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On the existence of ground states for the Pauli-Fierz
model with a variable mass

By

Takeru Hidaka *

Abstract

The purpose of this paper is to review [9]. The existence of ground states of the Pauli-
Fierz model with a variable mass is considered. This paper presents the outline of the proof of
it under the infrared regularity condition.

§1. Introduction

The Pauli-Fierz model describes a minimal interaction between a low energy elec-
tron and a quantized radiation field, where the electron is governed by a Schrodinger
operator. The Pauli-Fierz Hamiltonian is the physical quantity corresponding to the
energy of the system and is realized as a self-adjoint operator on a certain Hilbert
space and its bottom of the spectrum is called the ground state energy. An eigenvector
associated with the ground state energy is called a ground state, if it exists.

The existence of ground states of the Pauli-Fierz Hamiltonian is investigated in
[1, 2, 4, 8, 10, 12]. In [2, 8], the infrared regularity condition is not assumed. In [4, 8],
the existence of ground states is shown for arbitrary values of coupling constants. The
uniqueness of the ground state of the Pauli-Fierz Hamiltonian is proven in [11].

The Pauli-Fierz Hamiltonian with a variable mass is considered in this paper. It
is derived from the analogy of the Nelson model on a pseudo Riemannian manifold
[5, 6, 7]. Under the infrared regularity condition, this Hamiltonian has ground states
for all values of a coupling constant when a variable mass decays sufficiently fast.
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§ 2. Definition of the Pauli-Fierz model

§2.1. Hilbert space of states

We consider the Hilbert space of states of total system as
H:=Hp®F,
where
Hp = L*(R?)

describes state space of one electron and F is the boson Fock space over L?(R3;C?)
defined by

F = é l(é) L2(R3;©2)] :

Here @' L?*(R*; C?) denotes the n-fold symmetric tensor product of L?(R?;C?) with
®2 L?(R3;C?) = C. The inner product on F is given by

(2.1) (U, ®)r m<0)¢<0>+2/ TO) (k- k) (hy, - oo Ky )dEey - - - dey.

The Hilbert space H can be identified with

S
(2.2) H= | Fdr =2 L*(R*) o

3+3n., 2
y @Lsym R3+37. C2?)

Here L2, (R3737;C?) is the set of L?(R3"3"; C?)-functions such that

sym

f(xakla to 7kn) = f(xaka(l)a T 7ko(n))

for an arbitrary permutation o.
Let T be a densely defined closable operator on L?(IR3; C?). Then T'(T) and dT'(T)
are defined by

(2.3) D(T) :=®2, " T,  dI(T) := %, " T™),

kth
where T =1, T = 37 119 T ®1---®1 and T = 0. The number
operator is defined by
N :=dI'(1).
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The annihilation operator a(f) and the creation operator a'(f) smeared by f €
L?(R3;C?) on F are defined by

(2.4) D (af(f)) = {\Izef] ZnHSn(f®‘I/(”_l))”2<oo},
n=1

(2.5) (a'(HD)™ = Vas,(feem ) n>1, (af(H)® =0,

(2.6) a(f) = (a'(F))",

where S, denotes the symmetrization operator of degree n and D(T') the domain of T'.
Q:=(1,0,0,---) € F is called the Fock vacuum. Let

(2.7) (a(k) O) " (ky, - k) o=V + 1O (kg ky,)
for U € D(N'/2). Then for almost every k, a(k)¥ € F.

§2.2. Definition of the Pauli-Fierz model
Let v be a multiplication operator on L?(R?). We introduce assumptions on v.
Assumption 1.
(1) op(—A+v) C (0, 00);
(2) v(z) < const. (z) 7 with B> 3, where (z) = V1+ ]z
Here op(T') denotes the set of eigenvalues of T'.
Then there exists a unique function ¥(k, x) such that for k # 0,
(2.8) (A, +v(x) Uk, z) = |k|*U(k, x)

and ¥ (k,x) satisfies the Lippman-Schwinger equation:

2. Uk a)=¢e*® - — [ —— T Q(k,y)dy.
(2.9) (k,z) =e 47r/ P— (k,y)dy

We will use the regularity properties of W (k,x) below to show the existence of ground
states.

