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Boson Gas Mean Field Model Trapped by Weak
Harmonic Potentials in Mesoscopic Scaling

By

Hiroshi TAMURA *

Abstract

A model of a mean-field interacting boson gas trapped by a weak harmonic potential is
considered by means of the theory of Random Point Field [RPF]. In the previous work, the
weak potential limit of the RPF which describes the position distribution of the constituent
particles of the gas has been obtained. The limiting RPF concerns the distribution of the gas
near the bottom of the harmonic potentials.

In this note, we deal with the same model in the different scale to consider the large scale
distribution of the system.

§1. Introduction and Main Results

We consider the quantum statistical mechanical models of boson gas in R? (d >
2) equipped with a k-parameterized family of one-particle Hamiltonians of harmonic
oscillators:

d 2
1 9? €T 1
(1) h“_§Z<_W+?_E>’

which are self-adjoint operators in the Hilbert space § := L?(R%).

In this model, the limit x — oo (weak harmonic limit [WHL]) can be considered as
a kind of “thermodynamic limit”. In the previous paper [15], the position distribution of
the constituent bosons of the model and its WHL is studied by means of random point
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fields [RPF]. For the RPF and its applications to the statistical mechanical models,
see e.g., [8,9,4,5, 7,11, 12, 13, 14, 3]. As anticipating from the superficial similarity
between the usual TDL for free boson gas and WHL of the present model, the position
distributions of the both cases converge to the same RPF weakly for low density gases.
However, for high density (i.e., Bose-Einstein condensation [BEC] phase), they behave
completely different way. In fact, the distribution converges weakly in the usual TDL,
while it does not in WHL. The difference may also be understood heuristically in terms
of the difference between the ground state wave functions of the both models. However,
only the distribution around the bottom of the parabolic potential are concerned there
since the behavior of WHL was studied by means of the weak limit. For the general
aspects on models of Boson gases and BEC, see e.g. [2, 18, 10, 6] and the references
cited therein.

The purpose of the paper is to study the WHL of the model in the different scaling
in oder to clarify the global feature of the distribution of the constituent bosons. The
heuristic physical picture of this scaling is as follows: In the previous paper, the harmonic
potential is supposed to be so weak that the gas trapped in a large region even in the
macroscopic sense. That is, the gas distributes in the volume much greater than the
laboratory scale. In the present case, the potential is supposed to be weak but that
the boson gas is trapped in a region of the laboratory scale. That is to say, the gas
contained in a container of laboratory size. In other words, suppose that the gas in the
container consists of N bosons. Then we consider the limit in which N — oo and the
mass of the individual bosons tends to 0 proportional to 1/N so that the total mass of
the system remains unchanged.

Substantial part of the argument for the present subject are common with those in
the previous paper [15]. Hence we refer those parts with [15], in the way that Lemma
[.3.2 for Lemma 3.2 in [15] and (I.2.3) for the (in)equality (2.3) in [15] and so on.
Moreover, we organize the presentation of this note in a completely parallel way to the
previous paper. For each proposition or lemma, we give the same number with the
corresponding proposition or lemma which plays a similar role in [15]. Especially for
those which are almost the same to the corresponding ones, their proofs are omitted or
replaced by brief notes which indicate the different points.

We consider the mean-field interacting bosons trapped in the harmonic potential
(1.1). Its grand-canonical partition function is given by

(1.2) Ean(B1) = Z Blun—In? /26) Tr g [©"Gu(8)):
n=0
Here, 9%, = (}Z)?Z’,mL2 (R%) is the n-fold symmetric Hilbert space tensor product of

9 = L*(R%) and G,(B) = e P the one particle Gibbs semigroup. The zeroth term
in (1.2) equals to 1 by definition. We deal with the case of d > 2,6 > 0, A > 0 and



BosoN GAs MEAN FIELD MODEL IN MESOSCOPIC SCALE 165

arbitrary p € R. Hereafter, we suppress the symbol A from the left-hand side of (1.2).
The spectrum of the operator (1.1) is discrete and has the form:

(1.3) Spec hy, = {€x(s) :=|s|1/k|s= (51, ,84) € Zﬁlr}

where |s|; := Z;l:l |sj| and Z is the set of all non-negative integers. The ground state
is denoted by

_ 1 —x2/2n
(1.4) Qu(z) = (7m)d/46
in this paper, where x = (z1,--- ,24) € RY, 22 := Z;.l:l 3.

