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Mathematical analysis to coupled oscillators

system with a conservation law
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§1. Introduction

We are interested in bifurcation structure of stationary solution for a 3‐component
reaction‐diffusion system with a conservation law in the following:

(1. 1) \left\{\begin{array}{l}
\partial u\\
\overline{\partial t}
\end{array}\right.
=\nabla\cdot(D_{u}\nabla u)+f(u, v)+ $\delta$ w,

\displaystyle \frac{\partial v}{\partial t}=\nabla\cdot(D_{v}\nabla v)+g(u, v) ,

\displaystyle \frac{\partial w}{\partial t}=\triangle(D_{w}w)-f(u, v)- $\delta$ w,
where the functions f(u, v) and g(u, v) are chosen in such forms that the local oscillator

(1.2) \displaystyle \frac{du}{dt}=f(u, v) , \frac{dv}{dt}=g(u, v)
can undergo the supercritical Hopf bifurcation. Obviously, the total amount of u+w is

conserved under homogeneous Neumann (no‐flux) boundary condition and some natural

and appropriate conditions.

In [10], they have proposed this system to understand one of the periodic oscilla‐

tions of the body of the plasmodium of the true slime mold: Physarum polycephalum.
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The plasmodium of P.P. is an amoeboid multinucleated unicellular organism, which

shows various kinds of oscillatory phenomena, for example, thickness of plasmodium,
and protoplasmic streaming. Ref.[10] has focused on the oscillation of thickness of the

plasmodium. These oscillatory phenomena are supposed to be caused by complicated
mechanochemical reactions although the detailed mechanism has not been revealed.

The system (1.1) describes the time‐evolution of (u, v, w) ,
which may obtain some

spatio‐temporal oscillation solutions. We explain the mechanism heuristically in the

following: We note that if w does not exist, then the system is a coupled oscillators

system with diffusion coupling. The system has temporally oscillation solutions, but

we can not observe stable spatially non‐uniform oscillation which bifurcates from the

homogeneous steady state. It is sure that this system is not appropriate for the model

system just as it is.

The plasmodium forms tubular structure which consists of ectoplasm gel outside

and endoplasm sol inside. The endoplasm sol streams inside the ectoplasm gel, which

is known as protoplasmic streaming. The state variable u and v are defined in the

ectoplasm as protoplasm materials included in the ectoplasm gel and biomolecules con‐

centration, respectively. The variable w is defined in the endoplasm as amount of proto‐

plasm which is actively transported by rhythmic contraction of the ectoplasm gel. Note

that u+w is a conserved quantity because the total mass of protoplasm is conserved

over the time scale considered here. The constant  $\delta$ is the transportation rate from

ectoplasm gel to endoplasm sol, which can also be considered as the stiffness of tubular

structure of plasmodium. The variables  u and v form a chemical oscillator while w is

activated by the chemical oscillator and makes an active flow of endoplasm sol, which

is much faster than simple diffusion of chemical materials. Therefore, in this model,

D_{w}\gg D_{u}, D_{v} should be assumed.

In biological experiment, for example, if you watch a circular plasmodium prop‐

agating on a flat ager surface, you can observe an anti‐phase oscillation between the

peripheral region and the rear of the plasmodium. Such an oscillation pattern is called

peripheral phase inversion. In [10], they impose the assumption that D_{u} and  $\delta$ depend
on the space variable and reproduce the peripheral phase inversion by numerical sim‐

ulation. This is very interesting for us too, and we have noticed that the original system
with constant coefficients is also a mathematically attractive object. This is because

this system has the mass conservation law, so that a kind of �degree of freedom� of solu‐

tions may be less than the usual 3‐component system, in which wave instability occurs.

We say that the wave instability occurs when a homogeneous state becomes unstable

by a pair of nonzero purely imaginary eigenvalues with spatially non‐uniform eigenfunc‐
tions even though it is stable for spatially uniform perturbation. The wave instability
breaks both spatial and temporal symmetries of a homogeneous state, while the (uni‐
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form) Hopf bifurcation loses only temporal symmetry [6, 11]. Thus it may be possible
to explain the peripheral phase inversion without assuming dependency of coefficients

on the space variable. Although the linear instability does not imply the existence of

stable pattern, in this study, we prove the occurrence of the wave instability under the

assumption that all the coefficients are constant.

We consider the system on an interval  $\Omega$=[0 ,
1 ] with homogeneous Neumann

boundary condition and suppose that D_{u}=D_{v}= $\epsilon$, D_{w}=1 . We adopt the  $\lambda$- $\omega$ system
as a simple local oscillator. In this paper, we use the character  $\theta$ � in place of  $\omega$

�
to

avoid confusing  w and  $\omega$ . Therefore we study the following equations:

(1.3) \left\{\begin{array}{l}
\frac{\partial u}{\partial t}= $\epsilon$\frac{\partial^{2}u}{\partial x^{2}}+ $\lambda$ u- $\theta$ v+ $\delta$ w-u(u^{2}+v^{2}) ,\\
\frac{\partial v}{\partial t}= $\epsilon$\frac{\partial^{2}v}{\partial x^{2}}+ $\theta$ u+ $\lambda$ v-v(u^{2}+v^{2}) ,\\
\frac{\partial w}{\partial t}=\frac{\partial^{2}w}{\partial x^{2}}- $\lambda$ u+ $\theta$ v- $\delta$ w+u(u^{2}+v^{2}) .
\end{array}\right.
We can prove mathematically rigorously that the wave instability can occur under

natural and appropriate conditions for this system. We will state the main statement of

our theorem in the next section. Moreover, in §3, we will show some graphs and figures
obtained by numerical simulation in which we observe the Hopf critical points� behavior