Lemma 2.1.  Suppose Assumption 1. Then

(a)

(2.10) | W (k,x) — ™ | < const. (z) "
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holds.
(b) U(k,x) is continuously differentiable in x for each fixed k but k # 0 and

9 - ikx
(2.11) 8—%\1'(76,33) —ikye

- 1 eilkllx_yl(aj’u — yu) Z|k|ez|k||x_y|(l”u — yu)
o Ar Jps |z —y? |z —y|?

) o)k, y)dy.

%(k,x)‘ < 0.

In particular, for any compact set D but 0 ¢ D, SUPkeD,a
(c) For k #0 and k+ h # 0,

(2.12) %W(k—l—h,x) —W(k, 2)| < const.( 1+ [z]),

110 0
(2.13) | e, axy\ll(k,x)

hold, and ¥ (k,x) and %\Il(k,x) are differentiable in k € R3\ {0} for each fived x.

U(k+h,z)—

<const.(1+ |k| + ||+ |k||z])

Let us introduce the dispersion relation and the quantized radiation field with a
variable mass v.

Definition 2.2.  The dispersion relation with a variable mass is given by
(2.14) w:=v-A+v

on L?(R3;C?), where v is called a variable mass. The free Hamiltonian is defined by
the second quantization of w:

(2.15) He = dD(&).
Let m > 0 and ©,, := V—A + v + m?2. We set
Hi(m) = dT(&on)-

In order to define the quantized radiation field, we introduce a cutoff functions:
¢, =12 p=12,3.

Assumption 2.
(1) The support of gb“f is compact;
(2) gbgb is differentiable and the derivative function is bounded;

(3) (infrared regularity condition)
It holds that
|25 ()P

(2.16) /R3 de <oo forall 0<p<l.
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Let the test function pt = (pt1, pt2) € L?(R3; C?) € L*(R3; C?) be such that

pi(y) = (2m) " [T () )k

The quantized radiation field with a variable mass is given by

(2.17) Au(z) == % (af (a72720%) +a (0720F)), n=1,23,

for each = € R3.

Definition 2.3. Let V be a multiplication operator, and V. and V_ the positive
part and the negative part of V, respectively. Then the quadratic form ¢Y is defined by

(218) g%, (,®) = = 5 (p + VAA)T, (py + VA, )

+ (H2(m)w, Hfl/2(m)c1>) n (vj/Q\If, Vj/%) - (VE/Q\IJ, V_1/2<I>>
with the form domain
1/2
(2.19) Q(a%) = D(|p|) N D(H,"*(m)) N D(|V[/?).

Here « is a coupling constant. When m = 0, we denote ¢ for q(‘)/ .

§ 2.3. Generalized Fourier transformation

By [14], under Assumption 1, the generalized Fourier transformation is defined by
(2.20) f=Tf() = (zw)—?’/?l.i.m./f(:c)\p(-,x)dx,

which is a unitary transformation on L?(R3). By 1®T'(F) : H — H, the quadratic form
qy is transformed as

(2.21) G (U, @) =q (1T (FV, 1T (F) )

i (p+ VEAT, (e VEAID) + (B2 )0, B ()0

N[ =

+ (Vi vile) - (v1Pe, v %)
with the form domain

(2.22) Q(d%) = D(lpl) N D(H{"*(m)) n D(V[/2).
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Here
. PR (-, x PR (-
(2.23) A, (x) = % | (M (“03—\/(5)> ta (%) ) . w(k) = |k,
and
(2.24) He(m) := dl(wy), wm(k) := Vk2 +m?2.

We introduce following assumptions on V:

Assumption 3.
(1) V is a measurable function and for almost every x € R3, —oo < V(x) < oo;

(2) For all e > 0, there exists a positive constant C. such that for ¥ € D(|p|),

1/2
(2.25) IV 0|2 < e [p|@ |2+ Co| ¥ |

(3) Q(4Y) is dense.