Integral kernel of G (3) = e "+ has the explicit form (the Mehler’s formula):

exp{—(2x) "' (|z[* + [y|*)tanh(B/2k) — & — y|*/ 2k sinh(B/k))}

(1.5) Gu(Biz,y) = {mr(1 — e26/r)}d/2

The operator G () belongs to the trace-class €;($)), with the trace-norm equals to
TrG.(8) = 1/(1 — e /%)% = O(k?) for large k. (For the trace-class and other related
topics, see e.g., [17].) The largest eigenvalue of G () coincides with the operator norm
|G (B)|| = 1. We write all the eigenvalues of operator G (/) in decreasing order:

G0 = 1> gl = B 5 ) 5

We use the RPF's to describe the position distribution of the constituent particles
of the system, see [11, 12, 13, 14, 15]. Here, RPFs are probability measures on Q(R?),
the space of all non-negative integer valued Radon measures on R?. The RPF V8, for
the present model is characterized by the following generating functional:

(16) / eIy, 5 (dE)
Q(R%)

1 - n— n2 :‘id n —
= = LT Ty 6 (Gu(B)e ]

where f € Co(R%), f > 0. The measure Vi3, 18 a finite RPF whose Janossy measure

n=0

can be given explicitly, see Remark 2.1. In the RPF formalism, the positions of the
constituent bosons are expressed by a point measure

N
€= 0y,
j=1

if there are N bosons in the system and they locate at {z1,z9,---,2, } € R We
discussed the distribution of £ directly in [15]. In the present paper, we consider the
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distribution of the scaled object

1 N
§r = E Z 5acj/rm
j=1

(f.6x) = 5 Uf(- /K), ).

Note that &, is an element of M (R?), the space of all non-negative Radon measures on
R?, rather than Q(RY). Let T} be this transformation, i.e.,

T. : Q(RY) 3 ¢ &, € M(RY).

Since M(R4) > Q(R?), we may regard T}, the transformation in M (R?).

Let N g, be the probability measure on M(R?) induced by the map T}, from
Vi Bois 1€ N g = Vi gL b Here, v, g, may be regarded as a probability measure
on M(R?) concentrated on Q(R?).

We introduce two more symbols to indicate certain elements in M(R?). Let 7,
[10., respectively] € M(R?) be defined by

B rf(z) dp dx
<n7’7 f) - /(]Rd)2 6@(p2+x2)/2 —r (271_)0[

f(@) dp dx
22 PP/ ] (27) 0

respectively ] .

[t £) = 28O+ [

(R

Let us recall the critical parameter

B dp XD ! dp d
(1.7) He 2= )\/[O,oo)d eflrlh — 1 pd )\/(Rd)z ePw?+22)/2 — 1 (2m)d’

which divides the low density (normal phase) and the high density (BEC phase) regions
of the system. Let r, be the unique solution of

u logr, 1 / rydp log 7. / T dpdx
1. - = — =
(18) A BA + B Ji0,00y2 P =, BA + (Rayz €8 F*)/2 —p (2m)d

for p < pe.

Theorem 1.1. (i) For p < p. (normal phase), N, g, converges weakly to
Op,., the probability measure concentrated on the singleton n,., € MR, in the limit
K — 00.

(ii) For > p. (BEC phase), Ny g, converges weakly to 6y, ., . ., in the limit

KR — OQO.
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Remark 1.2.  To prove the theorem, it is enough to show the following limit of
generating functionals:

(19) le € - £H>N K53, /J/(dgli) - 11_>m e_<f( '/K)’@/Kdl/n,g,u(dé)
K00 J M(R?) k=00 Jomray
o P [_ /(]Rd)z eﬁ(l’2+ﬂ32)/2 — 7y (27T)d ] fmn w < pe

- = fe f(@) dp dx
exp [_ Y f(O) - /(]Rd)2 €B(p2+x2)/2 1 (27T)d ] fOT M > K-

§2. Preliminary Arguments and Estimates

We will prove Theorem 1.1 in the direction indicated in Remark 1.2. First, let
us write the left-hand side (1.9) as the ratio Z.(8, t)/Zx(3, it). The representations of
2. (6, 1) and =, (B, 1) are given in the form of integration of Fredholm determinants.
We also give the miscellaneous estimates needed for the evaluation of these integrals.