for each Fourier mode and observe the behavior of solutions near the bifurcation points
at which two Fourier modes are made unstable at the same time. We especially notice

that this system has a preferable cluster size of synchronization of oscillations, which

tends to smaller and smaller as  $\epsilon$ goes to  0 . It may be interesting that, if the effect by
which the synchronized oscillation occurs is too much, then the synchronized cluster is

vanishing and a kind of homogenization happens.
We are also interested in spontaneous switching behavior in coupled oscillator sys‐

tems constructed with P.polycephalum[7, 8]. In this biological system, an oscillatory
element corresponds to each partial body in the plasmodium. In [8], they reported that

a ring of three oscillators showed spontaneous switching among three typical oscillatory

states, rotating (R) , partial in‐phase (PI) and partial anti‐phase (PA) . PI is an oscillation

such that two of three oscillators are in‐phase. PA is an oscillation such that two of three

oscillators are anti‐phase. The existence of these three oscillatory patterns is guaranteed

by the symmetric Hopf bifurcation theory[4]. However, to understand the spontaneous

switching behavior among them, it is necessary to study the further bifurcation struc‐

ture of them. Recently, Ito and Nishiura studied the bifurcation scenario leading to

intermittent switching for three repulsively coupled Stuart‐Landau equations[5]. Al‐

though the number of the dimensions for their model is 6, it can be reduced to 5. It

could be one of the simplest models which shows switching behavior among three or

more oscillatory states. We want to consider a more appropriate model for a model of
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the plasmodium. Then we study the coupled oscillator system with a conservation law

as a toy model. We will show a partial result of this attempt in the section 5.

§2. The linearized eigenvalue problem

The equations (1.3) can be written in matrix form as follows:

(2.1) \displaystyle \frac{\partial U}{\partial t}=(D\frac{\partial^{2}}{\partial x^{2}}+ $\Lambda$)U+F(U) ,

where U=(u, v, w) ,

(2.2) D=\left(\begin{array}{l}
 $\epsilon$ 00\\
0 $\epsilon$ 0\\
001
\end{array}\right),  $\Lambda$=\left(\begin{array}{lll}
 $\lambda$ & - $\theta$ &  $\delta$\\
 $\theta$ &  $\lambda$ & 0\\
- $\lambda$ &  $\theta$ & - $\delta$
\end{array}\right), F(U)=\left(\begin{array}{l}
-u(u^{2}+v^{2})\\
-v(u^{2}+v^{2})\\
u(u^{2}+v^{2})
\end{array}\right)
Remark. It is not necessary for the results in this section that  $\Omega$ is an interval.

 $\Omega$ is allowed to be  N‐dimensional bounded domain for N\geq 1.

We study the linearized system:

(2.3) \left\{\begin{array}{l}
\frac{\partial U}{\partial t}=D\triangle U+ $\Lambda$ U \mathrm{i}\mathrm{n}  $\Omega$,\\
\frac{\partial U}{\partial v}=0 \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right.
where U=(u, v, w) and v is the outward unit normal vector on \partial $\Omega$ . Now we recall the

eigenvalue problem of Laplacian with homogeneous Neumann boundary condition on  $\Omega$

[1]:

(2.4) \left\{\begin{array}{l}
\triangle$\psi$_{n}=-k_{n}^{2}$\psi$_{n},\\
\frac{\partial$\psi$_{n}}{\partial v}=0 \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right.
where v is outward unit normal vector, -k_{n}^{2} is an eigenvalue of the Laplacian with

Neumann boundary condition, and $\psi$_{n} is an eigenvector associated with -k_{n}^{2} . It holds

that  0=k_{0}^{2}<k_{1}^{2}\leq k_{2}^{2}\ldots . If  $\Omega$=[0 ,
1 ] ,

then we obtain k_{n}=n $\pi$.
For any integer n

,
the equations (2.3) admits solutions of the form U_{n}(x, t)=

V_{n}e^{$\mu$_{n}}{}^{t}$\psi$_{n}(x) ,
where V_{n}\in \mathbb{R}^{3} . Substituting the ansatz into (2.3), we have the eigenvalue

problem

(2.5) L_{n}V_{n}=$\mu$_{n}V_{n},

where the matrix L_{n}= $\Lambda$-k_{n}^{2}D is given by

(2.6) L_{n}=\left(\begin{array}{lll}
 $\lambda$- $\epsilon$ k_{n}^{2} & - $\theta$ &  $\delta$\\
 $\theta$ &  $\lambda$- $\epsilon$ k_{n}^{2} & 0\\
- $\lambda$ &  $\theta$ & - $\delta$-k_{n}^{2}
\end{array}\right)
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It is obvious that the eigenvalues of  L_{0}= $\Lambda$ are identical to that of the local oscillator:

 $\mu$_{0}=0, \displaystyle \frac{1}{2}(2 $\lambda$- $\delta$\pm\sqrt{$\delta$^{2}-4$\theta$^{2}})
Next, we consider the case of n\neq 0 . The characteristic polynomial $\varphi$_{n} of L_{n} is

cubic:

$\varphi$_{n}() =$\mu$^{3}-\mathrm{t}\mathrm{r}L_{n}$\mu$^{2}+c_{n} $\mu$-\det L_{n},

where

\mathrm{t}\mathrm{r}L_{n}=2 $\lambda$- $\delta$-(1+2 $\epsilon$)k_{n}^{2},

c_{n}=($\epsilon$^{2}+2 $\epsilon$)k_{n}^{4}+2( $\delta \epsilon$- $\epsilon \lambda$- $\lambda$)k_{n}^{2}+$\lambda$^{2}+$\theta$^{2}- $\delta \lambda$,

\det L_{n}=-k_{n}^{2}\{$\epsilon$^{2}k_{n}^{4}+( $\delta \epsilon$^{2}-2 $\epsilon \lambda$)k_{n}^{2}+$\lambda$^{2}+$\theta$^{2}- $\delta \epsilon \lambda$\}.