Proposition 2.4.  Suppose Assumptions 1, 2 and 3. Then there exists the unique
self-adjoint operator HY. such that Q(¢Y) = D(|HY|'/?) and for all ¥ and ® € Q(GY.),

Qn (W, ®) — BV (m)(v,®) = (A}, — BV (m))/2 v, (A1} — BV (m)/* ®).
Here we denote the ground state energy of chl by

2.26 EV(m) := inf PV (U, W),
(226) (m) \IfeQ<axL>,||\If||=1qm( )

Formally, the Pauli-Fierz Hamiltonian H) is given by

1

(2.27) HY = 52(1)“—!—\/&4“) ap (P +vVadA,) + Hi(m) + V.

7%

Here {a,,.}pv=1,2,3 = {au,(2)} =123 is positive definite. We consider only the case
of a,,(x) = 0, for simplicity.
§ 3. Binding condition

We introduce functions ¢r and ¢r below. Let ¢ € C (R3) be such that for all
r€R3 0<¢(x) <1and

1 el <1,
¢(x)_{01f 2| > 2.
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Let ¢ € C(RR?) be such that for all z € R3, 0 < ¢(z) < 1 and

¢(x) + o(x)? = L.

We set for R > 0,

(3.1) ¢r(z) == ¢(x/R),  or(x):=d(z/R).
Let
(3.2) EV(R, m) = inf (R, HY pp0).

| $r¥ ||=1,T€D(HY)

limp oo EV(R, m) — EV(m) formally describes ionization energy by definition, it is
expected that positive ionization energy yields ground state.

Assumption 4 (Binding condition).

(3.3) EY(m) < lim EY(R, m).

R—o0

§4. Massive case

The existence of ground states in the case of m > 0 is considered in this section.

Theorem 4.1.  Let m > 0. Suppose Assumptions 1-4. Then ground states of
}AIV

o, exist for all values of a coupling constant.

Outline of Proof. Let {¥7}; C Q(g)) be a sequence such that weakly converges
to 0. It suffices to show that

(4.1) liminf ¢/ (U7, W) > EV (m).

j—oo
We can suppose that sup; Gy (U7, W7) < co. Let ¢p and ér be in (3.1).
G (7, W) = Gy (U, W)+ G (W, )
(42) 51 (Vénl @ V)W |2~ [ (Vérl @ 1|

holds. Here ‘I/i2 = ¢r¥I and \ilg% = ¢rPI. Let j; and jo be nonnegative, smooth
functions on R3 such that

) 1if|k|<1, . 9 ) 9
4.3 k) = d k k) =1.
(4.3) J1(k) {Oif k] > 2 and  j1(k)* + j2(k)
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We set j1.p = ji(—iVi/P), 1 =1,2, and
(4.4) iP¥ =j1pV @ j2 p¥,
for U € L?(R3;C?). Let us define the isometric operator from F to F ® F by

dl(jp)a’(h1) -+ al(h,)Q
(4.5) =a'(ji,ph1) - a'(J1,phn) Q2 @ al (Jo,ph1) - - - al (o2, pha ) 2.

By the localization argument (see [8]), it holds that

(4.6) lim inf gy, (U5, O5) > (BY (m) + m) lim inf [|W5|* + op(P°)
and
(4.7) v (U, O ) > EY | 9% |12 + o(R).

Here og(PP) goes to zero as P — oo for each fixed R > 0. By (4.2), (4.6) and (4.7), we
can see that

(4.8) liminf ¢/ (U7, ¥7) > EV(m) + min{m, EV(R,m) — EY (m)}.
j—00
By the binding condition, we obtain (4.1). O

§5. The case of m =0

Throughout in this section, we suppose Assumptions 1, 2, 3 and Assumption 4 with
m = 0. ®,, denotes the normalized ground state of I:IYZ Similarly to the case of v = 0,
the following lemma holds.

Lemma 5.1.  Let {m;}32, be a sequence converging to 0. Then
lim EY (m;) = EV(0)
j—o0

and for sufficiently small 0 < m, the binding condition holds.

The pull through formula below leads to a photon number bound (Lemma 5.3 and
Corollary 5.4) and a photon derivative bound (Lemma 5.6).

