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Abstract

In this article, we summarize what we have found about the stochastic ranking process

(move‐to‐front rule) and the sales ranks of online stores, as well as a system of Burgers‐like
partial differential equations and least‐recently‐used caching, in order to give an overview of

relations among various topics in different fields.

§1. Introduction.

In this article, we summarize what we have found about the stochastic ranking

process (move‐to‐front rule) and the sales ranks of online stores, to give an overview

of relations among various topics in different fields. For details including proofs of

theorems and further references, we refer to [8, 9, 10, 11].
Amazon.co.jp, an online bookstore, gives each book it handles a number called

�Amazon sales rank,� which is renewed hourly on the store�s websites. When one tracks

the sales rank of a book that does not sell often, such as an academic book, one notices
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wild behaviors, including occasional sudden jumps to much higher ranks (Fig. 2). We

have proposed a stochastic model, which we called �stochastic ranking process,� and

have shown that it explains the observed peculiar behaviors well. It is a continuous‐

time version of a particle system following the move‐to‐front (MTF) rule, which has

been known for half a century.

Combining our model with an assumption that the sales rates of books follow gener‐

alized Pareto distribution, we found that the way how a book�s sales rank changes with

time contains information on the whole business structure of Amazon�s book division,
not just the particular book�s popularity. Specifically, a statistical fit of the observed

data allows us to analyze the �long tail� structure of Amazon.co.jp bookstore. Amazon

has been known to be a pioneer of long‐tail business, but their sales data have been

beyond reach of researchers. Our result implies that the bookstore�s dominant source

of sales comes from a small number of bestsellers, rather than the collection of a huge
number of unpopular books in the �long tail� region.

Returning to the stochastic ranking process, we also proved that the infinite particle
limit (�hydrodynamic limit�) of the process exists and is deterministic. We further

obtained an explicit formula for the limit. The limit can be characterized as the unique

global solution to an initial value problem for a system of Burgers‐like partial differential

equations. A method of characteristic curves can be applied to solve the equations. In

fact, it is these characteristic curves that we observe as the time development of sales

ranks, which make possible to perform statistical fits of the web data to our formula. The

method also mathematically explains the reason why the explicit formula is expressed
in terms of inverse function of the characteristic curves. This viewpoint of partial
differential equations and characteristic curves as its hydrodynamic limit seem to have

been unnoticed for the process. The MTF rule has been studied as a model of LRU

(least‐recently‐used) caching in computer science. Our result on (hydrodynamic limit�

gives a generalized formula of the cache miss probability.

§2. Stochastic ranking process /\mathrm{M}\mathrm{o}\mathrm{v}\mathrm{e}-\mathrm{t}\mathrm{o}‐front rule.

We consider a system of N particles lined in a queue. Each particle jumps to the

top of the queue (rank 1) at random times. When a particle in rank m jumps to rank

1, all the particles in ranks 1 through m-1 make a shift by one to ranks 2 through m

to fill the vacancy.

To formulate this model mathematically, let ( $\Omega$, \mathcal{F}, P) be a probability space. Let

N be a natural number and S_{N} be the set of all permutations of 1, 2, \cdots, N . We define

the stochastic ranking process

X^{(N)}(t)=(X_{1}^{(N)}(t), \cdots, X_{N}^{(N)}(t)) , t\geqq 0,
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as a Markov process with state space S_{N} ,
as follows. Let i=1

, 2, \cdots, N be labels

identifying the particles and X_{i}^{(N)}(t) be the rank (position in the queue) of particle
i . For each i=1

,
. . .

,
N

,
there is an increasing sequence of random variables $\tau$_{i,j}^{(N)},

j=1 , 2, \cdots

,
such that  X_{i}^{(N)}($\tau$_{i,j}^{(N)})=1, j=1 , 2, ; namely, the series of random times

at which particle i jumps to top. At a jump time t=$\tau$_{i,j}^{(N)} of particle i
,

if particle i'

satisfies X_{i}^{(N)}($\tau$_{i,j}^{(N)}-0)<X_{i}^{(N)}($\tau$_{i,j}^{(N)}-0) ,
then let X_{i}^{(N)}($\tau$_{i,j}^{(N)})=X_{i}^{(N)}($\tau$_{i,j}^{(N)}-0)+1.

so that X^{(N)}(t)\in S_{N} holds all the time. X^{(N)}(t) changes only at jump times $\tau$_{i,j}^{(N)} . We

assume that the initial state X^{(N)}(0)=(X_{1}^{(N)}(0), \cdots, X_{N}^{(N)}(0)) is given (deterministic),
except in Section 6.

