On the existence of ground states for the Pauli-Fierz model with a variable mass

By

Takeru Hidaka *

Abstract

The purpose of this paper is to review [9]. The existence of ground states of the Pauli-Fierz model with a variable mass is considered. This paper presents the outline of the proof of it under the infrared regularity condition.

§ 1. Introduction

The Pauli-Fierz model describes a minimal interaction between a low energy electron and a quantized radiation field, where the electron is governed by a Schrödinger operator. The Pauli-Fierz Hamiltonian is the physical quantity corresponding to the energy of the system and is realized as a self-adjoint operator on a certain Hilbert space and its bottom of the spectrum is called the ground state energy. An eigenvector associated with the ground state energy is called a ground state, if it exists.

The existence of ground states of the Pauli-Fierz Hamiltonian is investigated in [1, 2, 4, 8, 10, 12]. In [2, 8], the infrared regularity condition is not assumed. In [4, 8], the existence of ground states is shown for arbitrary values of coupling constants. The uniqueness of the ground state of the Pauli-Fierz Hamiltonian is proven in [11].

The Pauli-Fierz Hamiltonian with a variable mass is considered in this paper. It is derived from the analogy of the Nelson model on a pseudo Riemannian manifold [5, 6, 7]. Under the infrared regularity condition, this Hamiltonian has ground states for all values of a coupling constant when a variable mass decays sufficiently fast.

Received October 20, 2009. Revised February 11, 2010. 2000 Mathematics Subject Classification(s): 81Q10

^{*}Graduate School of Mathematics, Kyushu University, Fukuoka, Japan, 819-0395 email: t-hidaka@math.kyushu-u.ac.jp

§ 2. Definition of the Pauli-Fierz model

§ 2.1. Hilbert space of states

We consider the Hilbert space of states of total system as

$$\mathcal{H} := \mathcal{H}_P \otimes \mathcal{F}$$
,

where

$$\mathcal{H}_P := L^2(\mathbb{R}^3)$$

describes state space of one electron and \mathcal{F} is the boson Fock space over $L^2(\mathbb{R}^3; \mathbb{C}^2)$ defined by

$$\mathcal{F} := \bigoplus_{n=0}^{\infty} \left[\bigotimes_{s} L^{2}(\mathbb{R}^{3}; \mathbb{C}^{2}) \right].$$

Here $\bigotimes_s^n L^2(\mathbb{R}^3; \mathbb{C}^2)$ denotes the *n*-fold symmetric tensor product of $L^2(\mathbb{R}^3; \mathbb{C}^2)$ with $\bigotimes_s^0 L^2(\mathbb{R}^3; \mathbb{C}^2) = \mathbb{C}$. The inner product on \mathcal{F} is given by

$$(2.1) \ (\Psi, \Phi)_{\mathcal{F}} = \overline{\Psi^{(0)}} \Phi^{(0)} + \sum_{n=1}^{\infty} \int_{\mathbb{R}^{3n}} \overline{\Psi^{(n)}(k_1, \cdots, k_n)} \Phi^{(n)}(k_1, \cdots, k_n) dk_1 \cdots dk_n.$$

The Hilbert space \mathcal{H} can be identified with

(2.2)
$$\mathcal{H} \cong \int_{\mathbb{R}^3}^{\oplus} \mathcal{F} dx \cong L^2(\mathbb{R}^3) \oplus \left[\bigoplus_{n=1}^{\infty} L^2_{\mathrm{sym}}(\mathbb{R}^{3+3n}; \mathbb{C}^2) \right].$$

Here $L^2_{\mathrm{sym}}(\mathbb{R}^{3+3n};\mathbb{C}^2)$ is the set of $L^2(\mathbb{R}^{3+3n};\mathbb{C}^2)$ -functions such that

$$f(x, k_1, \dots, k_n) = f(x, k_{\sigma(1)}, \dots, k_{\sigma(n)})$$

for an arbitrary permutation σ .

Let T be a densely defined closable operator on $L^2(\mathbb{R}^3; \mathbb{C}^2)$. Then $\Gamma(T)$ and $d\Gamma(T)$ are defined by

(2.3)
$$\Gamma(T) := \bigoplus_{n=0}^{\infty} \otimes^n T, \qquad d\Gamma(T) := \bigoplus_{n=0}^{\infty} \otimes^n T^{(n)},$$

$$N := d\Gamma(1).$$

The annihilation operator a(f) and the creation operator $a^{\dagger}(f)$ smeared by $f \in L^2(\mathbb{R}^3; \mathbb{C}^2)$ on \mathcal{F} are defined by

(2.4)
$$D\left(a^{\dagger}(f)\right) = \left\{ \Psi \in \mathcal{F} \left| \sum_{n=1}^{\infty} n \left\| S_n(f \otimes \Psi^{(n-1)}) \right\|^2 < \infty \right. \right\},$$

(2.5)
$$(a^{\dagger}(f)\Psi)^{(n)} = \sqrt{n}S_n(f \otimes \Psi^{(n-1)}), n \ge 1, \quad (a^{\dagger}(f)\Psi)^{(0)} = 0,$$

$$(2.6) a(f) = (a^{\dagger}(\overline{f}))^*,$$

where S_n denotes the symmetrization operator of degree n and D(T) the domain of T. $\Omega := (1, 0, 0, \dots) \in \mathcal{F}$ is called the Fock vacuum. Let

(2.7)
$$(a(k)\Psi)^{(n)}(k_1,\dots,k_n) := \sqrt{n+1}\Psi^{(n+1)}(k,k_1,\dots,k_n)$$

for $\Psi \in D(N^{1/2})$. Then for almost every k, $a(k)\Psi \in \mathcal{F}$.