Lemma 5.2 (Pull through formula).  Let f € D(wn). Then a(f)®m € Q(4y,)
and for all n € Q(¢V),

(5.1) (. alf) @m) — EY(m)(n, a(f) @)

= —a(n (7.8 (4 vad) )+ X2, 7. .

Ql

)(I)m)_(naa(wmf)q)m)'
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holds. Here VD
Gk, z) = 5 (R)V(k, )
/ 2w(k)
Lemma 5.3. Let 0 = (01, 05) € L>°(R3;R?). Then
2 (k)2 0, (k)?
2\1/2 2 < sOJ( J
(5.2) |dT(6%)'2®,, ||* < Ca ; / XOPMOE dk,

where C' is a constant independent of o and sufficiently small m.

Outline of proof of Lemma 5.3. Inserting n = a(f)®,, into (5.2), we have
(5:3)  (alf) B, alwnf) @) < —va (alf) O, (7.G) - (p+ Vad) @)

AT () 0, (7. V2 T )

Let f := wp,0g;. Here {g;}:2, is a complete orthonormal system such that each g; €
D(w 1/2) Note that

(54) Z( m/209:) @, a(wi?0g)) @, )
=1
= 3 [ o lame, | dk = [arce) e, |

7j=1,2

Then by (5.3) and (5.4),

(55) | dr(e?)! 2 @ H
<20 [ w100 0+ VaA) D, | di
-z / ()2 0KV - GR) .

can be estimated. Since V(k, x) and @(k)%‘ll(k, x) are bounded in k£ and z, we can
see that the lemma follows. O
From Lemma 5.3, we can see that following facts hold.

Corollary 5.4. It holds that

(1) sup [N'2@, < oo,

m<mgo

(2) supp <I>£ff)(a?, ) C iy [Uj,usupp 92’5} :

We can show the spatial exponentially decay of ®,,, for many external potentials.
See [13].
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Assumption 5.

(1) For sufficiently large |z|, V (x) > const.|z|*".

(2) liminf|, o V(2) > info(H,) and for all t >0, e P : L2 — L with
He_tHPfHLoo(Rs) < const.|| f|| L2(rs3),

where Hp = —%A + V.
Theorem 5.5.  Suppose Assumption 5. Then for some ¢ and mg > 0,

(5.6) sup || exp(c|z|) P || < 0.
0<m<mo

holds.

Outline of Proof. Since ®,, = e'¥ ety ®,,,, by the functional integral represen-

HV

tation of e *m we can see that for all t > 0,

(5.7) @ (2)]| 7 < CetEY (m) e [e— N V(Bs)ds}

holds. Here (B;):>0 denotes Brownian motion starting from x. C is a constant inde-
pendent of x and m.

(5.8) et(m)EV(m)Eaz [e— fot(z) V(Bs)ds] <0 eXp(—Cg|CIZ|n+1)
and
5.9 o1 g [ V] < of e~

hold. Here t(z) = |z|*™™, ¢ (z) = B|z|. (5.8) and (5.9) are called Carmona’s estimate
[3]. By (5.7), (5.8) and (5.9), the theorem can be proven.

Lemma 5.6.  Suppose Assumption 5. Let 1 < p < 2. Then
(a) %) € HYR3+3) for all n > 0;
(b) {||<I>,(7?) lw1.p(Q) fo<m<m, 95 bounded, where mq is sufficiently small number and §2 is
any measurable and bounded set in R3137,
Here WYP(Q) is the Sobolev space.

Outline of proof. Let f = w,}l/ Qegi. By the pull through formula with f(x)

replaced by f(z + h) — f(z), similarly to the proof of Lemma 5.3, we can see that for
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almost every k and sufficiently small h,

(5.10) [[ 11~ (a(k + ) — a(k)) @, |I*

3
< 2 ( M @G (K)o |2 1111 (Vo006 ) 8 | |
m le
) HE+R)? Jwk + h) — w(k)?
[ A7 (Vs - 00G) (K m|\2+2 k+h w(k + h) K >