Fig. 1 is a sample configuration such that N=5 and $\tau$_{1,1}^{(5)}<$\tau$_{2,1}^{(5)}<$\tau$_{1,2}^{(5)}<$\tau$_{3,1}^{(5)} . The

first line in the figure illustrates X_{3}^{(5)}(0)=1, X_{2}^{(5)}(0)=2, X_{4}^{(5)}(0)=3,X_{1}^{(5)}(0)=4,
X_{5}^{(5)}(0)=5.

\circ 5 \mathrm{t}=1,1

\circ 4\circ 5 \mathrm{t}=2,1

\circ 3\circ 4\circ 5 \mathrm{t}=1,2

\circ 4\circ 5 \mathrm{t}=3,1

\circ 3\circ 1\circ 2\circ 4\circ 5

Fig 1. A sample configuration with $\tau$_{1,1}^{(5)}<$\tau$_{2,1}^{(5)}<$\tau$_{1,2}^{(5)}<$\tau$_{3,1}^{(5)}.

For notational simplicity, we put $\tau$_{i,0}^{(N)}=0 for all i=1
, 2, \cdots, N ,

and we assume

that \{$\tau$_{i,j+1}^{(N)}-$\tau$_{i,j}^{(N)}, i=1, 2, \cdots, N, j=0, 1, 2, \} are independent and that for each

i=1
, 2, \cdots, N ,

the jump intervals \{$\tau$_{i,j+1}^{(N)}-$\tau$_{i,j}^{(N)}, j=0, 1, 2, \} have an identical

exponential distribution with parameter w_{i}^{(N)}>0 :

\mathrm{P}[$\tau$_{i,1}^{(N)}>t]=\exp(-w_{i}^{(N)}t) .

(N)Note that as in standard Poisson process, the jump times $\tau$_{i,j}, j=1 , 2, \cdots, i=

1
, 2, \cdots, N ,

are distinct with probability 1. This completes the definition of the process

X^{(N)}.
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The stochastic ranking process defined above is a continuous‐time version of the

Markov chain known as the move‐to‐front (MTF) rule [19, 15, 12]. To be more precise,
if we define k‐th (discrete) jump time $\sigma$^{(N)}(k) by

\{$\sigma$^{(N)}(k), k=0, 1, 2, 3, \}=\{0\}\cup\{$\tau$_{i,j}^{(N)}, j=1, 2, \cdots, i=1, 2, \cdots, N\} ;

0=$\sigma$^{(N)}(0)<$\sigma$^{(N)}(1)<$\sigma$^{(N)}(2)<\cdots,

we obtain a Markov chain Z(k)=(X_{1}^{(N)}($\sigma$^{(N)}(k)), \cdots, X_{N}^{(N)}($\sigma$^{(N)}(k))) on S_{N} . This

Markov chain has been named in several ways such as move‐to‐front rules, self‐organizing
search and Tsetlin library [15, 12, 18, 19], and since the end of 20th century it has also

often been referred to as least‐recently‐used (LRU) caching [14].

§3. Amazon.co.jp sales ranks.

Fig 2. A sample plot of Amazon.co.jp rankings for a book. The data were taken from

May 15, 2007 to April 9, 2008. Note large discontinuous jumps to the top region (near
the horizontal axis), which corresponds to the point of sales of the book. The data are

taken manually; the density of the plot varies because it reflects how much the authors

could devote their time on taking the data.

