 $\alpha$ and \tilde{ $\alpha$}

,
should be dierent (as functions of the parameters) according as t belongs
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(i) (ii) (iii)

Figure 4: Conguration of Stokes curves of (SL_{\mathrm{I}})_{m} when (i) t belongs to $\Omega$_{1},
(ii) t lies in a Stokes curve and (iii) t belongs to $\Omega$_{2}.

to $\Omega$_{1} or $\Omega$_{2}.

If t\in$\Omega$_{1} \Rightarrow monodromy data of (SL_{\mathrm{I}})_{m} : M_{k}() .

(30)
If t\in$\Omega$_{2} \Rightarrow monodromy data of (SL_{\mathrm{I}})_{m} : \overline{M}_{k}(\tilde{ $\alpha$}) .

Although the expressions M_{k}() and \overline{M}_{k}(\tilde{ $\alpha$}) are dierent, their values, i.e., the mon‐

odromy data themselves should be unchanged thanks to the isomonodromic property
if (u_{j}(t,  $\eta$;\tilde{ $\alpha$}), v_{j}(t,  $\eta$;\tilde{ $\alpha$})) is the analytic continuation of (u_{j}(t,  $\eta$; $\alpha$), v_{j}(t,  $\eta$; $\alpha$)) . We

thus obtain

(31) M_{k}( $\alpha$)=\overline{M}_{k}(\tilde{ $\alpha$}) .

The relation (31) immediately implies  $\alpha$ and \tilde{ $\alpha$} are dierent in general. Moreover

(31) describes an explicit formula (
\backslash 

general connection formula� for instanton‐type
solutions) which relates \tilde{ $\alpha$} to  $\alpha$ . The relation (31) thus explains the mechanism

how the Stokes phenomenon for instanton‐type solutions occurs on a Stokes curve

of (P_{\mathrm{I}})_{m}.

In conclusion, Prop. 1, (ii) together with the explicit computation of monodromy
data of (SL_{\mathrm{I}})_{m} enables us to explicitly analyze the Stokes phenomena for (P_{\mathrm{I}})_{m}.
However it is a quite complicated and troublesome task to compute the monodromy
data of (SL_{\mathrm{I}})_{m} in general. In the subsequent section, to write down the connection

formula in a neat way, we will discuss the generalization of \backslash (\mathrm{t}\mathrm{h}\mathrm{e} normal form theory
at a turning point� established for traditional (i.e., second order) Painlevé equations
in [KT2] to hierarchies of higher order Painlevé equations.

5 Toward the connection formula for instanton‐

type solutions — Discussion and open problems

In [KT2] we showed that every 2‐parameter instanton‐type solution of a traditional

Painlevé equation (P_{J}) ( J=\mathrm{I}, \ldots

, VI) can be transformed (in the formal sense)
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to that of the first Painlevé equation (P) near a simple turning point. (Note that

all turning points of (P_{J}) are of the first kind in the sense of Def. 1.) Otherwise

stated, (P) is the normal form (or, canonical equation) at a simple turning point
for (P_{J}) . This reduction (more precisely, local equivalence) theorem would imply
that the connection formula for instanton‐type solutions of (P) should be the same

as that of (P_{\mathrm{I}}) . In this section we discuss its generalization to the hierarchy (P_{\mathrm{I}})_{m}
of higher order first Painlevé equations.

Let us here recall the fact that in the case of a linear equation with an integral
representation of solutions each WKB solution lives at a saddle point of the integral
representation. Toward the verication of the reduction (local equivalence) theorem

near a turning point for (P_{\mathrm{I}})_{m} ,
we first consider a counterpart of this fact, that is,

taking the claim (ii) of Prop. 1 into account, we ask the following question: Does

an instanton‐type solution of (P_{\mathrm{I}})_{m}\backslash (live
�

at a double turning point x=b(t) of the

underlying linear equation (SL_{\mathrm{I}})_{m}'? The precise formulation of our expectation is

the following

Conjecture 1. Assume that an instanton‐type solution (u_{j}(t,  $\eta$; $\alpha$), v_{j}(t,  $\eta$; $\alpha$)) is

substituted into the coecients of (SL_{\mathrm{I}})_{m} and (D_{\mathrm{I}})_{m} . Then at a double turning
point x=b(t) of (SL_{\mathrm{I}})_{m} the simultaneous equations (SL_{\mathrm{I}})_{m} and (D_{\mathrm{I}})_{m} can be