§2.1. Z.(3,p) and Z.(8, )

The expression of Z,,(83, 1) has been obtained in [15] as follows. The operator

=Y U)

0'6677,

is the projection operator on $” = ®"L?(R?) onto its subspace H7,, , where &,, is the

sym>

n-th symmetric group and
U@)p1® Q@ n = @a1(1) @+ ® Qg-1(n) for 0 €6, 1, - ,pn € L*(RY).

The grand-canonical partition function can be written as

2B =3 LS g [(97 GU@)U o)

n=0 ‘o6,
eﬁun Bxn?/2kd

—Z . Z /R )(:Uj,xa_l(j)))dajl-~dxn

dyn
oceG, ) j=1

eﬁpn B)\nz/%
—Z /(Rd) per { G (B) (i)}, s o -

where per stands for the permanent of matrix.
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Remark 2.1.  The point field v, of (1.6) can also be defined in terms of
Janossy measures or exclusion probability [1]. That is to say, ve g, is a finite point
field which assigns the probability

eﬁun—ﬁkn2/2md

PI‘{an} = E,g(ﬁ, ,U/) per{Gﬁ(ﬁ)(xiaxj)}lgi,j<ndxl dxn
to the event {dX,}: there are exactly n points, one in each infinitesimal region
d 7 7 7 1 d .
HZ I[E), §)—|—d$()) (ajj—((), .., E)) J:l,...7n).

We use the generalized Vere-Jones’ formula [11, 16] in the form

1 dz
n! /per R fsr(O) 2miz" 1 Det[1 — 2G(8)]’

where r > 0 satisfies r = ||rG(08)|| < 1. S,(¢) denotes the integration contour defined

by the map 6 — ( + rexp(if), where 0 ranges from —m to 7, r > 0 and ¢ € C.
We also use

(2.1) BN /25" =4/ 2§2d / dx exp 2/3; ((z +1is)* — 2in(x + zs)))

If s > 0 satisfies

(2.2) Pr—PAs/nt

we can take the summation over n together with a scaling of x and the complex inte-

gration to get

(B, 1) = \/BT BAs® /2 / f o~ BM(@? +2isx) /267
Sl i) = 2K 27‘(’2 z — eButpBA(iz— s)/,id)Det[l .. (ﬁ)]

B)\s2/2n e—fida:2/2ﬁ>\—isx
27rﬁ / f 271’2 z — eBptiz— SﬁA/”d)Det[l — 2G(P)]

—isz—r%a? /28

2.3 = —WSQ/%/ ‘ .
(23) 276 o Det[l = cBnrin—AxaIw G (3]

Kd eﬁksi/Q&d e—isnx—ndxz/QﬁA
0 =\ 2253 Detll — 7 () /Rdx Detll = (@@ — DrnCr ()L =GB 1]

Here the product property of the Fredholm determinant was used in the last equality.

We set (s,7r) = (Sx,75) which is the unique solution of

r = oxp (B — BAs /)

(2.5)
s =Tr[rGu(B)(1 —rGy(3))7'].
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Note that r, < 1 which enables the choice of r < 1 for s = s,; in (2.2).
Let us express the generating functional for N, s, (1.9) as

| eI ) = (8. /Zu(810)
M(R4)

where -

Z(Bop) = Y P2y o (@G ()]
and "
(2.6) Gu(B)(f) i= Gu(B)? expl—r~f (- /R)]G(8)?

with the function f € Co(R?), f > 0. We suppress the f-dependence from G.(8)(f)
below for simplicity. Then, as for éﬁ(ﬁ L), we get

o BN /2
B =1\ 5.5% Det[l — 7.G(8)]

—iEHx—&dx2/2ﬁ)\

[1]:

(2.7)

x /Rdx Det[1 — (e — 1)7,Gr(B)(1 — 7.Gr(B)) Y]

where (S, 7, ) is the unique solution of

F = exp (B — BAG/)