§ 2.2. Definition of the Pauli-Fierz model

Let v be a multiplication operator on $L^2(\mathbb{R}^3)$. We introduce assumptions on v.

Assumption 1.

(1)
$$\sigma_P(-\Delta + v) \subset (0, \infty)$$
;

(2)
$$v(x) \leq \text{const.} \langle x \rangle^{-\beta} \text{ with } \beta > 3, \text{ where } \langle x \rangle = \sqrt{1 + |x|^2}.$$

Here $\sigma_P(T)$ denotes the set of eigenvalues of T.

Then there exists a unique function $\Psi(k,x)$ such that for $k \neq 0$,

(2.8)
$$(-\Delta_x + v(x)) \Psi(k, x) = |k|^2 \Psi(k, x)$$

and $\Psi(k,x)$ satisfies the Lippman-Schwinger equation:

(2.9)
$$\Psi(k,x) = e^{ikx} - \frac{1}{4\pi} \int \frac{e^{i|k||x-y|}v(y)}{|x-y|} \Psi(k,y) dy.$$

We will use the regularity properties of $\Psi(k,x)$ below to show the existence of ground states.

Lemma 2.1. Suppose Assumption 1. Then

(a)

(2.10)
$$|\Psi(k,x) - e^{ikx}| \le \text{const. } \langle x \rangle^{-1}$$

holds.

(b) $\Psi(k,x)$ is continuously differentiable in x for each fixed k but $k \neq 0$ and

$$(2.11) \frac{\partial}{\partial x_{\mu}} \Psi(k, x) - ik_{\mu} e^{ikx}$$

$$= -\frac{1}{4\pi} \int_{\mathbb{R}^3} \left(\frac{e^{i|k||x-y|} (x_{\mu} - y_{\mu})}{|x-y|^3} - \frac{i|k|e^{i|k||x-y|} (x_{\mu} - y_{\mu})}{|x-y|^2} \right) v(y) \Psi(k, y) dy.$$

In particular, for any compact set D but $0 \notin D$, $\sup_{k \in D, x} \left| \frac{\partial \Psi}{\partial x_{\mu}}(k, x) \right| < \infty$. (c) For $k \neq 0$ and $k + h \neq 0$,

(2.12)
$$\frac{1}{|h|} |\Psi(k+h,x) - \Psi(k,x)| \le \text{const.} (1+|x|),$$

(2.13)
$$\frac{1}{|h|} \left| \frac{\partial}{\partial x_{\nu}} \Psi(k+h,x) - \frac{\partial}{\partial x_{\nu}} \Psi(k,x) \right| \leq \operatorname{const.}(1+|k|+|x|+|k||x|)$$

hold, and $\Psi(k,x)$ and $\frac{\partial}{\partial x_{\nu}}\Psi(k,x)$ are differentiable in $k \in \mathbb{R}^3 \setminus \{0\}$ for each fixed x.

Let us introduce the dispersion relation and the quantized radiation field with a variable mass v.

Definition 2.2. The dispersion relation with a variable mass is given by

$$\hat{\omega} := \sqrt{-\Delta + v}$$

on $L^2(\mathbb{R}^3; \mathbb{C}^2)$, where v is called a variable mass. The free Hamiltonian is defined by the second quantization of $\hat{\omega}$:

$$(2.15) H_{\rm f} = d\Gamma(\hat{\omega}).$$

Let $m \geq 0$ and $\hat{\omega}_m := \sqrt{-\Delta + v + m^2}$. We set

$$H_{\rm f}(m) = d\Gamma(\hat{\omega}_m).$$

In order to define the quantized radiation field, we introduce a cutoff functions: $\hat{\varphi}^{\mu}_{j},\,j=1,2,\,\mu=1,2,3.$

Assumption 2.