Amazon.co.jp is an online bookstore which is the Japanese counterpart of Ama‐

zon.com sales rank. On Amazon.co.jp�s web pages, Amazon sales ranks are shown and

renewed hourly. When one tracks the sales rank of any book that does not sell often

(actually, most of the books on their catalog belong to this category), one notices pe‐

culiar behaviors. Most of the time, the rank stays around hundreds of thousands and

keeps constantly falling (that is, the number representing the rank keeps increasing),
but occasionally, it jumps up to as high as, say, ten thousand, which amounts to only a

few percent of its usual rank and thus can be called �the top area.� After such a large
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jump, it starts falling again. Fig. 2 shows a plot of actual Amazon.co.jp ranks for a

book taken over a year from May 15, 2007 to April 9, 2008. The original motivation

for the stochastic ranking process defined in Section 2 was to explain the behaviors of

these sales ranks. By actually ordering a copy at Amazon.co.jp website, it is easy to

verify that a large jump occurs when someone orders the book at Amazon.co.jp. One

or two hours after the order, a sudden jump in rank is actually observed. With this

interpretation, we apply the stochastic ranking process to Amazon sales ranks.

Consider the scaled ranks

Y_{i}^{(N)}(t) :=\displaystyle \frac{1}{N}(X_{i}^{(N)}(t)-1)\in[0, 1) ,

and let

y_{C}^{(N)}(t)=\displaystyle \frac{1}{N}\#\{i|$\tau$_{i,1}\leqq t\}\in[0, 1) .

y_{C}^{(N)}(t) denotes a boundary of the head side and the tail side, where the head side consists

of the particles which experienced jumps at least once by time t
,

and the particles in

the tail side have not jumped at all up to time t . Denote the empirical distribution of

jump rates by

$\lambda$^{(N)}=\displaystyle \frac{1}{N}\sum_{i=1}^{N}$\delta$_{w_{i}^{(N)}},
where $\delta$_{a} denotes a unit distribution concentrated at a.

Proposition 3.1 ([8, Proposition 2 Assume that $\lambda$^{(N)} converges weakly to

some distribution  $\lambda$ as  N\rightarrow\infty . Then for each  t\geqq 0,

(3.1) y_{C}^{(N)}(t)\rightarrow y_{C}(t) :=1-\displaystyle \int_{0}^{\infty}e^{-wt} $\lambda$(dw) ,
in probability,

as N\rightarrow\infty. y(t) is continuous and strictly increasing in t. 3

Proposition 3.1 is obtained as a straightforward consequence of the law of large
numbers for independent random variables. Note that y(t) is essentially the Laplace
transform of  $\lambda$.

Since the number N of books in amazon.co.jp is very large (N=O(10^{6})) ,
we

can apply this  N\rightarrow\infty result to sales ranks. In practical application to social and

economical activities, \mathrm{a} (generalized) Pareto distribution (also called a power law, \mathrm{a}

loglinear distribution, or a Zipf‐like law for the discrete case) is often used. We assume

this type of distribution for the probability distribution of book sales rate. Namely, we

assume the probability measure  $\lambda$ to be

(3.2)  $\lambda$([w, \infty))=\left\{\begin{array}{l}
(\frac{a}{w})^{b}, w\geqq a,\\
1, w<a,
\end{array}\right.
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where, in terms of books in a bookstore, w denotes the sales rate of a book title (average
sales of w copies per unit time), and  $\lambda$([w, \infty)) is the ratio of the number of book titles

with sales rate w or more to the total number of books. The positive constant a in (3.2)
denotes the lowest positive sales rate of the books on the catalog of the bookstore. The

1
other constant b is also positive, where −

\overline{b}
is the so‐called Pareto slope parameter. N

is the total number of book titles with positive sales rate. Note that the books that

never sell should be ignored in applying the Pareto distribution (3.2).
Substituting (3.2) in (3.1) we have

(3.3) y_{C}(t)=1-ba^{b}\displaystyle \int_{a}^{\infty}e^{-wt}w^{-b-1}dw=1-b(at)^{b} $\Gamma$(-b ,
at ) ,

where  $\Gamma$ is the incomplete Gamma function defined by  $\Gamma$(z, p)=\displaystyle \int_{p}^{\infty}e^{-x}x^{z-1}dx . Note

in particular, that for b<1 we have a concave time dependence for short time,

(3.4) y_{C}(t)=(at)^{b} $\Gamma$(1-b, 0)+o(t^{b}) ,

while for b>1 we have linear short‐time dependence. When N is large enough,

(3.5) Ny_{C}(t)=N(1-e^{-at}+(at)^{b} $\Gamma$(1-b, at))

approximates the sales rank of a book that started at rank 1 at time 0 and has not sold

by time t.