(2.8) 3 . . .
§=Tr[FGL(B)(1 —TGx(B)) "]

Obviously, 7. € (0, ||G.(8)||~1). Note also that 7, and 7, satisfy the following condi-
tions respectively:

(2.9) %Tﬁr [reGe(B)(1 = 1.Gr(8) 7] = %,
(2.10) T G ()1 — uGia(9)) ] = 2

By (2.6), it follows that G.(8) < Gx(8) and the operator G(f) also belongs to
the trace-class €1($). We put the eigenvalues of G () in the decreasing order
3" =IGx(B)| = 317 > -

Then, we have gj(.”) > §J(.”) (j =0,1,2,--+) by the min-max principle.

§2.2. Approximations of One-Particle Gibbs Semigroups

In this subsection, we consider the limit of the Fredholm determinants to calculate
Z.(3,11)/Zx (B, 1). Recall that the denominator Z, (8, ) is the same with that in the
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previous paper [15]. The numerator Z, (6, ) is different from that in [15], since the
definition of G () has been modified. (2.6) Let P, be the orthogonal projection from
$ to its one-dimensional subspace spanned by the vector 2. We put Q. = I — P and

(@) =1— e @/ f () = nd(l _ e—n‘df(x)>‘
Obviously, ) (kz) = k= f(x) and 0 < fi(z) T f(z) hold.

Lemma 2.2.  Suppose that the sequence {7, } C (0,1) converges to 7 € (0, 1].
(i) If 7 < 1,

(2.11) lim Det[1 + v/ f7xG(B)(1 = 7Gu(B)) "V f#)]

= o [ 7f(z) dpda:]
N S e Y @2m)dl’

holds.

(is) If 7 =1,

(212) lim Det[L+ V7 QuGr(8) Q1 = FuQuGul() Q) VT
_ f(x) dp dx
= exp |:/]Rd><]Rd eﬁ(p2+332)/2 1 (27T)di|'

holds.

Proof : (i) From the Mehler’s formula (1.5) and the semi-group property G (5)" =
G (np), it follows that

e—ﬁ_la}z tanh(8n/2k)

'f:TI‘ [G&(ﬁ)nf(m)] = ,,:,:l /]Rd [7‘(’/{(1 . e—2ﬁn/ﬁ)]d/2f

) (2) da

e—nx2 tanh(Bn/2k)

(2.13) = /R [rk(1 — e 28n/)]d/2 fr(z) dx

n e‘ﬁnw2/2
- /]Rd Wf(x)dx as K — 00,

where we have changed the integral variable x to kx at the second equality. Thanks to

(I. A1), we have
1

<
mr(l — e—26n/r) = “

for kK > 1. Since

To :=supry < 1,
k=1
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we obtain

TGO < Py [ fo)da

from the expression in (2.13). Note that the right hand-side of the above inequality is
independent of x and summable with respect to n. Hence by the dominated convergence

theorem, we get

lim Tr[F.G.(B)(1 — #.Gu(8))” 1f(ﬂ)]

R—0Q

—nBxz? /2

= m ZrnTr (G = Z An/ ngnyare! (@) dx

_ / Pe= BTN /2 £ (1) dp da
N RixRd 1 — re—B(p*+z?)/2 (27T)d'
On the other hand, we get

IVF®Gr(B)(1 = G (8)) TV F O[3
<Tr[feGu(B)(1 = 7:Gr(8))” 1f(f-c)]||f(n)H
A Ga(B) (1 = G (8) | = Oy Lo _To_

kT 11—

where || - || gs stands for the Hilbert-Schmidt norm. Hence by the formula Det[1+A] =
e™ ADety[1 + A] and the continuity of the regularized determinant Dety[1 4+ A] with
respect to the Hilbert-Schmidt norm ||A| s followed by the cyclicity of the Fredholm

determinant, we get (2.11).