- (1) The support of $\hat{\varphi}_{i}^{\mu}$ is compact;
- (2) $\hat{\varphi}^{\mu}_{j}$ is differentiable and the derivative function is bounded;
- (3) (infrared regularity condition)

It holds that

(2.16)
$$\int_{\mathbb{R}^3} \frac{|\hat{\varphi}_j^{\mu}(k)|^{2p}}{|k|^{5p}} dk < \infty \quad \text{for all} \quad 0 < p < 1.$$

Let the test function $\rho_x^{\mu}=(\rho_x^{\mu,1},\rho_x^{\mu,2})\in L^2(\mathbb{R}^3;\mathbb{C}^2)\in L^2(\mathbb{R}^3;\mathbb{C}^2)$ be such that

$$\rho_x^{\mu,j}(y) := (2\pi)^{-3/2} \int \overline{\Psi(k,x)} \Psi(k,y) \hat{\varphi}_j^{\mu}(k) dk.$$

The quantized radiation field with a variable mass is given by

(2.17)
$$A_{\mu}(x) := \frac{1}{\sqrt{2}} \left(a^{\dagger} \left(\hat{\omega}^{-1/2} \rho_x^{\mu} \right) + a \left(\overline{\hat{\omega}^{-1/2} \rho_x^{\mu}} \right) \right), \quad \mu = 1, 2, 3,$$

for each $x \in \mathbb{R}^3$.

Definition 2.3. Let V be a multiplication operator, and V_+ and V_- the positive part and the negative part of V, respectively. Then the quadratic form q_m^V is defined by

$$(2.18) q_m^V(\Psi, \Phi) = \frac{1}{2} \sum_{\mu=1}^{3} \left((p_{\mu} + \sqrt{\alpha} A_{\mu}) \Psi, (p_{\mu} + \sqrt{\alpha} A_{\mu}) \Phi \right)$$

$$+ \left(H_{\rm f}^{1/2}(m) \Psi, H_{\rm f}^{1/2}(m) \Phi \right) + \left(V_{+}^{1/2} \Psi, V_{+}^{1/2} \Phi \right) - \left(V_{-}^{1/2} \Psi, V_{-}^{1/2} \Phi \right)$$

with the form domain

(2.19)
$$Q(q_m^V) = D(|p|) \cap D(H_f^{1/2}(m)) \cap D(|V|^{1/2}).$$

Here α is a coupling constant. When m=0, we denote q^V for q_0^V .

§ 2.3. Generalized Fourier transformation

By [14], under Assumption 1, the generalized Fourier transformation is defined by

(2.20)
$$f \mapsto \mathcal{F}f(\cdot) := (2\pi)^{-3/2} \text{l.i.m.} \int f(x) \overline{\Psi(\cdot, x)} dx,$$

which is a unitary transformation on $L^2(\mathbb{R}^3)$. By $1 \otimes \Gamma(\mathfrak{F}) : \mathcal{H} \to \mathcal{H}$, the quadratic form q_m^V is transformed as

$$(2.21) \quad \hat{q}_{m}^{V}(\Psi, \Phi) = q_{m}^{V}(1 \otimes \Gamma(\mathcal{F}) \Psi, 1 \otimes \Gamma(\mathcal{F}) \Phi)$$

$$= \frac{1}{2} \sum_{\mu=1}^{3} \left((p_{\mu} + \sqrt{\alpha} \hat{A}_{\mu}) \Psi, (p_{\mu} + \sqrt{\alpha} \hat{A}_{\mu}) \Phi \right) + \left(\hat{H}_{f}^{1/2}(m) \Psi, \hat{H}_{f}^{1/2}(m) \Phi \right)$$

$$+ \left(V_{+}^{1/2} \Psi, V_{+}^{1/2} \Phi \right) - \left(V_{-}^{1/2} \Psi, V_{-}^{1/2} \Phi \right)$$

with the form domain

(2.22)
$$Q(\hat{q}_m^V) = D(|p|) \cap D(\hat{H}_f^{1/2}(m)) \cap D(|V|^{1/2}).$$

Here

$$(2.23) \hat{A}_{\mu}(x) := \frac{1}{\sqrt{2}} \sum_{j=1,2} \left(a^{\dagger} \left(\frac{\hat{\varphi}_{j}^{\mu} \Psi(\cdot, x)}{\sqrt{\omega}} \right) + a \left(\frac{\hat{\varphi}_{j}^{\mu} \Psi(\cdot, x)}{\sqrt{\omega}} \right) \right), \quad \omega(k) = |k|,$$

and

$$(2.24) \qquad \qquad \hat{H}_{f}(m) := d\Gamma(\omega_{m}), \quad \omega_{m}(k) := \sqrt{k^{2} + m^{2}}.$$

We introduce following assumptions on V:

Assumption 3.

- (1) V is a measurable function and for almost every $x \in \mathbb{R}^3$, $-\infty < V(x) < \infty$;
- (2) For all $\epsilon > 0$, there exists a positive constant C_{ϵ} such that for $\Psi \in D(|p|)$,

$$\|V_{-}^{1/2}\Psi\|^{2} \leq \epsilon \||p|\Psi\|^{2} + C_{\epsilon}\|\Psi\|^{2};$$

(3) $Q(\hat{q}_m^V)$ is dense.

