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Abstract: We study divergence of formal power series solutions of

a singular nonlinear system of partial differential equations from the

viewpoints of a resonance and a small divisor problem. The results are

applied to the transforming equation in the normal form theory of a

singular vector field.

1. Introduction

The object of this note is to study divergence phenomena of a system
of semilinear equations appearing in the normal form theory of vector

fields. We are interested in the divergence caused by a resonance or

small denominators of a transforming equation. We will study the

problem from the viewpoint of the theory of functional equations. For

the study of small denominators, we refer [3], [5] and the references

therein. We will present a simple criterion for nonlinear terms that

guarantees the convergence or the divergence of a formal solution.

This paper is organized as follows. In Section 2 we state the criterion

for the convergence which is different from the Poincaré condition or the

Diophantine condition. In Section 3 we give examples with divergent
formal solutions. Section 4 is devoted to the discussion and the future

problems. The results in Sections 2 and 3 will be published elsewhere

with complete proofs.

2. Convergence Criterions

Let x={}^{t}(x_{1}, \ldots, x_{n})\in \mathbb{C}^{n}, n\geq 2 be the variable in \mathbb{C}^{n} . We set

\displaystyle \frac{\partial}{\partial x_{j}}=\partial_{x_{j}}, (j\geq 1) . For an n‐square constant matrix  $\Lambda$
,

we denote by
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L_{ $\Lambda$} the Lie derivative of the linear vector field  $\Lambda$ x\cdot\partial_{x}

(2.1) L_{ $\Lambda$}v=[ $\Lambda$ x, v]=\langle $\Lambda$ x, \partial_{x}v\rangle- $\Lambda$ v,
where \langle $\Lambda$ x, \displaystyle \partial_{x}v\rangle=\sum_{j=1}^{n}( $\Lambda$ x)_{j}(\partial/\partial x_{j})v ,

with ( $\Lambda$ x)_{j} being the j‐th com‐

ponent of  $\Lambda$ x . We consider the system of equations

(2.2) L_{ $\Lambda$}u=R(u(x)) ,

where u={}^{t}(u_{1} , u2, . . .

, u_{n} ) is an unknown vector function, and

R(x)={}^{t}(R_{1}(x), R_{2}(x), \ldots, R(x))
is holomorphic in some neighborhood of x=0\in \mathbb{C}^{n} such that R(x)=
O(|x|^{2}) when |x|\rightarrow 0 . The equation (2.2) appears as a linearizing
equation of a singular vector field. Because we can always reduce  $\Lambda$ to

a Jordan normal form by a linear change of unknown functions, we may
assume that  $\Lambda$ is put in a Jordan normal form. Moreover we assume

that there exists \exists$\tau$_{0},  0\leq$\tau$_{0}\leq $\pi$ such that

(2.3) every component of  e^{-i $\tau$}0 $\Lambda$ is a real number.

It follows that if  $\lambda$_{j}(j=1,2, \ldots, n) are the eigenvalues of  $\Lambda$ with

multiplicity, then we have

(2.4) \exists$\tau$_{0}, 0\leq$\tau$_{0}\leq $\pi$, e^{-i $\tau$}0$\lambda$_{j}\in \mathbb{R} (j=1,2, \ldots, n) ,

where \mathbb{R} is the set of real numbers. If we set u(x)=x+v(x) , v(x)=
O(|x|^{2}) ,

then v satisfies the system of semilinear equations

(2.5) L_{ $\Lambda$}v=R(x+v(x)) .

Let \mathbb{Z}_{+} be the set of nonnegative integers, and let \mathbb{Z}_{+}^{n}(k)(k\geq 0) be

the set of multi‐integers  $\gamma$={}^{t}($\gamma$_{1}, $\gamma$_{2}, \ldots, $\gamma$_{n}) such that | $\gamma$|=$\gamma$_{1}+$\gamma$_{2}+
. . . +$\gamma$_{n}\geq k . For  $\gamma$\in \mathbb{Z}_{+}^{n} ,

we set x^{ $\gamma$}=x_{1}^{$\gamma$_{1}}\cdots x_{n}^{$\gamma$_{n}} . For k\geq 0 and

n\geq 1 ,
we denote by \mathbb{C}_{k}^{n}[[x]] the set of formal power series \displaystyle \sum_{| $\eta$|\geq k}u_{ $\eta$}x^{ $\eta$}