It is not impossible to express the solutions of $\varphi$_{n}( $\mu$)=0 explicitly, but it is not

suitable for bifurcation analysis. So we take a qualitative approach. We give a sufficient

condition for the existence of a pair of complex conjugate eigenvalues of L_{n} and its real

part becomes positive for some n.

We use Gershgorin�s theorem[2]:

Theorem 2.1. Every eigenvalues of an n\times n matrix A=(a_{ij}) is contained in

at least one of the Gershgorin circles

(2.7) C_{i}=\displaystyle \{z\in \mathbb{C};|z-a_{ii}|\leq\sum_{j\neq i}^{n}|a_{ij}|\} (i=1, \ldots, n) .

Theorem 2.2. Let D_{1}, D_{2} ,
. . .

, D_{k} be the disjoint components of the Gershgorin
circles. Let D_{i} be the union of n_{i} of the circles (so that \displaystyle \sum n_{i}=n). Then D_{i} contains

exactly n_{i} eigenvalues of A.

The Gershgorin circles for L_{n} are

C_{1}^{n}=\{z\in \mathbb{C};|z-( $\lambda$- $\epsilon$ k_{n}^{2})|\leq $\theta$+ $\delta$\},
C_{2}^{n}=\{z\in \mathbb{C};|z-( $\lambda$- $\epsilon$ k_{n}^{2})|\leq $\theta$\},
C_{3}^{n}=\{z\in \mathbb{C};|z-(- $\delta$-k_{n}^{2})|\leq $\lambda$+ $\theta$\}.

Since we assume that  $\lambda$,  $\theta$ and  $\delta$ are nonnegative, we can omit the absolute value signs.

Lemma 2.3. If  C_{3}^{n}\subset\{z\in \mathbb{C};{\rm Re} z<0\} and  C_{1}^{n}\cap C_{3}^{n}=\emptyset , then  L_{n} has at least

one negative real eigenvalue.
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Proof. Obviously, C_{2}^{n}\subset C_{1}^{n} holds. If  C_{1}^{n}\cap C_{3}^{n}=\emptyset ,
then the disjoint components

of the union of the Gershgorin circles of  L_{n} consist of two circles. One contains two

circles and the other contains only C_{3}^{n} . As we assume C_{3}^{n}\subset\{z\in \mathbb{C};{\rm Re} z<0\} ,
the

eigenvalue contained in C_{3}^{n} must be negative real value. \square 

Lemma 2.4. C_{3}^{n}\subset\{z\in \mathbb{C};{\rm Re} z<0\} and  C_{1}^{n}\cap C_{3}^{n}=\emptyset if and only if

(2.8)  $\lambda$+ $\theta$< $\delta$+k_{n}^{2}

(2.9) 2 $\theta$<(1- $\epsilon$)k_{n}^{2}

Proof. The proof is straightforward. C_{3}^{n}\subset\{z\in \mathbb{C};{\rm Re} z<0\} if and only if

- $\delta$-k_{n}^{2}+ $\lambda$+ $\theta$<0.

Hence we obtain  $\lambda$+ $\theta$< $\delta$+k_{n}^{2}.
 C_{1}^{n}\cap C_{3}^{n}=\emptyset if and only if

- $\delta$-k_{n}^{2}+ $\lambda$+ $\theta$< $\lambda$- $\epsilon$ k_{n}^{2}- $\theta$- $\delta$.

This is equivalent to 2 $\theta$<(1- $\epsilon$)k_{n}^{2}. \square 

If (2.8) and (2.9) are satisfied, then L_{n} has at least one negative eigenvalue in C_{3}^{n}
and the other eigenvalues are in C_{1}^{n}.

Next, we consider the extremal values of $\varphi$_{n}( $\mu$) . If the minimal value is positive,
then $\varphi$_{n}( $\mu$)=0 has a pair of complex conjugate roots.

\displaystyle \frac{d$\varphi$_{n}}{d $\mu$}=3$\mu$^{2}-2(\mathrm{t}\mathrm{r}L_{n}) $\mu$+c_{n}
=3$\mu$^{2}+2( $\delta$-2 $\lambda$+(1+2 $\epsilon$)k_{n}^{2}) $\mu$

+($\epsilon$^{2}+2 $\epsilon$)k_{n}^{4}+2( $\delta \epsilon$- $\epsilon \lambda$- $\lambda$)k_{n}^{2}+$\lambda$^{2}+$\theta$^{2}- $\delta \lambda$.

The discriminant of d$\varphi$_{n}/d $\mu$, $\Delta$_{1} ,
is given by

$\Delta$_{1}=(1- $\epsilon$)^{2}k_{n}^{4}+2(1- $\epsilon$)( $\delta$+ $\lambda$)k_{n}^{2}+$\delta$^{2}+$\lambda$^{2}- $\delta \lambda$-3$\theta$^{2}

The condition (2.9) gives

$\Delta$_{1}>4$\theta$^{2}+2(1- $\epsilon$)( $\delta$+ $\lambda$)k_{n}^{2}+$\delta$^{2}+$\lambda$^{2}-2 $\delta \lambda$+ $\delta \lambda$-3$\theta$^{2}

=$\theta$^{2}+2(1- $\epsilon$)( $\delta$+ $\lambda$)k_{n}^{2}+( $\delta$- $\lambda$)^{2}+ $\delta \lambda$>0.