Proposition 2.4. Suppose Assumptions 1, 2 and 3. Then there exists the unique self-adjoint operator \hat{H}_m^V such that $Q(\hat{q}_m^V) = D(|\hat{H}_m^V|^{1/2})$ and for all Ψ and $\Phi \in Q(\hat{q}_m^V)$,

$$\hat{q}_m^V(\,\Psi,\,\Phi\,) - E^V(m)(\,\Psi\,,\Phi\,) = \left(\,(\hat{H}_m^V - E^V(m))^{1/2}\,\Psi,\,(\hat{H}_m^V - E^V(m))^{1/2}\,\Phi\,\right).$$

Here we denote the ground state energy of \hat{q}_m^V by

(2.26)
$$E^{V}(m) := \inf_{\Psi \in Q(\hat{q}_{m}^{V}), \|\Psi\|=1} \hat{q}_{m}^{V}(\Psi, \Psi).$$

Formally, the Pauli-Fierz Hamiltonian ${\cal H}_m^V$ is given by

(2.27)
$$H_m^V := \frac{1}{2} \sum_{\mu,\nu} \left(p_{\mu} + \sqrt{\alpha} A_{\mu} \right) a_{\mu\nu} \left(p_{\nu} + \sqrt{\alpha} A_{\nu} \right) + H_f(m) + V.$$

Here $\{a_{\mu,\nu}\}_{\mu,\nu=1,2,3} = \{a_{\mu,\nu}(x)\}_{\mu,\nu=1,2,3}$ is positive definite. We consider only the case of $a_{\mu\nu}(x) = \delta_{\mu,\nu}$ for simplicity.

§ 3. Binding condition

We introduce functions ϕ_R and $\tilde{\phi}_R$ below. Let $\phi \in C^{\infty}(\mathbb{R}^3)$ be such that for all $x \in \mathbb{R}^3$, $0 \le \phi(x) \le 1$ and

$$\phi(x) = \begin{cases} 1 & \text{if } |x| < 1, \\ 0 & \text{if } |x| > 2. \end{cases}$$

Let $\tilde{\phi} \in C^{\infty}(\mathbb{R}^3)$ be such that for all $x \in \mathbb{R}^3$, $0 \leq \tilde{\phi}(x) \leq 1$ and

$$\phi(x)^2 + \tilde{\phi}(x)^2 = 1.$$

We set for R > 0,

(3.1)
$$\phi_R(x) := \phi(x/R), \qquad \tilde{\phi}_R(x) := \phi(x/R).$$

Let

(3.2)
$$E^{V}(R, m) = \inf_{\|\tilde{\phi}_{R}\Psi\|=1, \Psi \in D(\hat{H}_{m}^{V})} (\tilde{\phi}_{R}\Psi, \hat{H}_{m}^{V}\tilde{\phi}_{R}\Psi).$$

 $\lim_{R\to\infty} E^V(R, m) - E^V(m)$ formally describes ionization energy by definition, it is expected that positive ionization energy yields ground state.

Assumption 4 (Binding condition).

$$(3.3) E^V(m) < \lim_{R \to \infty} E^V(R, m)$$

§ 4. Massive case

The existence of ground states in the case of m > 0 is considered in this section.

Theorem 4.1. Let m > 0. Suppose Assumptions 1-4. Then ground states of \hat{H}_m^V exist for all values of a coupling constant.

Outline of Proof. Let $\{\Psi^j\}_j \subset Q(\hat{q}_m^V)$ be a sequence such that weakly converges to 0. It suffices to show that

(4.1)
$$\liminf_{j \to \infty} \hat{q}_m^V(\Psi^j, \Psi^j) > E^V(m).$$

We can suppose that $\sup_j \hat{q}_m^V(\Psi^j, \Psi^j) < \infty$. Let ϕ_R and $\tilde{\phi}_R$ be in (3.1).

$$\hat{q}_{m}^{V}(\Psi^{j}, \Psi^{j}) = \hat{q}_{m}^{V}(\Psi_{R}^{j}, \Psi_{R}^{j}) + \hat{q}_{m}^{V}(\tilde{\Psi}_{R}^{j}, \tilde{\Psi}_{R}^{j}) - \frac{1}{2} \| (|\nabla \phi_{R}| \otimes 1) \Psi^{j} \|^{2} - \frac{1}{2} \| (|\nabla \tilde{\phi}_{R}| \otimes 1) \Psi^{j} \|^{2}.$$
(4.2)

holds. Here $\Psi_R^j = \phi_R \Psi^j$ and $\tilde{\Psi}_R^j = \tilde{\phi}_R \Psi^j$. Let j_1 and j_2 be nonnegative, smooth functions on \mathbb{R}^3 such that

(4.3)
$$j_1(k) = \begin{cases} 1 \text{ if } |k| < 1, \\ 0 \text{ if } |k| > 2 \end{cases} \text{ and } j_1(k)^2 + j_2(k)^2 = 1.$$

We set $\hat{j}_{l,P} = j_l(-i\nabla_k/P), l = 1, 2,$ and

$$\hat{j}_P \Psi = \hat{j}_{1,P} \Psi \oplus \hat{j}_{2,P} \Psi,$$

for $\Psi \in L^2(\mathbb{R}^3; \mathbb{C}^2)$. Let us define the isometric operator from \mathcal{F} to $\mathcal{F} \otimes \mathcal{F}$ by

$$d\check{\Gamma}(\hat{j}_{P})a^{\dagger}(h_{1})\cdots a^{\dagger}(h_{n})\Omega$$

$$=a^{\dagger}(\hat{j}_{1,P}h_{1})\cdots a^{\dagger}(\hat{j}_{1,P}h_{n})\Omega \oplus a^{\dagger}(\hat{j}_{2,P}h_{1})\cdots a^{\dagger}(\hat{j}_{2,P}h_{n})\Omega.$$