(i) For n < K/, we have

1 3
< ;
k(1 — e=2Pn/K) = 27fn

thanks to (I.A1). Using the elementary bound

2 _ 2
e HT tanh(Bn/2k) <e ca2fBnx ,

we obtain
3d/26—czﬁna}2

AT (G (k) </ Q- & d
TGO < [ T e de
as in (i), where ¢ = (e — 1)/(e + 1). Note that the right-hand side of the above

inequality is independent of x and summable with respect to n. Hence by the dominated

convergence theorem, we get

[15/5] o~ pna? /2

Rh_)rréo Z T [GT(B f(n)] - Z/ ) d/2

(x)dx
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e PP +2)/2 ¢ (1) dp da
- /Rded 1— e PP +a)/2 (21)d’

as above. Here [y] denotes the largest integer which does not exceed y. We need the
formula including Q.G (5)Q instead of G, (). The difference behaves like

[x/B] —2?/k
pn n( gy (%) ol ¢ (r) _ 1—d
;rn(ﬂn,Gn(ﬁ)f ) <5 | ! @ de = 0,

as k — o0. Thus, one gets

/6] Bty
im » 7 e f(x) dpdx
lim TZTr C‘?RC;”i 5 Qn 'I’Lf(li) _ / - '
Koo £ [( (B3)Qx) ] Rixpd 1 — e BP*+2)/2 (27)d

For n > k/[3, we have

Pl [(QxGr (ﬁ)Q&)nf(ﬁ)]

—1 2 2
e~ R T tanh(nB/2k) e~ /K
—pn _ ()
T /Rd [[71%(1 — e—26n/r)]d/2 (Wﬁ)d/Q}f (x) du
B/ —nN, K K
< e [ @) da,
where we used (I, 2.13). Thus we get
o
> ATr(QuGr(A)Q0)" "]
n=[r/B1+1
B 1 1-d/2
S ARl Bz O(x ),

for large k. Now, the equality (2.12) follows from a similar argument as in (i). Note
that [ QxGr(B)Qu(1 = QuGr(B)Qw) Il = 0" /(1 = 9")) = O(r). 0
§2.3. Estimates for the Scaled Mean-Field Interaction

In the followings, we use the notation B, = O(/@a), which means that there exist

two numbers ¢; = ¢o > 0 such that
1k = B, > cor®.
We put W, := (G.(3))?\/f) and define D,, := G..(8) — G(B) = W, W},

Lemma 2.3.  For large k > 0, the following asymptotics hold:

f(0) +o(1)

(R, D) = ||W;:Qm||§ = 1od )
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1711327 Flloo
il < M0y < e
_ B /2
and
f(0) +0(1)

957 = 30" = (U, DaQe)(1+ O %) = ==

Proof: The first equality is a straightforward consequence of (1.4). The estimate
for ||[Wy|| and || Dy|| come from the above definitions and ||G,(5)|| = 1. The next limit
is the n =1 case of (2.13).

Now by the min-maz principle, for d > 2 and k large enough, we obtain the
following estimates from the value g( *) = exp(—f/kK):

(2.15) géﬁ) =1z g((JK) > (Qmém(ﬁ)gﬁ) =1—(Q, Dul2)
f(0) +o(1)

Kkd

It follows from 0 < G (B) < G, (0) that 0 < Q.G (8)Q. < QG (B)Qx and therefore

Spec Q.G (B)Qs C [0,e77/%]

=1- >g§'€):e_ﬁ/'§>§§m).

hold. Then, we get
135" — QuGr(BQx) M| = O(r)

and
W, Qulds” — QuGlr(B)Qu] ™ QuWicl = O(s' ).
As in (1.2.18), we get the equality
(216) g8 =357 = (Wi, (1= WiQu[3S"” — QuGu(B)Qu] T QuWi) Wi 0),
which yields g( ~) §(”) = (Qu, D) (1 + O(k1 ). O

§2.4. Evidence of Two Thermodynamic Regimes

Now we return to the conditions (2.9). We recall here the behavior of .. Following

proposition is the same with Proposition 1.2.4.

Proposition 2.4. (a) {r.} converges to r. € (0,1) as kK — oo, where r, is the
unique solution of

po logre 1 rydp log 7, / Ty dpdx
210 " /[O,OO)d et —r BA gy SN2 = (2m)

AN B pd
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if and only if p < pe.
(b) k41 — 1) — N (1t — pe), and hence lim, o0 7 = 1, if and only if > fic.
(c) limyg oo 7 = 1 and k%1 — r.) — +oo , if and only if p = pu.