We are interested in the value of b
,

which plays an important role in the analysis
of business model. b>1 implies that the long tail business is realized. By long tail, we

refer to a business model where a huge number of low‐sellers accumulate to bring in a

considerable profit [1]. On the other hand, b<1 implies that the business is best‐seller

based, that is, profit comes mostly from a small number of super hits.

Fig. 3 shows data from Amazon.co.jp ranking, and a statistical fit of the data to

Ny(t) in (3.5). The plots in Fig. 3 are the ranking data of a book in Amazon.co.jp on

21:00 JST each day between May 30, 2007 and August 16, 2007, one of the intervals

between two adjacent jump to near rank 1 in Fig. 2. By performing statistical fits to the

data we obtained b=0.81[10] . This result implies that Amazon.co.jp�s business model

is not long‐tail based but best‐seller based just like ordinary bookstores, in contrast to

the idea in [1].
There are some previous studies where the value of b for Amazon.com is estimated.

Chevalier and Goolsbee had an estimate b=1.17[4] ,
and Brynjolfsson, Hu and Smith

obtained b=1.148[2] . Both implies long‐tail business, as expected in [1]. In both

studies, they used Amazon.com sales ranks to estimate b
,

but their estimate are based

on the assumption that sales ranks are determined from the average sales. In our model,
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ranking

1, 000 2, 000 hrs

Fig 3. The horizontal axis represents time and the vertical axis sales ranks. The plots
are the ranking data of a book in Amazon.co.jp on 21:00 JST each day between May

30, 2007 and August 16, 2007. The curve shows Ny(t) obtained from a statistical fit

to the data.

the rank depends on the time of the latest sale of a copy, rather than average sales. We

only need to collect data for a single book, for the time development of a sales rank

contains the information of the total sales of a large number of other books in the tail

side. Note also that which book we choose for observation is theoretically irrelevant as

long as it sells seldom enough to allow for a long‐time observation.

We remark that values of b such that 0<b<1 have also been obtained in a study of

document access in the MSNBC commercial news web sites [17] by direct measurements

of access frequency.
It seems that the MTF ranking algorithm is not considered obvious for a model of

sales ranks in real online stores; the authors have more than once received a response

that sales ranks should be calculated in a more complicated algorithm. However as

Fig. 2 shows, real sales ranks do behave wildly, and as Fig. 4 shows, the fit of the data

to our theoretical curve Ny(t) is quite good.



156 Kumiko Hattori & Tetsuya Hattori

Fig 4. Plot of Amazon.co.jp rankings for a book from May 15, 2007 to April 9, 2008,
as in Fig. 2, and the theoretical curve (3.5) with parameters as in Fig. 3.

§4. Infinite particle (hydrodynamic) limit.

Intuitively, one may guess that particles with large jump rates tend to stay near

to the top of the ranks, while, if we have many particles, there will nearly always be

some (lucky� particles with small jump rates in the top area. The ratios of particles
with different jump rates are random, but when N is large enough we expect that the

fluctuation is small. To formulate these intuition mathematically, let us define the joint

empirical distribution (distribution‐valued random variable) of jump rate and scaled

rank at time t

$\mu$_{t}^{(N)}:=\displaystyle \frac{1}{N}\sum_{i=1}^{N}$\delta$_{(w_{i}^{(N)},Y_{i}^{(N)}(t))}.
We denote by t(y) the inverse function of y(t) given in Proposition 3.1, and also

generalize the definition of y_{C} to define

y_{C}(y, t)=1-\displaystyle \int_{y}^{1}\int_{0}^{\infty}e^{-wt}$\mu$_{0}(dw , dz) .

y_{C}(y, t) is strictly increasing in y and we denote the inverse function of y_{C}(y, t) in y by

\hat{y}(y, t) .