By the localization argument (see [8]), it holds that

(4.6)
$$\liminf_{j \to \infty} \hat{q}_m^V(\Psi_R^j, \Psi_R^j) \ge (E^V(m) + m) \liminf_{j \to \infty} \|\Psi_R^j\|^2 + o_R(P^0)$$

and

(4.7)
$$\hat{q}_m^V(\tilde{\Psi}_R^j, \tilde{\Psi}_R^j) \ge E_{R,m}^V \|\tilde{\Psi}_R^j\|^2 + o(R^0).$$

Here $o_R(P^0)$ goes to zero as $P \to \infty$ for each fixed R > 0. By (4.2), (4.6) and (4.7), we can see that

(4.8)
$$\liminf_{j \to \infty} \hat{q}_m^V(\Psi^j, \Psi^j) \ge E^V(m) + \min\{m, E^V(R, m) - E^V(m)\}.$$

By the binding condition, we obtain (4.1).

§ 5. The case of m=0

Throughout in this section, we suppose Assumptions 1, 2, 3 and Assumption 4 with m=0. Φ_m denotes the normalized ground state of \hat{H}_m^V . Similarly to the case of v=0, the following lemma holds.

Lemma 5.1. Let $\{m_j\}_{j=1}^{\infty}$ be a sequence converging to 0. Then

$$\lim_{j \to \infty} E^V(m_j) = E^V(0)$$

and for sufficiently small 0 < m, the binding condition holds.

The pull through formula below leads to a photon number bound (Lemma 5.3 and Corollary 5.4) and a photon derivative bound (Lemma 5.6).

Lemma 5.2 (Pull through formula). Let $f \in D(\omega_m)$. Then $a(f)\Phi_m \in Q(\hat{q}_m^V)$ and for all $\eta \in Q(\hat{q}_m^V)$,

$$(5.1) \quad \hat{q}_{m}^{V}(\eta, a(f) \Phi_{m}) - E^{V}(m)(\eta, a(f) \Phi_{m}) = -\sqrt{\alpha} (\eta, (\overline{f}, \overline{G}) \cdot (p + \sqrt{\alpha} \hat{A}) \Phi_{m}) + \frac{i\sqrt{\alpha}}{2} (\eta, (\overline{f}, \nabla_{x} \cdot \overline{G}) \Phi_{m}) - (\eta, a(\omega_{m} f) \Phi_{m}).$$

holds. Here

$$G_j^{\mu}(k,x) := \frac{\hat{\varphi}_j^{\mu}(k)\Psi(k,x)}{\sqrt{2\omega(k)}}.$$

Lemma 5.3. Let $\theta = (\theta_1, \theta_2) \in L^{\infty}(\mathbb{R}^3; \mathbb{R}^2)$. Then

(5.2)
$$\|d\Gamma(\theta^2)^{1/2} \Phi_m\|^2 \le C\alpha \sum_{\mu,j} \int \frac{\hat{\varphi}_j^{\mu}(k)^2 \theta_j(k)^2}{\omega(k) \omega_m(k)^2} dk,$$

where C is a constant independent of α and sufficiently small m.

Outline of proof of Lemma 5.3. Inserting $\eta = a(f)\Phi_m$ into (5.2), we have

$$(5.3) (a(f) \Phi_m, a(\omega_m f) \Phi_m) \leq -\sqrt{\alpha} \left(a(f) \Phi_m, (\overline{f}, \overline{G}) \cdot (p + \sqrt{\alpha} \hat{A}) \Phi_m \right) + \frac{i\sqrt{\alpha}}{2} \left(a(f) \Phi_m, (\overline{f}, \nabla_x \cdot \overline{G}) \Phi_m \right).$$

Let $f := \omega_m \theta g_i$. Here $\{g_i\}_{i=1}^{\infty}$ is a complete orthonormal system such that each $g_i \in D(\omega_m^{1/2})$. Note that

(5.4)
$$\sum_{i=1}^{\infty} \left(a(\omega_m^{-1/2} \theta g_i) \Phi_m, \ a(\omega_m^{1/2} \theta g_i) \Phi_m \right)$$
$$= \sum_{j=1,2} \int_{\mathbb{R}^3} \theta_j(k)^2 \| a_j(k) \Phi_m \|^2 dk = \| d\Gamma(\theta^2)^{1/2} \Phi_m \|^2.$$

Then by (5.3) and (5.4),

(5.5)
$$\|d\Gamma(\theta^{2})^{1/2} \Phi_{m}\|^{2}$$

$$\leq 2\alpha \int_{\mathbb{R}^{3}} \omega_{m}(k)^{-2} \|\theta(k)G(k) \cdot (p + \sqrt{\alpha}\hat{A}) \Phi_{m}\|^{2} dk$$

$$+ \frac{\alpha}{2} \int_{\mathbb{R}^{3}} \omega_{m}(k)^{-2} \|\theta(k)\nabla_{x} \cdot G(k) \Phi_{m}\|^{2} dk.$$

can be estimated. Since $\Psi(k, x)$ and $\hat{\varphi}(k) \frac{\partial}{\partial x_{\mu}} \Psi(k, x)$ are bounded in k and x, we can see that the lemma follows.