8§3. Proof of Theorem 1.1

§3.1. The case u < . (normal phase).

Since it is enough to prove the convergence of the generating functionals (1.9), we
evaluate Z,(3, 1) and Z.(3, ). For the denominator Z (83, it), we refer the result of

the preceding paper [15].

Lemma 3.1.
end(ﬁp—logrn)2/25>\(1 +O(Féd—3a))
V1+ BAEITr oGy (B) (1 — 1. Gr(8)) ~2]Det(1 — 1. Gk (3))

Ex(B, 1) =

The corresponding expression for éﬁ(ﬁ, w) is the following:

Lemma 3.2.

end(ﬁp—log 7r)?2 /28X (1 + O(,id—i%oz))

[1]2

K(ﬁvu) =

1+ BA 9T (7 Gra(B) (1 — 7 Gon(8)) 2] Det(1 = 7 Gir(8))

Recall that G, (8) in this paper and the previous paper [15] are different; (2.6) and
(I.2.5). Thereby, we need to prove the lemma. However, it may be proved in the same
way as Lemma [.3.2, since we have the following lemma which is similar to Lemma 1.3.3.

Lemma 3.3.  For large k one gets:
(4) Fro = T,
(i7) Fr— 1w =O0(k™9),
@ [l =0 s i”iéf()g)] =06,
@[] G f?ﬁé(ﬁ)w} -ow
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Proof : Except for obvious changes, the proof for Lemma 1.3.3 also works here

Now, let us consider the limit of the ratio Z,(3, i) /2 (3, 1) to derive (1.9). From

Lemma 3.1 and Lemma 3.2, we have

. vh+@m%ﬂmﬁdmu—mamm41

14+ ﬁ)\lﬁ:_dTI' [fnéﬁ(ﬁ)(l - fﬁGﬁ(ﬁ))_Q]

Det[l — 'fchK(ﬁ)] Det[l - TKGK(ﬁ)] emd(QBA)_l[(ﬁu—log 7r)2 —(Bu—log rﬁ)z].

X = =
Det[1 — 7,G o (3)] Det[l — 7 Gu(B)]
Lemma 3.3 yields that the first factor is equal to 1+ O(

x~%). For the second factor, we

get ~
Det[1 — 7.G«(B)] = Det[1 + 7 (G (B) — Gw(8)(1 — 7. G (8)) Y]

Det[l —7.G (ﬁ)]
T« f(2) dp dx }

_ NI \/ ()
= Det[1 + /f(®) 1 — G fW] = exp [/(Rd)2 eBW+22)/2 _ . (27)d

from Proposition 2.4(a) and Lemma 2.2(i). For the third factor, we have
Det[l - f,iG (ﬁ)] . f.‘i — Tk TﬁGn(ﬁ)
bl e~ Pl T T e )

= exp (— T”T_ Temy [1 — T,QG(f()ﬁ)} +0(1)) = exp (— T”;T” ﬁ)\(ﬁ,u logrﬁ)+0(1)>,

3.

3(ii) and (2.9). Note that

where we have used Lemma

<G () = O(/ﬁ}d).

ermven ] I Feeeven ) Rl berrex

It also follows from Lemma 3.3 that the fourth factor is equal to
d ~ ~ s
— T T —Tw K
= exp |- —log 7,,)+O ]
ol )] ey [ g 00
O

Because of Remark 1.2, Theorem 1.1(i) follows.

(268pu—logr.7y) log (l—l—

§3.2.  The case p > pu.(8) (condensed phase).

For ")
Trg; ,
pgli) _1 ! (k) (]:0717)7
_Tﬁg

we have gotten

(fi) _ _
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(3.1) P = Z (k)2 _

in the previous paper [15]. (From these facts, the following lemma has been proven
there.

Lemma 3.4.  For large k, the asymptotics

27BN 5d—1e'€d(ﬁu—10g re)2 /28X
e2kd (B — ((d)N\)Det(1 — 7.G(B))

(3.2) Ex(Bp) = (1+0(1))

holds.

For p( Q- F,if];”)/( r,.;gj(m)) (j = 0,1,---), we get similar estimates on p,,
which will be used to obtain the asymptotics for éﬁ(ﬁ, I).