(u_{ $\eta$}\in \mathbb{C}^{n}) . We also denote the set of convergent n‐vector power series

which vanish up to the k-1‐th derivatives by \mathbb{C}_{k}^{n}[x] . We decompose
 $\Lambda$=$\Lambda$_{S}+$\Lambda$_{N} ,

where $\Lambda$_{S} and $\Lambda$_{N} are the semi‐simple and the nilpotent
parts of  $\Lambda$

, respectively. We denote by  L_{ $\Lambda$ s} the Lie derivative of the

linear vector field $\Lambda$_{S}x\cdot\partial_{x}.
For a formal power series f(x)=\displaystyle \sum_{ $\gamma$}f_{ $\gamma$}x^{ $\gamma$} ,

we define the majorant
of f, M(f)(x) by

(2.6) M(f)(x) :=\displaystyle \sum_{ $\gamma$}|f_{ $\gamma$}|x^{ $\gamma$}.
For formal power series with real coefficients a(x)=\displaystyle \sum_{ $\gamma$}a_{ $\gamma$}x^{ $\gamma$} and

b(x)=\displaystyle \sum_{ $\gamma$}b_{ $\gamma$}x^{ $\gamma$} ,
we define a\ll b if

a_{ $\gamma$}\leq b_{ $\gamma$} for all  $\gamma$\in \mathbb{Z}_{+}^{n}.
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We similarly define

(f_{1}(x), f_{2}(x), \ldots, f_{n}(x))\ll(g_{1}(x), g_{2}(x), \ldots, g(x))

if f_{j}(x)\ll g_{j}(x) for j=1 , 2, . . .

,
n.

Let c>0 be a constant. Let \mathcal{A}_{+} (resp. \mathcal{A}_{-} ) be the set of g(x)=
(g_{1}(x), \ldots, g_{n}(x))\in \mathbb{C}_{2}^{n}[x] such that

(2.7) (L_{ $\Lambda$ s}-c)M(g)\gg 0 (resp. (L_{ $\Lambda$ s}+c)M(g)\ll 0 )

and that g(x) is a finite sum of the functions f={}^{t}(f_{1} , f2, . . .

, f_{n} ) \in

\mathbb{C}_{2}^{n}[x] with the expansion at the origin

(2.8) f_{j}(x)=x_{ $\nu$}\displaystyle \sum_{ $\gamma$}f_{j, $\gamma$}x^{ $\gamma$}, f_{j, $\gamma$}\in \mathbb{C}, j=1 , 2, . . .

, n,

where  $\nu$ is such that the j‐th and the  $\nu$‐th components of  $\Lambda$_{S} belong to

the same Jordan block of $\Lambda$_{N} . We can prove that \mathcal{A}_{\pm} are linear spaces.

Then we have

Theorem 2.1. Suppose that (2.3) holds. Let R(x)\in \mathcal{A}_{\pm} . Assume

that every component of R(x) is a polynomial of x with degree <c+1
if $\Lambda$_{N}\neq 0 . Then the equation (2.\mathfrak{s}) has a holomorphic solution in some

neighborhood of x=0.

Remark 2.2. We cannot weaken the assumptions of Theorem 2.1 in

general. In fact, we encounter divergence caused by small denominators

and a Jordan block. More precisely, we have

(a) If c=0
,

then Theorem 2.1 does not hold in general because of

small denominators. Namely, there exists R such that L_{ $\Lambda$ s}M(R)\gg 0
(resp. L_{ $\Lambda$ s}M(R)\ll 0 ) and (2.5) has a formal power series solution

which does not converge in any neighborhood of the origin.
(b) The conditions L_{ $\Lambda$ s}M(R)\ll 0 or L_{ $\Lambda$ s}M(R)\gg 0 is necessary in

general in order that Theorem 2.1 holds. In fact, there exists R which

satisfies neither L_{ $\Lambda$ s}M(R)\ll 0 nor L_{ $\Lambda$ s}M(R)\gg 0 such that (2.5)
has a formal power series solution which does not converge in any

neighborhood of the origin.
(c) The condition that R is a polynomial in the case $\Lambda$_{N}\neq 0 is necessary
in general. In fact, if $\Lambda$_{N}\neq 0 ,

then there exists R\in \mathcal{A}_{+} (resp. R\in \mathcal{A}_{-} )
which is not a polynomial such that (2.5) has a formal power series

solution which does not converge in any neighborhood of the origin.
Finally we note that because (2.5) has a resonance in general, the

uniqueness of a solution in Theorem 2.1 does not hold in general.
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3. Divergence and Diophantine Phenomena