From Lemma 5.3, we can see that following facts hold.

Corollary 5.4. It holds that

(1)
$$\sup_{m < m_0} ||N^{1/2} \Phi_m|| < \infty,$$

(2) $\sup \Phi_m^{(n)}(x, \cdot) \subset \Pi_{k=1}^n \left[\bigcup_{j,\mu} \operatorname{supp} \hat{\varphi}_j^{\mu} \right].$

We can show the spatial exponentially decay of Φ_m for many external potentials. See [13].

Assumption 5.

(1) For sufficiently large |x|, $V(x) > \text{const.} |x|^{2n}$.

(2)
$$\liminf_{|x|\to\infty} V(x) > \inf \sigma(H_p)$$
 and for all $t>0$, $e^{-tH_P}: L^2 \to L^\infty$ with

$$||e^{-tH_p}f||_{L^{\infty}(\mathbb{R}^3)} \le \text{const.} ||f||_{L^2(\mathbb{R}^3)},$$

where $H_P = -\frac{1}{2}\Delta + V$.

Theorem 5.5. Suppose Assumption 5. Then for some c and $m_0 > 0$,

$$\sup_{0 < m < m_0} \| \exp(c|x|) \Phi_m \| < \infty.$$

holds.

Outline of Proof. Since $\Phi_m = e^{tE}e^{-t\hat{H}_m^V}\Phi_m$, by the functional integral representation of $e^{-t\hat{H}_m^V}$, we can see that for all $t \geq 0$,

(5.7)
$$\|\Phi_m(x)\|_{\mathcal{F}} \le Ce^{tE^V(m)} \mathbb{E}^x \left[e^{-\int_0^t V(B_s) ds} \right]$$

holds. Here $(B_t)_{t\geq 0}$ denotes Brownian motion starting from x. C is a constant independent of x and m.

(5.8)
$$e^{t(x)E^{V}(m)} \mathbb{E}^{x} \left[e^{-\int_{0}^{t(x)} V(B_{s}) ds} \right] \le C_{1} \exp(-C_{2}|x|^{n+1})$$

and

(5.9)
$$e^{t'(x)E^{V}(m)}\mathbb{E}^{x}\left[e^{-\int_{0}^{t'(x)}V(B_{s})ds}\right] \leq C'_{1}\exp(-C'_{2}|x|)$$

hold. Here $t(x) = |x|^{1-n}$, $t'(x) = \beta |x|$. (5.8) and (5.9) are called Carmona's estimate [3]. By (5.7), (5.8) and (5.9), the theorem can be proven.

Lemma 5.6. Suppose Assumption 5. Let $1 \le p < 2$. Then

- (a) $\Phi_m^{(n)} \in H^1(\mathbb{R}^{3+3n}) \text{ for all } n \geq 0;$
- (b) $\{\|\Phi_m^{(n)}\|_{W^{1,p}(\Omega)}\}_{0 < m \le m_0}$ is bounded, where m_0 is sufficiently small number and Ω is any measurable and bounded set in \mathbb{R}^{3+3n} .

Here $W^{1,p}(\Omega)$ is the Sobolev space.

Outline of proof. Let $f = \omega_m^{-1/2} \theta g_i$. By the pull through formula with f(x) replaced by f(x+h) - f(x), similarly to the proof of Lemma 5.3, we can see that for

almost every k and sufficiently small h,

$$(5.10) \| |h|^{-1} (a(k+h) - a(k)) \Phi_m \|^2$$

$$\leq \frac{\text{const.}}{\omega_m(k)^2} \Big(\sum_{\mu=1}^3 (\| |h|^{-1} (\delta_h G_\mu)(k) \Phi_m \|^2 + \| |h|^{-1} (\nabla_x \delta_h G_\mu)(k) |\Phi_m \|^2 \Big)$$

$$+ \| |h|^{-1} (\nabla_x \cdot \delta_h G)(k) \Phi_m \|^2 + \sum_{j,\mu} \frac{\hat{\varphi}_j^{\mu}(k+h)^2}{\omega_m(k+h)^2 \omega(k+h)} \frac{|\omega(k+h) - \omega(k)|^2}{|h|^2} \Big).$$

Here $(\delta_h G_\mu)(k) = G_\mu(k+h,x) - G_\mu(k,x)$. By Lemma 2.1 (c) and Assumption 5,