Hence d$\varphi$_{n}/d $\mu$=0 has two distinct real roots  $\mu$\pm :

$\mu$_{\pm}=\displaystyle \frac{1}{3}(\mathrm{t}\mathrm{r}L_{n}\pm$\Delta$^{\frac{1}{12}})
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In other words, $\varphi$_{n}( $\mu$) has the maximal and minimal values. Here remark that

(2.10) $\Delta$_{1}<\{(1- $\epsilon$)k_{n}^{2}+ $\delta$+ $\lambda$\}^{2}
The minimal value $\varphi$_{n}($\mu$_{+}) is given by

$\varphi$_{n}() =-\displaystyle \det L_{n}+\frac{c_{n}}{3}\mathrm{t}\mathrm{r}L_{n}-\frac{2}{27}(\mathrm{t}\mathrm{r}L_{n})^{3}-\frac{2}{27}$\Delta$^{\frac{3}{12}}.
The inequality (2. 10) gives

$\varphi$_{n}() >-\displaystyle \det L_{n}+\frac{c_{n}}{3}\mathrm{t}\mathrm{r}L_{n}-\frac{2}{27}(\mathrm{t}\mathrm{r}L_{n})^{3}-\frac{2}{27}\{(1- $\epsilon$)k_{n}^{2}+ $\delta$+ $\lambda$\}^{3}
=\displaystyle \frac{1}{3}\{(1- $\epsilon$)(2$\theta$^{2}- $\delta \lambda$)k_{n}^{2}- $\delta \lambda$^{2}-$\delta$^{2} $\lambda$+(2 $\lambda$- $\delta$)$\theta$^{2}\}
=\displaystyle \frac{1}{3}[\{2 $\lambda$- $\delta$+2(1- $\epsilon$)k_{n}^{2}\}$\theta$^{2}- $\delta \lambda$\{ $\delta$+ $\lambda$+(1- $\epsilon$)k_{n}^{2}\}]

Regard the right‐hand side as a quadratic function of  $\theta$ . Assume

(2.11)  2 $\lambda$- $\delta$+2(1- $\epsilon$)k_{n}^{2}>0.

Let

\tilde{ $\theta$}_{0}=\sqrt{\frac{ $\delta \lambda$\{ $\delta$+ $\lambda$+(1- $\epsilon$)k_{n}^{2}\}}{2 $\lambda$- $\delta$+2(1- $\epsilon$)k_{n}^{2}}}.
If  $\theta$>\tilde{ $\theta$}_{0} ,

then $\varphi$_{n}($\mu$_{+})>0. $\varphi$_{n}( $\mu$)=0 has a pair of complex conjugate roots. Especially,

\tilde{ $\theta$}_{0} is a monotonically decreasing function with respect to k_{n} . If the inequality holds for

n=1
,

then $\varphi$_{n}( $\mu$)=0 has a pair of complex conjugate roots for any n\geq 1.

Let $\mu$_{1,n}, $\mu$_{2,n} and $\mu$_{3,n} be three eigenvalues of L_{n} . Suppose $\mu$_{1,n}<0 and $\mu$_{2,n}=

$\mu$_{\overline{3},n} . The coefficient c_{n} in $\varphi$_{n}( $\mu$) satisfies

c_{n}=$\mu$_{1,n}$\mu$_{2,n}+$\mu$_{2,n}$\mu$_{3,n}+$\mu$_{3,n}$\mu$_{1,n}

=2$\mu$_{1,n}({\rm Re}$\mu$_{2,n})+|$\mu$_{2,n}|^{2}

Since we have $\mu$_{1,n}<0, c_{n}<0 implies {\rm Re}$\mu$_{2,n}>0 . We give a sufficient condition for

c_{n}<0 . Regard c_{n} as a quadratic function of k_{n}^{2} and consider its discriminant $\Delta$_{2}.

$\Delta$_{2}=( $\delta \epsilon$- $\epsilon \lambda$- $\lambda$)^{2}-($\epsilon$^{2}+2 $\epsilon$)($\lambda$^{2}+$\theta$^{2}- $\delta \lambda$)

=-($\epsilon$^{2}+2 $\epsilon$)$\theta$^{2}+$\delta$^{2}$\epsilon$^{2}+$\lambda$^{2}- $\delta \lambda \epsilon$^{2}

Let

$\theta$_{1}^{2}=\displaystyle \frac{$\epsilon$^{2}($\delta$^{2}- $\delta \lambda$)+$\lambda$^{2}}{$\epsilon$^{2}+2 $\epsilon$}.
If  $\epsilon$>0 is sufficiently small, we can choose $\theta$^{2}<$\theta$_{1}^{2} . Then we obtain $\Delta$_{2}>0 and the

quadratic equation

c_{n}( $\xi$)\equiv($\epsilon$^{2}+2 $\epsilon$)$\xi$^{2}+2( $\delta \epsilon$- $\epsilon \lambda$- $\lambda$) $\xi$+$\lambda$^{2}+$\theta$^{2}- $\delta \lambda$=0
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has two distinct real roots:

 $\xi$\displaystyle \pm=\frac{1}{$\epsilon$^{2}+2 $\epsilon$}(- $\delta \epsilon$+ $\epsilon \lambda$+ $\lambda$\pm$\Delta$^{\frac{1}{22}}) .

If $\xi$_{-}<k_{n}^{2}< $\xi$+ for n\in \mathbb{N} ,
then c_{n}<0 . Hence we get {\rm Re}$\mu$_{2,n}>0 under the assumption.