Here (0,G)(k) = Gu(k+ h,2) — G, (k,x). By Lemma 2.1 (c) and Assumption 5,

(511) [k (alk + ) — a(k)) @, |
< Clom(k 22( (L+ @R + [k |3A¢7§(7€)|2>
A

holds for almost every k and sufficiently small |h|. Let e; = (1,0,0), e = (0,1,0),
es = (0,0,1). Thus by Alaoglu theorem, for almost every k, there exists the sequence
{hi(k)}72, depending on k so that

lim Ay (k) =0

l—o0

and [hy (k)" (a(k — |hi(k)|ey) — a(k))®,, weakly converges to some vector v, (k):
0 (k) 1= - i [ (K) " (alk — [i(R)le,) — a(k) @y

It can be proven that v,([b) (k)(x, k1, -+ , k) is the weak derivative @%H)(:C, kyki, - kn)
with respect to k,. Thus by (5.11), (a) and (b) are proven directly. O

Theorem 5.7. Let m = 0. Suppose Assumption 5. Then ground states of HY
exist for all values of a coupling constant.

By Lemmas 5.3, 5.6 and Theorem 5.5, Theorem 5.7 can be proven similarly to [8,
Theorem?2.1].

§6. Remarks on infrared cutoffs

We assumed the infrared regularity condition, but in the case of v = 0, we can
show the existence of ground states of H without the infrared regularity condition. In
the case of v # 0,

oo n k| 227 lyi—yi—1l7n .
] 1 g=1 W3 =Y -1
(61) \I/(k,il'}) . ezkm _ Z (E) /RB € J—lv(yJ) dyy - - - dyy,

= Iy lyj — yj-1]
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and

Vo U (k, x) — ike*®
4 Jgs |z — y3 |z —y

)v(y) U(k,y)dy

hold. Here yo := . The right hand side of (6.1) is not O(|k|), (k — 0). This is the
reason that we assumed the infrared regularity condition. To see this, let us consider
the case of v = 0. Set v =0 and ¢4 (k) = xa(k)e/ (k), j = 1,2, p =1,2,3, where x4 is
the characteristic function of the set {k| |k| < A} and e1(k) and ea(k), k € R?\ {0} are
polarization vectors given by

e L (kg, —kl,O) and e ': k x 61(I€)

Note that the infrared regularity condition is not assumed in this case. Define the
unitary operator U as

~

(6.3) U := explivaz - A(0)].
Put

(6.4) QL @) = LUV, US)
and

(6.5) A(e) = A(x) - A(0)
Then

(6.6) 41 (V. a(f) ) — BV (m)(T, a(f)®,)

= —va(¥, (F, G)p+ Vad)d,) = (¥, a(wmf)®) +i(¥, (F, wpnw)®n)

xa(k)ek (k) (' -1

V/2w(k)

follows. Here ®,, = Ud,,, w; := xaBe B o g é"j = ). Similarly to

v w(k)

the proof of Theorem 5.3, we have
(6.7) | a(k) @y > < constao(k) > {[| GBnl? + | [V GlBonll® + w(k)2] w2} xa (k).

Since |e*® — 1| < |k||z| and |V,e®**| = |k|, by the exponential decay of ®,,, it holds
that

(6.8) | dT(6%)Y2 &, ||? < Ca Z / —XA(Z)(%(’“)Q dk.
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Here C is a constant independent of o and m for sufficiently small m. Also by (6.6),
for almost every k and sufficiently small h,

(6.9) I (a(k + 1) — (k)@ |

const. = = o ~

S T2 {|| 168G |17 + V20 G| @on|* + w (k) (|0 (wr0) r |
w(k)
o, |2 -

i el P b+ 1) — (k) a4 1)}
can be proven. Since |e?*® — 1| < |k||z| and |V,e™*®| = |k|, by Assumption 5, we can
see that
(6.10) (A1~ (alk + k) — a(k))@p ||

1 1
< const. +
{|k|(k%+k§) |k — h|((k1 —h1)2+(/€2—h2)2}

holds. This inequality implies that {|| &)SJP w1 () Jo<m<m, With 1 < p < 2is bounded,
where €2 is a bounded set and mg a sufficiently small number. Therefore in this case,
the existence of ground states can be proven without the infrared regularity condition.
Key inequalities are

(6.11) e — 1| < |k||z]

and

(6.12) Ve = |k|.
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