Lemma 3.5.

_ ~(I'i) ﬁd)\(]. + 0( )) ~ —d
1 -7y = L= 7s| =0,
G = i —c@ny =06
= 0Uh, = 0w, S = O0eh, 3p07 = 0l
j=1 J=1

Proof :  Proposition 2.4(b) , Lemma 3.3(i), Lemma 2.3 and 7, < g(() w)=

below (2.8)) yield

' (see just

(3.3) 1-0(k N =r, <F < g =140k,
which implies |1 — 7| = O(k~9). In the variational formula

5 aup G CuB) _ L [(6.Gul0)0) — (6, D)
oyla () pLe (¥, ) ’

we can use a linear combination of two excited states of the one particle Hamiltonian h,
as a trial function ¢ which perpendicular to Q. Here Q is the eigenfunction corresponding
to the largest eigenvalue Q(() ) of Gy (). Then we get g( RS O(k™1). Together with
Qz(l'i) §"’°) =1-0(1), §§'€) 1 — O(k™1) follows. Thus O(k) = ]55’6) é@ >
holds.

Now we get

|Z~“> S - ~<*”°>>|—|1—fr,,b|zg§*‘>/ — 7y (1 = 3\))
j=1
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Z (fi)

~(ﬁ))

which implies
o
Z ~(’i) (1+O 1— d Zgg(ﬁ)/ g‘g"i))
j=1
On the other hand, because
oo ~(K) 0o (%) 00 (k) _ ~(F»)
J; 9; 9; Tr D, )
|Z Ly gl €Y e < = O(6),
S1-g7 Hl-g” H0-a-a") -
we have () ()
9 9 2
Z ~(/¢) Z 1 (K) (k")
=1
e—ﬁlpl ¢(d)
= ——d 1) = =2~ 1
/[Ooo)l—e—ﬁlpll p+o(l) B3¢ +o(1)
Thus we have s dzj 1D ~§K) = 379 (d) + o(1). This yields the fifth equality. Using
(2.10), we get
~ ~(K) ~ [ee)
Fedo logr, p 1 ) _ K C(d) = fic
_ ot L i S gy S B ey oy s 0,
k(1 — f,ﬁ]g”)) BA A ke j; J A B A
which yields the first and the third equality.
To prove the remaining last bound, it is enough to show that
(3.4) i <ol (j=1,2,)
hold for large enough &, because of ¢ i—1 pgm) 2 = O(k%). In fact, in the expression
ﬁ(”) _ T”g§ v 1+ (,Fli - Tﬁ)/r.‘i
Tl - (- r)d" (=gl
(Fa=ri) /1 = O(™%) and [(Fe—r)3y"™ /(1=rwgy™)| < (Fa=ri)/(1=rsgi”) = O(x' =)
") < g]( ") we also have r,.;gj(. )/( —r g](”)) < pg. ). Thus we get (3.4).

hold. Because of g,
OJ
It is obvious now that the next Lemma can be derived along the same line of

reasoning as the proof of Lemma 3.4

For large K, the asymptotics
d—1 k% (Bu—log 7. )% /26X
e
? (1+o(1)

Lemma 3.6.
2B
e2kd (Bdy — ¢(d)N\)Det(1 — 7.Gr(B))

é&(ﬁ, N) =

(3.5)

holds.
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In order to calculate the limit of Z,.(83, 1) /Zx(3, it), we use the following lemma,

where we put

gé"i) = (Qna GK/(B)QK,) + fﬁ(ﬂna ém(ﬁ)Qﬁ(l - f&QKéK(ﬁ)QK)_lQKéK(ﬁ)QK)'

Lemma 3.7.  For large Kk,

i)  Fu—re= (1 g5+ o0(1) = (£(0) +o(1))r 7,
(i) L= 7wdh” = (1= 7™ )1+ 0(1)

hold.

Proof: From Lemma 3.5 and Proposition 2.4(b), we have r,.cg( “ o, = o(k~%).

Hence, (i) follows from 7, — 7, = 7, (1 — g('i)) —l—?“,.cg( ) T = 1+0(k~%) and Lemma
2.3.
By virtue of (2.16), we get

g(()%) A(ﬁ)

= (W, WEQu(3S) = QuGr(B)Qr) ™" = (7t — QuGr(8)Qr) M Qu W W/ ).