It is easy to check that  $\xi$+-$\xi$_{-} is monotonically decreasing with respect to small  $\epsilon$ and

 $\xi$+-$\xi$_{-}\rightarrow\infty as  $\epsilon$\rightarrow 0 . In addition,

$\xi$_{-}=\displaystyle \frac{$\lambda$^{2}+$\theta$^{2}- $\delta \lambda$}{-( $\delta \epsilon$- $\epsilon \lambda$- $\lambda$)+$\Delta$^{\frac{1}{22}}}\rightarrow\frac{$\lambda$^{2}+$\theta$^{2}- $\delta \lambda$}{2 $\lambda$} as  $\epsilon$\rightarrow 0.

Furthermore, we can get  $\xi$+\rightarrow\infty as  $\epsilon$\rightarrow 0 . Therefore $\xi$_{-}<k_{n}^{2}< $\xi$+ can be realized

for sufficiently small  $\epsilon$.

Therefore we get the following theorem:

Theorem 2.5. Let  $\lambda$,  $\theta$,  $\delta$>0 and 0< $\epsilon$<1 . If the following four inequalities
hold for an integer n

,
then L_{n} has a negative eigenvalue and a pair of complex conjugate

eigenvalues:

(2.12)  $\lambda$+ $\theta$< $\delta$+k_{n}^{2}

(2.13) 2 $\theta$<(1- $\epsilon$)k_{n}^{2}

(2.14) 2 $\lambda$- $\delta$+2(1- $\epsilon$)k_{n}^{2}>0

(2.15) \sqrt{\frac{ $\delta \lambda$\{ $\delta$+ $\lambda$+(1- $\epsilon$)k_{n}^{2}\}}{2 $\lambda$- $\delta$+2(1- $\epsilon$)k_{n}^{2}}}< $\theta$
Furthermore, under the above assumptions, if  $\epsilon$ is sufficiently small, then  L_{n} has a pair

of complex conjugate eigenvalues with positive real part.

Remark. If the inequalities hold for n=1
,

then L_{n} has a negative eigenvalue
and a pair of complex conjugate eigenvalues for n\geq 1 . Especially, it should be noted

that even if the real part of 0‐mode eigenvalue is negative (2 $\lambda$< $\delta$) ,
then that of n‐mode

can be positive for some n\geq 1 . This implies that the wave instability occurs.

Remark. The conditions (2.12)-(2.15) can be understood as follows. (2.12) means

that the transportation rate between sol and gel is needed to be sufficiently large, and

higher modes helps it. (2.14) means that if flow in the tube and effects of higher modes

are sufficiently large, then it is possible to destabilize the homogeneous steady state.

(2.13) and (2.15) implies that the frequency of local oscillators should be contained in

some appropriate range determined by the effects of transportation, flow and higher
modes.
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Remark. If D_{u}=D_{v}=D_{w}=d>0 ,
the problem is very easy. The eigenvalues

of L_{n} are given by

$\mu$_{n}=-dk_{n}^{2}, \displaystyle \frac{1}{2}(2 $\lambda$- $\delta$-2dk_{n}^{2}\pm\sqrt{$\delta$^{2}-4$\theta$^{2}})
According to the monotonicity of the eigenvalues of Laplacian, 0‐mode is the most

unstable. Therefore, in this case, wave instability does not occur as the first bifurcation.

Remark. The same result holds when we impose the periodic boundary condi‐

tions. Let  $\Omega$ be the set \displaystyle \prod_{j=1}^{n}(0, L_{j})\subset \mathbb{R}^{n}, L_{j}>0 . We denote by $\Gamma$_{j}, $\Gamma$_{j+n} the following
faces of  $\Gamma$=\partial $\Omega$ :

 $\Gamma$_{j}= $\Gamma$\cap\{x_{j}=0\}, $\Gamma$_{j+n}= $\Gamma$\cap\{x_{j}=L_{j}\}, j=1 , 2, . . .

,
n.

Consider the eigenvalue problem

(2.16) \left\{\begin{array}{l}
\triangle $\psi$= $\lambda \psi$, \mathrm{i}\mathrm{n}  $\Omega$,\\
 $\psi$|_{$\Gamma$_{j}}= $\psi$|_{$\Gamma$_{j+n}}, j=1, 2, . . . , n\\
\frac{\partial $\psi$}{\partial x_{j}}|_{$\Gamma$_{j}}=\frac{\partial $\psi$}{\partial x_{j}}|_{$\Gamma$_{j+n}}
\end{array}\right.
The eigenvalues and eigenfunctions are well known in this case[9]:

(2.17) \left\{\begin{array}{l}
$\lambda$_{0}=0, $\psi$_{0}=\frac{1}{\sqrt{| $\Omega$|}}, | $\Omega$|=L_{1}\cdots L_{n},\\
$\lambda$_{k}=-4$\pi$^{2}(\frac{k_{1}^{2}}{L_{1}^{2}}+\cdots\frac{k_{n}^{2}}{L_{n}^{2}}) ,\\
$\psi$_{k}=\sqrt{\frac{2}{| $\Omega$|}}\cos 2 $\pi$\frac{kx}{L}, \tilde{ $\psi$}_{k}=\sqrt{\frac{2}{| $\Omega$|}}\sin 2 $\pi$\frac{kx}{L},
\end{array}\right.
where k\in \mathbb{N}^{n} and kx/L=k_{1}x_{1}/L_{1}+\cdots+k_{n}x_{n}/L_{n} . Therefore we obtain a monoton‐

ically decreasing sequence of eigenvalues from zero to -\infty as in the case of Neumann

boundary conditions.