Theorem 4.1 ([8, Theorem 5 Assume that  $\lambda$ in Proposition 3.1 exists and

satisfies \displaystyle \int_{0}^{\infty}w $\lambda$(dw)<\infty and  $\lambda$(\{0\})=0 ,
and the initial joint distribution $\mu$_{0}^{(N)} con‐

verges weakly to a distribution $\mu$_{0} as  N\rightarrow\infty . Then, for each  t>0, $\mu$_{t}^{(N)} converges in
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probability to a (non‐random) distribution $\mu$_{t} as  N\rightarrow\infty . The limit $\mu$_{t} is given by

(4.1) U(dw, y, t) :=$\mu$_{t}( dw, [y, 1))=\left\{\begin{array}{l}
 $\lambda$(dw)e^{-wt_{0}(y)}, y<y_{C}(t) ,\\
U(dw, \hat{y}(y, t), 0)e^{-wt}, y>y_{C}(t) ,
\end{array}\right.
where U(dw, y, 0)=$\mu$_{0}(dw, [y, 1)) . 3

The assumption \displaystyle \int_{0}^{\infty}w $\lambda$(dw)<\infty is required only in the proof of convergence at

 y=0 ,
and is irrelevant for y>0.

§5. Burgers‐like equation.

Our proof of Theorem 4.1 is performed in such a way that first we infer the explicit
form (4.1), and then directly prove that the difference between $\mu$_{t}^{(N)} and the inferred

$\mu$_{t} converges to 0 (in the sense of distribution topology) as  N\rightarrow\infty . In this proof, the

explicit formula (4.1) is important. The formula can be mathematically characterized as

the unique solution to the initial value problem of the following system of Burgers‐like

partial differential equations. Here we consider the case where jump rate takes at most

countable different values  f_{ $\alpha$},  $\alpha$=1
, 2, \cdots and  $\lambda$ in Proposition 3.1 is given by

 $\lambda$=\displaystyle \sum_{ $\alpha$}$\rho$_{ $\alpha$}$\delta$_{f_{ $\alpha$}},
where the non‐negative constant $\rho$_{ $\alpha$} denotes the the ratio of the particle of jump rate

f_{ $\alpha$} ,
and satisfies \displaystyle \sum_{ $\alpha$}$\rho$_{ $\alpha$}=1.
Theorem 5.1 ([9, Theorem 1 U_{ $\alpha$}(y, t) :=U(\{f_{ $\alpha$}\}, y, t)=$\mu$_{t}(\{f_{ $\alpha$}\}, [y, 1)) is

the unique time‐global solution to the following initial value problem:

(5.1) \displaystyle \frac{\partial U_{ $\alpha$}}{\partial t}(y, t)+\sum_{ $\beta$}f_{ $\beta$}U_{ $\beta$}(y, t)\frac{\partial U_{ $\alpha$}}{\partial y}(y, t)=-f_{ $\alpha$}U_{ $\alpha$}(y, t) ,

(y, t)\in[0, 1) \times[0, \infty) ,  $\alpha$=1, 2, \cdots,

with boundary condition

U_{ $\alpha$}(0, t)=$\rho$_{ $\alpha$}, t\geqq 0,  $\alpha$=1, 2, \cdots,

and for each  $\alpha$
,

initial values  U_{ $\alpha$}(y, 0)=U_{ $\alpha$}(y) , 0\leqq y<1 ,
are non‐negative, differ‐

entiable, non‐decreasing functions satisfy ing \displaystyle \sum_{ $\beta$}f_{ $\beta$}U_{ $\beta$}(0)<\infty and \displaystyle \sum_{ $\beta$}U_{ $\beta$}(y)=1-y.
3
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Since (5.1) is a system of quasi‐linear partial differential equations with common

principal part, it can be solved in terms of the inverse functions of the characteristic

curves yc.