transfO rmed into

(Can) (\displaystyle \frac{\partial^{2}}{\partial z^{2}}-$\eta$^{2}Q_{\mathrm{c}\mathrm{a}\mathrm{n}}(z, s,  $\eta$)) $\varphi$=0,
(D_{\mathrm{c}\mathrm{a}\mathrm{n}}) \displaystyle \frac{\partial $\varphi$}{\partial s}=A_{\mathrm{c}\mathrm{a}\mathrm{n}}\frac{@ $\varphi$}{\partial z}-\frac{1}{2}\frac{\partial A_{\mathrm{c}\mathrm{a}\mathrm{n}}}{\partial z} $\varphi$,
where

(32) Q_{\mathrm{c}\mathrm{a}\mathrm{n}} = 4z^{2}+$\eta$^{-1}($\rho$^{2}-4$\sigma$^{2})+\displaystyle \frac{$\eta$^{-3/2} $\rho$}{z-$\eta$^{-1/2} $\sigma$}+\frac{3$\eta$^{-2}}{4(z-$\eta$^{-1/2} $\sigma$)^{2}},
(33) A_{\mathrm{c}\mathrm{a}\mathrm{n}} = \displaystyle \frac{1}{2(z-$\eta$^{-1/2} $\sigma$)}.
(Here  $\rho$ and  $\sigma$ are considered to be functions of  t. )

We can readily verify that (Can) and (D_{\mathrm{c}\mathrm{a}\mathrm{n}}) are compatible if  $\rho$ and  $\sigma$ satisfy
the following Hamiltonian system:

(34) \left\{\begin{array}{l}
\frac{d $\rho$}{dt} = -4 $\eta \sigma$,\\
\frac{d $\sigma$}{dt} = - $\eta \rho$.
\end{array}\right.
As the compatibility condition of (Can) and (D_{\mathrm{c}\mathrm{a}\mathrm{n}}) is described by a second order

equation (34), Conjecture 1 implies that a 2‐parameter family of (instanton‐type)
solutions of (P_{\mathrm{I}})_{m} lives at a double turning point x=b(t) of (SL_{\mathrm{I}})_{m}.
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As a matter of fact, there are some supporting evidences of Conjecture 1. For

example, let us consider the second member (P_{\mathrm{I}})_{2} (see (4) for the concrete expres‐

sion) of the hierarchy and its underlying linear equations (SL_{\mathrm{I}})_{2} and (D_{\mathrm{I}})_{2} with an

instanton‐type solution (u_{j}(t,  $\eta$; $\alpha$,  $\beta$), v_{j}(t,  $\eta$; $\alpha$,  $\beta$)) (cf. (11)) of (P_{\mathrm{I}})_{2} being substi‐

tuted into their coecients. There exist two double turning points x=b(t) and

x=b(t) of (SL_{\mathrm{I}})_{2} . We can then verify that at x=b_{j}(t)(j=1,2) ,
if we temporar‐

ily ignore the deformation equation (D_{\mathrm{I}})_{2}, (SL_{\mathrm{I}})_{2} is transformed into (Can). To be

more specic, we can find

(35) $\sigma$^{(j)}(t,  $\eta$)=\displaystyle \sum_{l}$\eta$^{-l/2}$\sigma$_{l/2}^{(j)}, $\rho$^{(j)}(t,  $\eta$)=\sum_{l}$\eta$^{-l/2}$\rho$_{l/2}^{(j)},
so that (SL_{\mathrm{I}})_{2} can be transformed into the following equation:

(36) (\displaystyle \frac{\partial^{2}}{\partial z^{2}}-$\eta$^{2}Q_{\mathrm{c}\mathrm{a}\mathrm{n}}^{(j)}) $\varphi$=0,
with

(37) Q_{\mathrm{c}\mathrm{a}\mathrm{n}}^{(j)}=4z^{2}+$\eta$^{-1}(($\rho$^{(j)})^{2}-4($\sigma$^{(j)})^{2})+\displaystyle \frac{$\eta$^{-3/2}$\rho$^{(j)}}{z-$\eta$^{-1/2}$\sigma$^{(j)}}+\frac{3$\eta$^{-2}}{4(z-$\eta$^{-1/2}$\sigma$^{(j)})^{2}}.
Furthermore the top order part of $\sigma$^{(j)} and that of $\rho$^{(j)} are explicitly given by