§3. Numerical simulations

In this section, we briefly show the results obtained by numerical simulation. The

system (1.3) with zero‐flux boundary condition was solved numerically in one spatial
dimension using a explicit finite difference method. To calculate the eigenvalues of each

matrix  L_{n} ,
we employed the QR method.
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We have already known that the eigenvalues of L_{n} are one negative and a pair of

complex conjugate. Therefore we focus on the real parts of the complex eigenvalues $\mu$_{n}

to study the bifurcation structure.

The constant  $\theta$ is supposed to be  $\theta$=1.

Figure 1 shows each Hopf bifurcation curve ({\rm Re}$\mu$_{n}=0) for corresponding Fourier

mode in the parameter space ( $\delta$,  $\lambda$) for some fixed  $\epsilon$ . Here  $\epsilon$ is the diffusion coefficient

of  u and v . Small  $\epsilon$ leads to spatially non‐uniform Hopf bifurcation, that is, wave

instability. If  $\epsilon$ is chosen smaller, then the higher Fourier mode becomes unstable as the

first bifurcation. Hence it can be said that fast diffusion of  w plays an important role

for the emergence of the wave instability in (1.3). As shown in Figure 1, each of Hopf
bifurcation curves can intersect. These intersections imply wave‐wave interactions.

Figure 2 shows each Hopf bifurcation curve ({\rm Re}$\mu$_{n}=0) for corresponding Fourier

mode in the parameter space ( $\delta$,  $\epsilon$) for some fixed  $\lambda$. {\rm Re}$\mu$_{0} is positive in the left region
of the vertical line and negative in the right. {\rm Re}$\mu$_{n} is positive in the lower region of each

slope and negative in the upper region. This figure also suggests that fast diffusion of

w (small  $\epsilon$ ) and effective transportation between gel and sol (large  $\delta$ ) are crucial for the

wave instability.

Figure 3 shows the behavior of the most unstable mode number as  $\epsilon$\rightarrow 0 . The

parameters are chosen so that {\rm Re}$\mu$_{0}=0 . At  $\epsilon$=1, 0‐mode eigenvalue is the most un‐

stable. However, the most unstable mode number changes successively as  $\epsilon$ approaches
to zero.

Figure 4 shows stable standing wave solutions. The 2‐mode standing wave solu‐

tion is very similar to peripheral phase inversion behavior of plasmodium. Of course,

standing waves with different wave‐length can be observed for corresponding param‐

eters. Furthermore, spatio‐temporal patterns arising from the interaction between

wave instabilities of different modes can be observed (See Figure 5). It will take the

form {\rm Re}(z_{1}\exp(i$\omega$_{1}t)\cos( $\pi$ x)$\phi$_{1}+z_{2}\exp(i$\omega$_{2}t)\cos(2 $\pi$ x)$\phi$_{2}) at the linear approximation,
where i$\omega$_{1} and i$\omega$_{2} are critical eigenvalues corresponding to 1‐mode and 2‐mode eigen‐
functions \cos( $\pi$ x)$\phi$_{1}, \cos(2 $\pi$ x)$\phi$_{2} , respectively. Remark that we do not only need linear

stability analysis, but also nonlinear analysis such as center manifold reduction in order

to understand bifurcation structure.

§4. Discussion, Conclusion, and Future works

In the system (1.3), the wave instability plays a central and crucial role for pattern

formation. It turned out the pattern like peripheral phase inversion to be naturally
included in the system. In addition, the system can exhibit many other spatio‐temporal
structures. Therefore, from the viewpoint of our study, we can interpret the work in

[10] as follows: To understand the behavior of the plasmodium system mathematically,
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Figure 1. Hopf bifurcation curves in ( $\delta$,  $\lambda$) ‐plane. Parameter:  $\epsilon$=0.01( left) , $\epsilon$=

0.0001(right).
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Figure 2. Hopf bifurcation curves in ( $\delta$,  $\epsilon$) ‐plane. Parameter:  $\lambda$=0.25( left) , $\lambda$=

0.005(right). The curves corresponding to {\rm Re}$\mu$_{n}=0 for n=0 , 1, 2, 3 are drawn. The

vertical line is 0‐mode curve. Horizontal lines are 1‐mode, 2‐mode, and 3‐mode from

upper to lower, respectively, which incline toward lower right.

they crushed the structures in which the solution did not behave like the plasmodium

system of Physarum polycephalum by considering spatially dependence of coefficients

naturally. As a result, they succeeded to construct the mathematical model which was

better to reproduce behavior of the plasmodium system cleverly.
In this study, D_{u}=D_{v} is assumed. If D_{u}\neq D_{v} ,

the Turing instability might be

caused. In [11], they study the pattern formation arising from the interaction between

Turing and wave instability in 3‐component oscillatory reaction diffusion system. Their

system does not satisfy any conservation law. In the future, we would like to consider

that how different the structure of bifurcations is ? On the other hand, the homogeniza‐
tion of the synchronized oscillation cluster size, which has been already mentioned in §1,
is another mathematically interesting problem. We try to make this be a mathematical

result.
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Figure 4. Stable standing wave solutions. The left is 2‐mode oscillation for

( $\lambda$,  $\theta$,  $\delta$,  $\epsilon$) = (0.005, 1, 1, 0.001). The right is 3‐mode oscillation for ( $\lambda$,  $\theta$,  $\delta$,  $\epsilon$) =

(0.0004, 1, 1, 0.000003)

§5. Three oscillators system with \mathrm{D}_{3} symmetry

Equations. In this section we study a coupled oscillator system with three oscillators

in ring, as in Figure 6. We consider the following system:

(5.1) \left\{\begin{array}{l}
\frac{du_{i}}{dt}= $\lambda$ u_{i}- $\theta$ v_{i}+ $\delta$ w_{i}-(u_{i}- $\alpha$ v_{i})(u_{i}^{2}+v_{i}^{2})+ $\epsilon$(u_{i+1}+u_{i-1}-2u_{i}) ,\\
\frac{dv_{i}}{dt}= $\theta$ u_{i}+ $\lambda$ v_{i}-( $\alpha$ u_{i}+v_{i})(u_{i}^{2}+v_{i}^{2})+ $\epsilon$(v_{i+1}+v_{i-1}-2v_{i}) ,\\
\frac{dw_{i}}{dt}=- $\lambda$ u_{i}+ $\theta$ v_{i}- $\delta$ w_{i}+(u_{i}- $\alpha$ v_{i})(u_{i}^{2}+v_{i}^{2})+D_{w}(w_{i+1}+w_{i-1}-2w_{i}) ,
\end{array}\right.
where i=0 , 1, 2 and the indices are taken \mathrm{m}\mathrm{o}\mathrm{d} 3 . The coupling strengths  $\epsilon$ and  D

are non‐negative. Let the ratio between two coupling strengths be r= $\epsilon$/D_{w} . Assume

D_{w}=1 throughout this paper. The parameter  $\alpha$ is an amplitude dependency on phase

velocity. We will consider the two‐parameter bifurcation in (r,  $\alpha$) . If r is near 1, as
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Figure 5. Mode interaction between 1‐mode and 2‐mode.

we shall see later, the system shows in‐phase oscillation (U_{0}=U_{1}=U_{2}) . However, if r

becomes sufficiently small, nonuniform oscillation occurs. Then local oscillators (u_{i}, v_{i})
are coupled very weakly or are not coupled directly, and the fast diffusive variables w_{i}

mediate the coupling between local oscillators. It corresponds to the situation in which

each cell of plasmodium is coupled by the tube.

The individual oscillators are denoted by column vector U_{i}=(u_{i}, v_{i}, w_{i})^{t} . Then

the system (5.1) is written in matrix form as follows:

(5.2) \displaystyle \frac{d}{dt}U_{i}= $\Lambda$ U_{i}+F(U_{i})+K(U_{i+1}+U_{i-1}-2U_{i}) ,

where the matrix  $\Lambda$ and the function  F are given by (2.2) and K=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}( $\epsilon$,  $\epsilon$, D_{w}) is a

diagonal matrix.

Obviously, the sum \displaystyle \sum(u_{i}+w_{i}) is conserved throughout the time‐evolution. We

assume \displaystyle \sum(u_{i}+w_{i})=0 . Then (5.1) has a trivial equilibrium point U_{0}=U_{1}=U_{2}=0.

Figure 6. A ring of three oscillators.

Hopf bifurcation of trivial equilibrium point. First, we consider the Hopf bi‐

furcation of trivial equilibrium point. We are assuming that the coupling of oscillators

is symmetric, that is, invariant under interchanging the oscillators. Therefore the entire

system has \mathrm{D}_{3} symmetry.
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Consider the discrete Fourier transform

[Ucirc] k=\displaystyle \frac{1}{3}\sum_{k=0}^{2}U_{j}W^{jk}-, k\in \mathbb{Z},
where W=e\displaystyle \frac{2 $\pi$ i}{3} and hence \overline{W}=e^{-\frac{2 $\pi$ i}{3}} \hat{U}_{k} is the oscillatory component of U_{j} with

wave number k.\hat{U}_{0} is a spatially uniform component, and \hat{U}_{1}, \hat{U}_{2} correspond to spa‐

tial patterns. The linearized equation of (5.1) about the trivial equilibrium point is

decomposed into that of each oscillatory component,

\displaystyle \frac{d\hat{U}_{0}}{dt}= $\Lambda$\hat{U}_{0}, \frac{d\hat{U}_{1}}{dt}=( $\Lambda$-3K)\hat{U}_{1}, \frac{d\hat{U}_{2}}{dt}=( $\Lambda$-3K)\hat{U}_{2}.
Theorem 4.1 from Chap.XVIII in [4] provides a list of possible oscillatory patterns.

When (5.1) undergoes the Hopf bifurcation, either of the following two cases occurs:

1. The Hopf critical eigenvalues arise from the matrix  $\Lambda$
,

and in‐phase oscillation

occurs.

2. The Hopf critical eigenvalues arise from the matrix  $\Lambda$-3K ,
and it gives rise to

three branches of symmetry‐breaking oscillations:

\bullet rotating(R): the solution�s trajectory is invariant under rotation,

\bullet partial in‐phase(PI): two of three oscillators are synchronized with same phase,

\bullet partial anti‐phase(PA): two of three oscillators are synchronized with anti‐

phase.

Because the matrices  $\Lambda$ and  $\Lambda$-3K correspond to L_{0} and L_{1} defined by (2.6) with

k_{1}^{2}=3 ,
we can apply Theorem 3 in §2. Therefore, if  $\epsilon$ is sufficiently small, the second

case does occur. In this case, each oscillator is inactive, that is, each oscillator does not

have limit cycle when there is no coupling.

Inactive case. Next, we consider the inactive case (2 $\lambda$< $\delta$) . The parameters are set

as

 $\lambda$=0.01,  $\theta$=1.0,  $\delta$=0.025.

We follow the branches of periodic solutions by using of AUTO. Figure 7 is a two‐

parameter bifurcation diagram. In region \mathrm{E}
,

trivial equilibrium point is stable. It

undergoes the Hopf bifurcation at r\approx 0.00291 and three branches of solutions occur. R

is stable while PI and PA are unstable. This Hopf bifurcation points are irrelevant to  $\alpha$.