It seems that the existence and the explicit form of $\mu$_{t} in Theorem 4.1 have not

been noticed since the MTF model appeared in literature, and even for the quarter‐

century since the start of rather extensive studies in the application to computer science

as a model of least‐recently‐used caching (Section 6). Perhaps this is because of the

difficulty in finding the �inverse function� t(y) of the Laplace transform of  $\lambda$ without

the knowledge of its relation to the partial differential equation. Once one notices that

the infinite particle limit is described by the partial differential equations as in the study
of hydrodynamic limit, the inverse functions are obtained naturally by the method

of characteristic curves in the case of (5.1). The essential key to the mathematical

understanding of the  N\rightarrow\infty limit of the stochastic ranking process or MTF rules is

to find the partial differential equations (5.1) characterizing the limit, and in this sense

we may regard the limit Theorem 4.1 as a hydrodynamic limit.

We remark that the method of characteristic curves guarantees, in general, only
the existence of local solutions. In the case of (5.1), thanks to the right hand side

representing a loss of mass through evaporation, there is a shock‐wave free condition

\displaystyle \sum_{ $\beta$}\frac{\partial U_{ $\beta$}}{\partial y}(y)\geqq-1,
which is satisfied by the initial data in Theorem 5.1, leading to existence of global
solution.

§6. Search cost.

There have been extensive studies on the search cost C_{N} as an application of MTF

rule, particularly in the study of computer sciences. (See, for example, [6, 13, 11], and

references therein.) When a huge number of data are stored in a computer and accessed

often, an efficient way is to copy a certain amount of frequently accessed data into a

cache memory that allows quick access. Least‐recently‐used (LRU) caching is a simple

algorithm of which data to keep in the cache memory. The algorithm is as follows:

When a data not stored in the cache memory is accessed, it is reallocated in the cache

memory, and in turn the data in the cache memory with the oldest access record is

dropped from the cache. If one logically aligns the data in the order of latest access,

one sees that this algorithm is equivalent to the MTF rule. In this application, one

of the main interest is the position of an accessed data (the position of a particle just
before its jump), which is the definition of C_{N} . If the ratio of the number of data in the
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cache to that of all data is y, \displaystyle \frac{1}{N}C_{N}\leqq y implies a cache success and \displaystyle \frac{1}{N}C_{N}>y a cache

miss (cache fault).
Denote the first particle to jump after time t by Q^{(N)}(t) . Then the search cost is

expressed as

\displaystyle \frac{1}{N}C_{N}=Y_{Q^{(N)}(t)}^{(N)}(t) ,

where Y^{(N)}(t) is defined in Section 2. Since particles jump independently of their posi‐

tions, that is, events \{Y_{i}^{(N)}(t)>x\} and \{Q^{(N)}(t)=i\} are independent, the distribution

of \displaystyle \frac{1}{N}C_{N} can be calculated in terms of $\mu$_{t} in Theorem 4.1, in the limit  N\rightarrow\infty . We

have

\displaystyle \lim_{N\rightarrow\infty}\mathrm{P}[\frac{1}{N}C_{N}(t)>x]=\underline{\int\int_{(w,y)\in[0,\infty)\times(x,1)}w$\mu$_{t}(dw,dy)}
\displaystyle \int_{0}^{\infty}w $\lambda$(dw)

.

Although our motivation for Theorem 4.1 was a purely theoretical interest in the hydro‐

dynamic limit and was independent of the trends in computer science, it turned out that

the search cost can be expressed in a well‐defined way in our notation, and Theorem 4.1

turned out to be applicable to the practical situations where the number of data N is

large [11].
Early works on MTF rule focused on the existence of the stationary distribution on

S_{N}[19 ,
12 ] and the expected search cost at stationarity [15, 3]. When  N<\infty ,

the gen‐

eral theory of Markov processes show that the stationary distribution on  S_{N} is realized

as  t\rightarrow\infty . So far, we assumed that the initial configuration (Y_{1}^{(N)}(0), \cdots, Y_{N}^{(N)}(0)) is

given (deterministic) in previous sections. In the following, let (Y_{1}^{(N)}(0), \cdots, Y_{N}^{(N)}(0))
be a S_{N}‐valued random variable with the stationary distribution. We denote the joint
distribution of jump rate and position with the stationary initial configuration by $\mu$_{\infty}^{(N)}.
Note that in Theorem 4.1, if y<y_{C}(t) ,

