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Large Deviations in Quantum Spin Chains

By

Yoshiko Ogata*

Abstract

In this note, we review our recent work on large deviation principles in quantum spin
chains.

§1. Large deviation principle

While a lot of things are known about the large deviation for classical systems, our
knowledge on large deviations in quantum systems is still very restricted. The large de-
viation principle of the distribution of particle number for equilibrium states was shown
for free fermion system in [1], and for dilute gas in [2]. Large deviation results in quan-
tum spin system for observables that depend only on one site were established in high
temperature KMS-states, in [3], using cluster expansion techniques. In [4], large devi-
ation upper bounds were proven for general observables, for KMS-states in dimension
one. Furthermore, it was shown that a state in one dimension, which satisfies a certain
factorization property satisfies a large deviation upper bound [5]. This factorization
property is satisfied by KMS-states as well as C*-finitely correlated states. It was also
shown in [5] that the distributions of the ergodic averages of a one-site observable with
respect to an ergodic C*-finitely correlated state satisfy full large deviation principle.
In [6], we showed full large deviation principle for KMS-states and C*-finitely correlated
states on a quantum spin chain, with respect to general local observables.

The infinite spin chain with one site algebra M4(C) is given by the UHF C*-algebra
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which is the C*- inductive limit of the local algebras

{mA =QQMu(C)| ACZ, |Al< oo} .
A

*

For any subset S of Z, we identify g := mc with a subalgebra of 2z under
the natural inclusion. Here, |A| denotes the number of elements in A. We use a notation
So :={A CZ:|A| < +oo}. We also use a notation A, := A_,, ,,;. The algebra of local
observables is defined by

22lloc = UAESOQlA-

Let «j, j € Z be the j-lattice translation. A state w is called translation-invariant if
wory; =w for all j € Z. We denote the set of all translation-invariant states by S ().
An interaction is a map ® from Sy to Az such that ®(X) = ¢(X)* € Ax for any finite
X C Z. In this note, we will always assume that ® is a finite range translation-invariant
interaction, i.e., there exists r € N such that

®(X)=0, if diam(X)>r,
and ® is invariant under 7,
QX +j)=7 (X)), VieZ, VXeS.
We define the mean energy of ® by

Ag =) O(X).

X330

For finite A C 7Z, we define the local Hamiltonian

He(A) =Y _ o(I).

ICA

Next we introduce KMS states. Let ¥ be a translation-invariant finite range interaction,
and define the local Hamiltonian associated with a finite subset A C Z by

Hy(A) =Y W¥(I).

ICA

It is known that there exists a strongly continuous one parameter group of x-auto-
morphisms 7y on %Az, such that

Ai/mz HT&,(A) — eitH‘P(A)Ae_itH‘P(A)H =0, VteR, VAecA;.
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The equilibrium state corresponding to the interaction W is characterized by the KMS
condition. A state w over 2y is called a (7g, 3)-KMS state, if

w(Ary (B)) = w(BA),

holds for any pair (A4, B) of entire analytic elements for 7¢. It is known that one
dimensional quantum spin system has a unique (7y, 3)-KMS state.
Now we introduce the probability distribution of space average of local observables, with

respect to wy. The distribution of space average of local Hamiltonian, 2n ) s——Hg([—n,n|)
with respect to a state wy is given by the probability measure
(B) 1 (L Ho(-n,n)))., BeB
n =W -n,n ) ’
H v ‘Blg,17®
where B denotes the Borel sets of R and 13(2n+1H‘1>([ n,n])) € A_, ) is the spectral

projection of Hg([—n,n]) corresponding to the set B.

2n) +1
Let I : R — [0,00] be a lower semicontinuous mapping. We say that {u,} satisfies a

large deviation principle with rate function I iff

— inf I(z) < lim 1nf — log pn(T) < hm sup — ! log pn(T) < —inf I(x).
zel© n—00 n— zel’
Furthermore, [ is said to be a good rate function if all the level sets {x : I(z) < a}, a €
[0,00) are compact subsets of R( see [7]).
In [6], the full large deviation principle was shown for any kind of local observable ®,
in KMS-states generated by any finite range translation invariant interaction W:

Theorem 1.1 (Ogata[6]). Let ¥ be a translation-invariant finite range inter-
action, Ty associated C*-dynamics and wy o (1y,)-KMS state. Furthermore, let
® be another translation-invariant finite range interaction and p, the distribution of
2n+1Hq>([ n,n|) with respect to wy. Then the sequence {pn, tnen satisfies large devia-
tion principle with a good rate function I.

In the proof, the existence and differentiability of the logarithmic moment gener-

ating function
aHg[—N,N] )

fo(a):= lim IN 11 logwy (e

was proven. In fact, it is shown in the proof that fs(«) has an analytic extension at a
neighborhood of the real line. Then by the Gartner-Elllis Theorem, the large deviation
principle holds. The the rate function I(z) of large deviation principle is given by the
Legendre transform of fg:

I(z) = sup (az — fa(a)).
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The main method in [6] is the non-commutative Ruelle transfer operator method. The
non-commutative Ruelle transfer operator was introduced by H. Araki [8] to study the
Gibbs state in one dimensional quantum spin systems. It was generalized in [9] and [10].
In [6], we constructed a family of transfer operators {L,}aer acting on some Banach
space Fy which satisfies the following properties.:

1. L, has an isolated eigenvalue A(a) > 0 which is equal to the spectral radius of

L.,.The rest of the spectrum is included in a disc with radius strictly smaller than
Aa),

2. Ma) = f(@) = lim, o = log u, (€27%),
3. R>aw L, € B(Fp) has an analytic extension.
By the regular perturbation theory, we can conclude that A(a) = fe(«) is differentiable.