(5.11)
$$\||h|^{-1}(a(k+h) - a(k)) \Phi_m\|^2$$

$$\leq C\omega_m(k)^{-2} \sum_{\nu,j} \left((1+|k|^{-3}) \hat{\varphi}_j^{\nu}(k)^2 + |k|^{-1} \sum_{\lambda} |\partial_{\lambda} \hat{\varphi}_j^{\nu}(k)|^2 \right)$$

holds for almost every k and sufficiently small |h|. Let $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$. Thus by Alaoglu theorem, for almost every k, there exists the sequence $\{h_l(k)\}_{l=1}^{\infty}$ depending on k so that

$$\lim_{l \to \infty} h_l(k) = 0$$

and $|h_l(k)|^{-1}(a(k-|h_l(k)|e_\mu)-a(k))\Phi_m$ weakly converges to some vector $v_\mu(k)$:

$$v_{\mu}(k) := \text{w-} \lim_{l \to \infty} |h_l(k)|^{-1} (a(k - |h_l(k)|e_{\mu}) - a(k)) \Phi_m.$$

It can be proven that $v_{\mu}^{(n)}(k)(x, k_1, \dots, k_n)$ is the weak derivative $\Phi_m^{(n+1)}(x, k, k_1, \dots, k_n)$ with respect to k_{μ} . Thus by (5.11), (a) and (b) are proven directly.

Theorem 5.7. Let m = 0. Suppose Assumption 5. Then ground states of \hat{H}^V exist for all values of a coupling constant.

By Lemmas 5.3, 5.6 and Theorem 5.5, Theorem 5.7 can be proven similarly to [8, Theorem 2.1].

§ 6. Remarks on infrared cutoffs

We assumed the infrared regularity condition, but in the case of v = 0, we can show the existence of ground states of \hat{H} without the infrared regularity condition. In the case of $v \neq 0$,

(6.1)
$$\Psi(k,x) - e^{ikx} = \sum_{n=1}^{\infty} \left(\frac{1}{4\pi}\right)^n \int_{\mathbb{R}^3} \frac{e^{i|k|\sum_{j=1}^n |y_j - y_{j-1}|} \prod_{j=1}^n v(y_j)}{\prod_{j=1}^n |y_j - y_{j-1}|} dy_1 \cdots dy_n$$

Takeru Hidaka

and

$$\nabla_x \Psi(k, x) - ike^{ikx}$$

$$= \frac{1}{4\pi} \int_{\mathbb{R}^3} \left(\frac{e^{i|k||x-y|}(x-y)}{|x-y|^3} - \frac{i|k|e^{i|k||x-y|}(x-y)}{|x-y|} \right) v(y) \, \Psi(k, y) \, dy$$

hold. Here $y_0 := x$. The right hand side of (6.1) is not O(|k|), $(k \to 0)$. This is the reason that we assumed the infrared regularity condition. To see this, let us consider the case of v = 0. Set v = 0 and $\hat{\varphi}_j^{\mu}(k) = \chi_{\Lambda}(k)e_j^{\mu}(k)$, j = 1, 2, $\mu = 1, 2, 3$, where χ_{Λ} is the characteristic function of the set $\{k \mid |k| < \Lambda\}$ and $e_1(k)$ and $e_2(k)$, $k \in \mathbb{R}^3 \setminus \{0\}$ are polarization vectors given by

(6.2)
$$e_1(k) := \frac{(k_2, -k_1, 0)}{\sqrt{k_1^2 + k_2^2}} \text{ and } e_2(k) := \frac{k \times e_1(k)}{|k|}.$$

Note that the infrared regularity condition is not assumed in this case. Define the unitary operator U as

(6.3)
$$U := \exp[i\sqrt{\alpha}x \cdot \hat{A}(0)].$$

Put

(6.4)
$$\tilde{\hat{q}}_m^V(\Psi, \Phi) := \hat{q}_m^V(U\Psi, U\Phi)$$

and

(6.5)
$$\tilde{\hat{A}}(x) := \hat{A}(x) - \hat{A}(0).$$

Then

$$(6.6) \ \tilde{q}_{m}^{V}(\Psi, a(f)\tilde{\Phi}_{m}) - E^{V}(m)(\Psi, a(f)\tilde{\Phi}_{m}) = -\sqrt{\alpha}(\Psi, (\overline{f}, \overline{\tilde{G}})(p + \sqrt{\alpha}\tilde{A})\tilde{\Phi}_{m}) - (\Psi, a(\omega_{m}f)\tilde{\Phi}_{m}) + i(\Psi, (\overline{f}, \omega_{m}w)\tilde{\Phi}_{m})$$

follows. Here $\tilde{\Phi}_m = U\Phi_m$, $w_j := \frac{\chi_{\Lambda}(k)e_j(k)\cdot x}{\sqrt{\omega(k)}}$ and $\tilde{G}_j^{\mu} := \frac{\chi_{\Lambda}(k)e_j^{\mu}(k)(e^{ikx}-1)}{\sqrt{2\omega(k)}}$. Similarly to the proof of Theorem 5.3, we have

$$(6.7) \| a(k)\tilde{\Phi}_m \|^2 \le \text{const.}\omega(k)^{-2} \left\{ \| \tilde{G}\tilde{\Phi}_m \|^2 + \| |\nabla_x \tilde{G}|\tilde{\Phi}_m \|^2 + \omega(k)^2 \| w\tilde{\Phi}_m \|^2 \right\} \chi_{\Lambda}(k).$$