We study divergence caused by small denominators and the presence

of a Jordan block. We first consider in x\in \mathbb{C}^{2}

(3.1) L_{ $\Lambda$}u=R(x+u) ,  $\Lambda$=\left(\begin{array}{ll}
1 & 0\\
0 & - $\tau$
\end{array}\right),
where  $\tau$>0 is a Liouville number chosen later and u=O(|x|^{2}) . Then

we have

Theorem 3.1. For every R(x) holomorphic in some neighborhood
of the origin, there exist a Liouville number  $\tau$>0 and a holomorphic
perturbation R_{2}(x)\not\equiv 0 such that L_{ $\Lambda$ s}M(R_{2})\gg 0 or L_{ $\Lambda$ s}M(R_{2})\ll 0
holds and that the unique formal power series solution of (3.1) for

R=R_{1}+R_{2} diverges in any neighborhood of the origin.

Remark 3.2. We know that there exists a Liouville number  $\tau$ such that

for almost all  R
, (3.1) admits no analytic solution in any neighborhood

of the origin. (cf. [3]) Our result implies that for every R_{1} there exists

a Liouville number  $\tau$ and a special class of nonlinear perturbations
 R_{2} such that (3.1) with R=R_{1}+R_{2} admits no analytic solution in

any neighborhood of the origin. We remark that Theorem 3.1 can be

generalized to the case of n‐independent variables.

Next we study the divergence caused by the presence of a nontrivial

Jordan block even if a Diophantine condition is verified. We consider

in x\in \mathbb{C}^{3}

(3.2) L_{ $\Lambda$}u=R(x+u) ,  $\Lambda$=\left(\begin{array}{lll}
1 & 0 & 0\\
0 & - $\tau$ & -1\\
0 & 0 & - $\tau$
\end{array}\right),
where  $\tau$>0 is an irrational number and u=O(|x|^{2}) . Then we have

Theorem 3.3. Let c>0 . For every irrational number  $\tau$>0 there

exists R\in \mathcal{A}_{+} (resp. R\in \mathcal{A} R\not\equiv 0 such that R is not a polynomial
and that (3.2) has no analytic solution in any neighborhood of the

origin.

Theorem 3.3 shows that if $\Lambda$_{N}\neq 0 ,
the condition that R is a polynomial

in Theorem 2.1 is necessary in general. Theorem 3.3 can be generalized
to the case of n‐independent variables.

4. Discussions and problems

The main subject in this paper is the study of the divergence phe‐
nomena of the system of singular 4partial differential equations which



appears in geometry when the Poincaré condition or the Diophantine
condition is not satisfied. We expect that Theorems 3.1 and 3.3 can

be extended to the case of more general nonlinear terms R with n‐

independent variables. (cf. [2], [3]). The divergence phenomenon
caused by the presence of a nontrivial Jordan block in the linear part
without the Poincaré condition is not fully understood.

Next it is interesting to study the divergent solutions from the ana‐

lytical and geometrical points of view. It is natural to guess that one

can give an analytical meaning to a divergent solution via the Borel‐

Laplace resummation method or more general resummation methods.

Then one may discuss the geometrical meaning of the resummed di‐

vergent solutions. It is also an interesting question whether number

theoretical aspects enter in the resummation argument. Concerning
Theorem 2.1 we hope that we can gain a better understanding of diver‐

gence phenomena through the study of the criterions which guarantee
the convergence of formal solutions that are different from the Poincaré

condition and the Diophantine condition. Finally, we remark that the

study of a divergence phenomenon caused by the existence of a zero

eigenvalue is also an interesting problem. (cf. [1]).
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