From
1357 = QuGr(B)Qr) ™t — (7 — QuGr(D)Qw) !
= 135 = QuGr(B)Qn) (7t — 3N — QuGr(B)Qw) Y|
1 — 7 g5
<
(1 — g™ (@ — gt™)
and

(Wi, WEQEW W Q) < 1Dyl (2, D) = O(572),
it follows that
(3.6) 367 = 367 < (1 =Fegp?)O(r> ).
Therefore, we obtain the asymptotics (ii):
L=y = 1= nie” + (35" —057) = (L7 )(1+0(1). O

Now, taking into account (3.2) and (3.5), we can find the asymptotics of the gen-
erating functional (1.6):

Z.(5.0) .
=6~ (¢

d

Det[l — 7.Q.Gr(8)Qx]
Det[l — fnéli (ﬁ)]

[I] [I]l

20 — log 7 74) log Ti)
TKJ



BosoN GAs MEAN FIELD MODEL IN MESOSCOPIC SCALE 179

% Det[l — fKQKGn(ﬁ)QK] Det[l - TKQKGK(B)QK]

0 Detl] — 72QuGn(3)Qs]) Detl] ~ xQuCulA)Q
Det[l — r,G(0)]
8 Det[l - TRQIQGFJ(ﬁ)QR] (1 + 0(1))
For the exponent of the first factor, we get
d d
38) 3200 = logra)log 2= = 51— )1+ o(1) =~ L0 (1 4 o)

from Lemma 3.7(i). For the second factor, we use the Feshbach formula, which claims

DetA = DetBDet(C — K¥'B7'K),

A B -K\ 1 0\ (B 0 1-B K
\-KT ¢ )] \-KTp'1J\oCc-KTB'kK/\0o 1 '

This formula and Lemma 3.7(ii) yield

(9Q.] _
()

where

Det[l — 7, Qx
Det[1 — 7

G
G
1

1 - 7:rc(Qm ém(ﬁ)Qm) - (Qm fﬁéﬁ(ﬁ)QK(l - fﬁQl’iéﬁ(B)QK)_lQﬁfﬁéﬁ(ﬁ)QK)
= 1/(1=7x5”) = (L4 0o(1)/(1 = 7™,

Since

Det[1 — .G (B)]
Det[l — 7.QxGx(8)Qx]
then Proposition 2.4(b) and Lemma 3.5 yield

:1_Tm7

(the 2nd factor) x (the fifth factor) — 1

in the limit K — oo.
Now, (2.12) gives the limit:

Det[1 — 7 QGu()@u] _ 1
Det[l — 7 QuGr(B)Qx]  Det[l + 7 Qu(Gr(B) — Gr(B))Qn(1 — TxQuGr(8)Qr) ]

= Det[1l + \/f(m)fKQKGK(ﬁ)QK(l _ anﬁGﬁ(ﬁ)QK)_l /f(,.;)]—l

f(x) dp dx
P [_ (R4)2 eﬁ(p2+x2)/2 -1 (27T)d ]

for the third factor in (3.7). Here, we have used the cyclicity of the Fredholm determi-

nant.
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Lemma 3.7(i), (3.1), (2.9), Proposition 2.4(b) and Lemma 2.3 yield

Det[l — 7,QxGw(3)Qx]
Det[l — 7.QxGw(3)Qx]

1
Det[l — (7:;-; - Tn)Q&G&(ﬁ)Qn(l - TnQnGn(ﬁ)Q&)_l]
fli — Tk T&Q&G&(B)Qn
Tk r 1- TRQF&GF&(ﬁ)QR * 0(1)>

= exp ((1 ) [ndﬂu _ﬁl)\ogm -7 iﬂr,@] + 0(1))

= exp{(1 — 35" )r%C(d)(1 + 0(1))/8%} = exp{ B~ (0)¢(d) + o(1)}.

Thus by (3.8), we get

(the 1st factor) x (the 4th factor)

B — ¢(d)A — fle
e (= LA ) = e (= B e p(0)).
GBI A
Now Theorem 1.1(ii) is derived by collecting the asymptotics of factors that we find
above. O
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