An alternative proof was introduced in [11].

§2. The rate function

The next problem is to characterize the rate function I(x). In [12], I(x) was
characterized in terms of mean relative entropy associated with ®. Let B, be an
abelian subalgebra of 2, including the local Hamiltonian Hg[—n,n]. For any state v
over 2, There exists a unique density matrix Dy, € B, satisfying

’QD(A) = TT[_n,n]DM%nA, VA € B,.
The relative entropy between ¢; and @9 with respect to 8,, is defined by

5(901|%n7902|%n) = TT[—n,n]D%I%n (logD%l%n - 10gD¢2|%n) :

We define the mean relative entropy Sir,o(¢1, p2) with respect to ® between translation
invariant states (1, @2 by

o 1
(2.1) Sme(e1, 92) = liminf o——5(p1]s,,, p2ls,.)-

+1

In terms of Sy ¢, we can characterize I(x):

Theorem 2.1 (Ogata-ReyBellet[12]).  Let x € R. If the rate function I(x) in
Theorem 1.1 takes finite value, (i.e., I(x) < +00,) then

2.2 I(z) = inf S , W .
(2.2) () ves @l Mo (pls, wls,)
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Furthermore, there exists o = a(x) € R such that the limit

L . W\II(G%H‘1>[_n17n2]Q€%Hq>[—n1,n2])
(23) wm(Q) = nl}gn—n)o w\p(eo‘H<I>[—n1»n2])

, VQ e,

exists and defines a translation invariant state satisfying

For this w,, the limit

(2.5) lim

Jin o 1S(wx|%n,ww|%n) = Sm,a(Wa,ww)

exists and attains the infimum of (2.2):
(26) I(a:) = SM@((.UQ,W\I;).

We call this w,, a tilted state.

§3. Examples

In this section, we consider special cases, namely, one site interaction and classical
spin chain.

One site interaction Suppose that the interactions are one-site, i.e., ®(I), U(I) # 0
only if I = {n} for some n € Z. Then, the moment generating function is given by

T aHg[—n,n]
) - g (o5e09)

= log Tr{0) (e_ﬁq’(o)eo‘@(o)) —logT'r{0y (6_6‘1’(0)> .

Furthermore, the tilted state is given by a product state:

CLJ\I}(62H<I>[ ni,n2 Q62H<I>[ ’I’L]_,’I’L2

Wy (Q) = nl,}gn—wo Wy (equ,[ ni, n2 %@x
Here, @, is a state over My(C) given by
Trig (e-B¥O) 580 4o52(0)
po(4) = Y (e ) Ac My(C)

Trioy (e7¥©) ’

p2(2(0)) = .
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Classical Spin chain Suppose the interactions ® and ¥ are given by elements of
abelian subalgebra of 2. More precisely, let A be an abelian subalgebra of M;(C) and
assume that ®(I), V() € ®1.A, for any I. This corresponds to a classical spin chain.
In this case, the moment generating function is given by

. 1 .
fola) = nh—>n;o om 1logw\p (eO‘H<I>[ n, ]>
1 log TT[_n’n] (e—ﬁHq/[—n,n] eaH¢[—n,n])
= lim
n—oo 2n + 1 — log TT[—n,n] (e—ﬁH\p [—n,n])

1 log T'r 3 n] (e‘ﬁH‘I’[_”’”HaH@[_”’”])

lim
e 2ntl —log Tr(_y ) (e

Note that this is a difference of free energies. Therefore, it turns out that in classi-
cal case, the moment generating functions are given by the difference of free energies.
Furthermore, the tilted state turns out to be a Gibbs state for another interaction:

wy (e3Hrlmmmal Qs Hal-m nal)

w:c(Q) = nl}zlgoo wq}(equ)[—nhnz])
I Tr (] (eﬁH\I/[—n,n]6%H¢[—n,n]Qe%H¢[—n,n])
= 1im
n—00 TT[—n,n] (e—ﬁH\p[—n,n]eaHé[—n,n])

. TT[_n,n] (e—ﬁHqJ [—n,n]—l-qu)[_n,n]Q)
:nll_)ngo TT[—n,n] (e—ﬁH\p[—n,n]+qu)[_n’n]) .

Next let us consider the mean relative entropy with respect to ®. The abelian subalgebra
B, = ®[_nnA includs the local Hamiltonian Hg[—n,n]. For a translation invariant
state ¢, we denote by ¢ the restriction of ¢ to the abelian subalgebra &, A. Then

we have

Sir,e (@, wy) = lim inf S(¢ls,,we|s,)

n—oo 21 + 1

1. S cl — Sc cl .
A s 7S we) = S (97, we)

Here, we denote by S, ar the mean relative entropy of the classical spin chain. Hence

we obtain the well-known formula for classical spin chain:

I(x) = inf S , W )-
)= s, @) pan=e "M 90 00)
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