(38) $\sigma$_{0}^{(j)} = \displaystyle \frac{1}{2\sqrt{2}}[$\alpha$_{j}$\theta$_{j1}^{$\alpha$_{1}$\beta$_{1}}$\theta$_{j2}^{$\alpha$_{2}$\beta$_{2}}e^{ $\eta$\int^{t}v_{j}dt}+$\beta$_{j}$\theta$_{j1}^{-$\alpha$_{1}$\beta$_{1}}$\theta$_{j2}^{-$\alpha$_{2}$\beta$_{2}}e^{- $\eta$\int^{t}v_{j}dt}],
(39) $\rho$_{0}^{(j)} = \displaystyle \frac{1}{\sqrt{2}}[-$\alpha$_{j}$\theta$_{j1}^{$\alpha$_{1}$\beta$_{1}}$\theta$_{j2}^{$\alpha$_{2}$\beta$_{2}}e^{ $\eta$\int^{t}v_{j}dt}+$\beta$_{j}$\theta$_{j1}^{-$\alpha$_{1}$\beta$_{1}}$\theta$_{j2}^{-$\alpha$_{2}$\beta$_{2}}e^{- $\eta$\int^{t}v_{j}dt}] .

One important point of the formulas (38) and (39) is the following: $\sigma$^{(1)} and $\rho$^{(1)}
(resp., $\sigma$^{(2)} and $\rho$^{(2)} ) contain the free parameters $\alpha$_{1} and $\beta$_{1} (resp., $\alpha$_{2} and $\beta$_{2} ) only,
that is, �separation of free parameters� is occurring with the top order part of $\sigma$^{(j)}
and $\rho$^{(j)}.

More generally, for (P_{\mathrm{I}})_{m} and its underlying linear equation (SL_{\mathrm{I}})_{m} we can con‐

firm the following:

Proposition 2. (i) If we substitute an instanton‐type solution (u_{j}(t,  $\eta$; $\alpha$), v_{j}(t,  $\eta$; $\alpha$))
of (P_{\mathrm{I}})_{m} into the coecients of (SL_{\mathrm{I}})_{m} , we can find $\sigma$^{(j)}(t,  $\eta$) and $\rho$^{(j)}(t,  $\eta$) of the

form (35) so that (SL_{\mathrm{I}})_{m} is transfO rmed into (36) with (37) at a double turning
point x=b_{j}(t)(j=1, \ldots, m) .

(ii) Furthermore \backslash $\iota$_{\mathcal{S}eparation} of fr ee parameters� (in the above sense) is observed

with the top order part of $\sigma$^{(j)} and $\rho$^{(j)}.

In view of the discussion employed in [AKT] and [KT2], we believe Prop. 2

should be the first step toward the verication of Conjecture 1 and the reduction
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(local equivalence) to (P) near a turning point of the first kind. In particular, Prop.
2, (ii), i.e., �separation of free parameters�, which is a phenomenon peculiar to higher
order equations, would play an important role in the construction of a transformation

of the simultaneous equations (SL_{\mathrm{I}})_{m} and (D_{\mathrm{I}})_{m} to (Can) and (D_{\mathrm{c}\mathrm{a}\mathrm{n}}) . Once such a

transformation is constructed (i.e., Conjecture 1 is veried), it is expected that the

reduction (local equivalence) to (P) may be proved in a similar manner to the case

of traditional Painlevé equations. We hope we can prove Conjecture 1 and discuss

the reduction (local equivalence) to (P) somewhere in the near future.

Finally, in ending this report, we list up some relevant open problems in the

exact WKB analysis for instanton‐type solutions of (P_{\mathrm{I}})_{m}.

Some open problems in the exact WKB analysis of (P_{\mathrm{I}})_{m}

(A) To prove Conjecture 1.

(B) To establish the reduction (local equivalence) of (P_{\mathrm{I}})_{m} to (P) near a turning
point of the first kind. Note that the local equivalence theorem for 0‐parameter
solutions has already been proved in [KT4]. (See [KT3] for its announcement; cf.

[T4] also.)

(C) To establish the reduction (local equivalence) theorem near a turning point of

the second kind. In particular, which equation is the normal form at a turning point
of the second kind?

(D) To study the Stokes phenomenon on a \backslash (\mathrm{n}\mathrm{e}\mathrm{w} Stokes curve� of (P_{\mathrm{I}})_{m} discovered

by Nishikawa (cf. [N], [KKoNT]).
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