On the curve shown in figure, rotating solutions undergo torus bifurcation. In region \mathrm{N},
the system shows non‐periodic oscillations. Note that this diagram is incomplete. Figure
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Figure 7. A two‐parameter bifurcation diagram for ( $\lambda$,  $\theta$,  $\delta$)=(0.01,1.0, 0.025) . In

region \mathrm{E}
,

trivial equilibrium point is stable. The vertical line near r=0.00291 is the

Hopf bifurcation points. In most part of region \mathrm{R} , the rotating solutions are stable. On

the curve shown in figure, it undergoes torus bifurcation. In region \mathrm{N}
,
the system shows

non‐periodic oscillations.

7 shows only bifurcations of rotating solution. However, as shown in [5], secondary Hopf
bifurcation of partial anti‐phase could be important. In fact, it is possible to observe the

coexistence of periodic and non‐periodic oscillation in region \mathrm{R} near the torus bifurcation

curve. It might be caused by secondary Hopf bifurcation of PA or PI. Figure 8 shows a

time series of rotating solution for  $\alpha$=0.0 and Figure 9 is that of unstable PA and PI.

Figure 10 shows a non‐periodic orbit for  $\alpha$=2.0.

Active(self‐oscillating) case. Next, we consider the active case (2 $\lambda$> $\delta$) ,
that is,

each element has a limit cycle even if there is no coupling. The parameters are set as

 $\lambda$=0.04,  $\theta$=1.0,  $\delta$=0.025.

In this case, if r is large, each oscillator tends to in‐phase synchronization. For example,
if we fix r=1 and increase  $\lambda$ from  0 ,

the first case of \mathrm{D}_{3} symmetric Hopf bifurcation

occurs at  $\lambda$= $\delta$/2 . Or, as shown in [3], if the coupling matrix K is proportional to

the identity matrix and the local oscillator gives periodic solution, then the uniform

oscillation is stable. As r decreases, the synchronous state loses its stability. Figure 11

shows some orbits observed in active case. If  $\alpha$=0 ,
the stable in‐phase synchronized

state loses its stability at r\approx 0.0036 . This critical value decreases as the parameter  $\alpha$

increases. Figure 12 shows the bifurcation points of synchronized state. It is obtained

by following the synchronized solution for each fixed value of  $\alpha$ by AUTO.

Conclusion We have presented a partial result of the bifurcation structure of three‐

oscillator system with conservation law. In inactive case, three non‐uniform oscillatory
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Figure 9. Time series of unstable solutions for ( $\lambda$,  $\theta$,  $\delta$,  $\alpha$)=(0.01,1.0 , 0.025, 0.0 ) . The

values of u_{0}, u_{1} and u_{2} are indicated. Left:partial‐anti‐phase. u_{0} and u_{1} are anti‐phase
and u_{2} is in death‐mode (u_{2}=0) . Right:partial in‐phase. In this figure, u_{1} and u_{2} are

in‐phase.
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Right: rotating solution for r=0.002.
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Figure 12. The bifurcation points of synchronized state in (r,  $\alpha$) ‐plane. �STABLE� and

�UNSTABLE� means the stability of synchronized states.

patterns bifurcate at the Hopf bifurcation point. It is derived from the group theoretical

bifurcation theory as shown in [4] and is also understood as an analogy of the symmetry‐

breaking induced by wave instability in our reaction‐diffusion system with conservation

law. Further bifurcations of these patterns lead to non‐periodic oscillation.

It is expected that the result similar to the case of three repulsively coupled Stuart‐

Landau equations studied in [5] is obtained. The switching behavior is understood as

a chaotic itinerancy which shows chaotic transitions among low dimensional ordered

states. In that paper, they have clarified a bifurcation scenario which generates inter‐

mittent switching behavior. In inactive case, they have observed the following route

to chaos: trivial equilibrium \rightarrow partial a \mathrm{n}\mathrm{t}\mathrm{i}- phase \rightarrow S_{2} torus \rightarrow S_{3} chaos, where S_{2}
torus is an attractor corresponding to quasi‐periodic motion and it is invariant under

permutation by S_{2} group action. S_{3} chaos is a chaotic attractor invariant under per‐

mutation by the action of S_{3} . In active case, the route consists of two parts: the first

part is the creation of chaotic attractor through the period‐doubling \mathrm{c}\mathrm{a}\mathrm{s}\mathrm{c}\mathrm{a}\mathrm{d}\mathrm{e}:S_{2} torus

\rightarrow S_{1} torus S_{1} chaotic attractor. The second part is two successive attractor‐merging
crises: S_{1} chaotic attractor \rightarrow S_{2} chaotic attractor \rightarrow S_{3} chaos. However, our result for

three‐oscillator system is incomplete. We have observed the occurrence of symmetry‐

breaking oscillation by equivariant Hopf bifurcation, and non‐periodic orbit after the

destabilization of rotating wave. Although these solutions may be the first part of route

to S_{3} chaos, we need a more detailed analysis from both mathematical and numerical

viewpoints.
To understand the switching behavior in the biological coupled oscillator system, we

might have to propose a more appropriate mathematical model. In (5.1), each oscillator

consists of three variables and the coupling with other oscillator is mediated by w_{j},

which has large coupling constant and it corresponds to tube structure of Physarum.
This third variable enables the occurrence of spatially non‐uniform oscillation although
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each oscillator is diffusively coupled. Since each oscillator is diffusively coupled, it seems

attractive coupling. However, the fast component w makes the system behave like a

repulsively coupled Stuart‐landau equations. It results in spatially non‐uniform stable

oscillations. The character that the variable with fast diffusion mediates the coupling
is essential.
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