the limit distribution $\mu$_{t} does not depend on

the initial configuration or t . Thus it follows from Fubini�s theorem and the dominated

convergence theorem that $\mu$_{t} is the limit distribution also of $\mu$_{\infty}^{(N)} as  N\rightarrow\infty
,

and

\displaystyle \lim_{N\rightarrow\infty}$\mu$_{\infty}^{(N)} (dw , dy)=$\mu$_{t}(dw , dy)=\underline{we^{-wt_{0}(y)}dy $\lambda$(dw)}
\displaystyle \int_{0}^{\infty}\tilde{w}e^{-\tilde{w}t_{0}(y)} $\lambda$(d\tilde{w})

This leads to formulas such as

\displaystyle \lim_{N\rightarrow\infty}\mathrm{P}[\frac{1}{N}C_{N}>x]=\frac{\int we^{-wt_{0}(x)} $\lambda$(dw)}{\int w $\lambda$(dw)}
in stationarity [11].

As noted in Section 5, it seems that a general formula expressed in terms of t_{0} has

not been obtained before, except asymptotic forms in the case of specific distributions.
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For quantities which has a formula without inverse function t_{0} ,
we find many works.

For example, the average search cost in the case of finite N has been given by

\displaystyle \mathrm{E}_{\infty}[C_{N}]=\frac{1}{2}+\sum_{i=1}^{N}\sum_{j=1}^{N}\frac{p_{i}^{(N)}p_{j}^{(N)}}{p_{i}^{(N)}+p_{j}^{(N)}}
in earlier works [15, 12], where we used the notation \mathrm{E}_{\infty} to specify that we assume the

stationary initial distribution. The limit of this formula as  N\rightarrow\infty is, as expected,

equal to the search cost obtained using $\mu$_{\infty} to give

\displaystyle \lim_{N\rightarrow\infty}\mathrm{E}_{\infty}[\frac{1}{N}C_{N}]=\frac{1}{\int_{0}^{\infty}w $\lambda$(dw)}\int_{0}^{\infty}\int_{0}^{\infty}\frac{w\tilde{w}}{w+\tilde{w}} $\lambda$(dw) $\lambda$(d\tilde{w})
.

Among previous results for general distributions, a comparison between the average

search cost R_{N} for the optimal ordering (the case where the positions of data are fixed

in the decreasing order of w_{i}^{(N)} ) and that for the MTF case in stationarity is obtained

as

\mathrm{E}[R_{N}]\leqq \mathrm{E}_{\infty}[C_{N}]\leqq 2\mathrm{E}[R_{N}]-1.

In the limit, we have

\displaystyle \lim_{N\rightarrow\infty}\frac{1}{N}\mathrm{E}[R_{N}]\leqq\lim_{N\rightarrow\infty}\frac{1}{N}\mathrm{E}_{\infty}[C_{N}]\leqq 2\lim_{N\rightarrow\infty}\frac{1}{N}\mathrm{E}[R_{N}],
which can also be reproduced directly from our general result using

\displaystyle \frac{1}{2}\min\{x, y\}\leqq\frac{xy}{x+y}\leqq\min\{x, y\}, x, y\geqq 0.
We remark that [5] points out that using Hilbert�s inequality, [7, §9.3], K(x, y)=

\displaystyle \frac{4xy}{(x+y)^{3}} with p=q=2 and g=f\geqq 0,

\displaystyle \int_{0}^{\infty}\int_{0}^{\infty}\frac{4xy}{(x+y)^{3}}f(x)f(y)dxdy\leqq\frac{ $\pi$}{2}\int_{0}^{\infty}f(x)^{2}dx
a stronger (the best among those independent of  $\lambda$ ) estimate from above

\displaystyle \lim_{N\rightarrow\infty}\frac{1}{N}\mathrm{E}_{\infty}[C_{N}]\leqq\frac{ $\pi$}{2}\lim_{N\rightarrow\infty}\frac{1}{N}\mathrm{E}[R_{N}]
is obtained.
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