Since $|e^{ikx}-1| \leq |k||x|$ and $|\nabla_x e^{ikx}| = |k|$, by the exponential decay of $\tilde{\Phi}_m$, it holds that

(6.8)
$$\|d\Gamma(\theta^2)^{1/2}\tilde{\Phi}_m\|^2 \le C\alpha \sum_j \int \frac{\chi_{\Lambda}(k)\,\theta_j(k)^2}{\omega(k)} dk.$$

Here C is a constant independent of α and m for sufficiently small m. Also by (6.6), for almost every k and sufficiently small h,

(6.9)
$$\| (a(k+h) - a(k))\tilde{\Phi}_{m} \|^{2}$$

$$\leq \frac{\text{const.}}{\omega(k)^{2}} \Big\{ \| |\delta_{h}\tilde{G}|\tilde{\Phi}_{m}\|^{2} + \| |\nabla_{x}\delta_{h}\tilde{G}|\tilde{\Phi}_{m}\|^{2} + \omega(k)^{2} \|\delta_{h}(\omega w)\tilde{\Phi}_{m}\|^{2}$$

$$+ \frac{1}{|k+h|} \| |x|\tilde{\Phi}_{m}\|^{2} |\omega(k+h) - \omega(k)|\chi_{\Lambda}(k+h) \Big\}$$

can be proven. Since $|e^{ikx} - 1| \le |k||x|$ and $|\nabla_x e^{ikx}| = |k|$, by Assumption 5, we can see that

(6.10)
$$|h|^{-1} || (a(k+h) - a(k)) \tilde{\Phi}_m ||^2 \le \text{const.} \left\{ \frac{1}{|k|(k_1^2 + k_2^2)} + \frac{1}{|k-h|((k_1 - h_1)^2 + (k_2 - h_2)^2)} \right\}$$

holds. This inequality implies that $\{\|\tilde{\Phi}_m^{(n)}\|_{W^{1,p}(\Omega)}\}_{0 < m \le m_0}$ with $1 \le p < 2$ is bounded, where Ω is a bounded set and m_0 a sufficiently small number. Therefore in this case, the existence of ground states can be proven without the infrared regularity condition. Key inequalities are

$$(6.11) |e^{ikx} - 1| \le |k||x|$$

and

$$(6.12) |\nabla_x e^{ikx}| = |k|.$$

Acknowledgment

I thank Prof. F. Hiroshima for his helpful advice.

References

- [1] A. Arai, Rigorous theory of spectra and radiation for a model in quantum electrodynamics, J. Math. Phys., **24** (1983), 1896-1910.
- [2] V. Bach, J. Fröhlich and I. M. Sigal, Spectral analysis for systems of atoms and molecules coupled to the quantized radiation fields, *Commun. Math. Phys.*, **207**(1999), 249-290.
- [3] R. Carmona, Pointwise bounds for Schödinger operators, Commun. Math. Phys. **62** (1978), 97-106.
- [4] C. Gérard, On the existence of ground states for massless Pauli-Fierz Hamiltonians. *Ann. H. Poincaré* 1 (2000), 443-459.
- [5] C. Gérard, F. Hiroshima, A. Panatti and A. Suzuki, Infrared divergence of a scalar quantum field model on a pseudo Riemannian manifold, *Interdisciplinary Inf. Sci.*, **15** (2009), 399-421.

- [6] C. Gérard, F. Hiroshima, A. Panatti and A. Suzuki, Absence of ground states of a scalar quantum field model on a pseudo Riemannian manifold, preprint.
- [7] C. Gérard, F. Hiroshima, A. Panatti and A. Suzuki, The Nelson model with variable coefficients, preprint 2010.
- [8] M. Griesemer, E. H. Lieb, and M. Loss, Ground states in non-relativistic quantum electrodynamics, *Invent. Math.* **145** (2001), 557-595.
- [9] T. Hidaka, Existence of ground states for the Pauli-Fierz model with a variable mass, preprint, 2010.
- [10] F. Hiroshima, Ground states of a model in nonrelativistic quantum electrodynamics I, J. Math. Phys. 40 (1999), 6209-6222.
- [11] F. Hiroshima, Ground states of a model in nonrelativistic quantum electrodynamics II, *J. Math. Phys.* **41** (2000), 661-674.
- [12] F. Hiroshima, Ground states and spectrum of quantum electrodynamics of nonrelativistic particles, *Trans. Amer. Math. Soc.* **353** (2001), 4497-4528.
- [13] F. Hiroshima and T. Hidaka, Pauli-Fierz model with Kato-class potentials and exponential decays, preprint, 2010.
- [14] T. Ikebe, Eigenfunction expansions associated with the Schoedinger operators and their applications to scattering theory, Arch. Rational Mech. Anal. 5 (1960), 1-34.