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Survivable Network Design Problems

with Weighted Degree Constraints

By

Takuro FUKUNAGA * and Hiroshi NAGAMOCHI**

Abstract

In this paper, we discuss a network design problem with degree constraints, which has been

extensively studied so far. A successful approach for this problem is the iterative rounding. In

this paper, we see that the iterative rounding can be applied to more general problem obtained

by replacing degree constraints with weighted degree constraints. We also briefly review several

previous works to the network design problem with degree constraints.

§1. Introduction

Let G=(V, E) be an undirected graph with an edge cost c : E\rightarrow \mathbb{Q}+ ,
where

\mathbb{Q}+\mathrm{i}\mathrm{s} the set of non‐negative rational numbers. It is a fundamental problem to find a

minimum cost subset F of E that satisfies some connectivity requirement. In fact, there

are many studies on this topic from the view point of algorithms so far [11, 13]. In this

paper, we consider problems that demand a solution F to satisfy both connectivity and

degree constraints.

For stating our problems formally, let us define several notations related to connec‐

tivity of graphs. For a subset U of V and a subset F of E,  $\delta$(U;F) denotes the set of

edges in F which join vertices in U with those in V-U ,
and F(U) denotes the set of

edges in F whose both end vertices are in U . We sometimes represent a singleton \{v\}
by v . The degree | $\delta$(v, F)| of a vertex v in the graph (V, F) is denoted by d(v;F) . Let

Received October 17, 2008. Revised July 3, 2009.

2000 Mathematics Subject Classification(s): 05\mathrm{C}85, 90\mathrm{C}27

Key Words: degree constraint, edge connectivity, iterative rounding, network design
This work was partially supported by Grant‐in‐Aid for Scientific Research from the Ministry of

Education, Culture, Sports, Science and Technology of Japan.
* Graduate School of Informatics, Kyoto University, Kyoto 606‐8501, Japan.

\mathrm{E}‐mail: takuro@amp. i.kyoto‐u. ac. jp
** Graduate School of Informatics, Kyoto University, Kyoto 606‐8501, Japan.

\mathrm{E}‐mail: nag@amp. i.kyoto‐u. ac. jp

© 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



50 TAKURO FUKUNAGA AND HIROSHI NAGAMOCHI

\mathbb{N} be the set of natural numbers. For a given set function f : 2^{V}\rightarrow \mathbb{N} on V ,
a graph

G^{\ovalbox{\tt\small REJECT}}=(V, F) is called f ‐connected when | $\delta$(U;F)|\geq f(U) holds for every non‐empty

U\subset V . If f(X)+f(Y)\leq f(X\cap Y)+f(X\cup Y) or f(X)+f(Y)\leq f(X-Y)+f(Y-X)
holds for any X, Y\subseteq V ,

then f is called skew supermodular. With a skew supermod‐
ular set function, f‐connectivity represents a wide variety of connectivity of graphs.
Let  $\lambda$(u, v;G) denote the edge‐connectivity between vertices u and v in a graph G ,

and

define f(U) as \displaystyle \max\{r(u, v) u\in U, v\in V-U\} for non‐empty U\subset V from some

r : V\times V\rightarrow \mathbb{N}. Then  $\lambda$(u, v;G)\geq r(u, v) holds for each u, v\in V if and only if G is

f‐connected.

Now we formulate a problem.

Degree Bounded Survivable Network Problem (DBouNDEDNETwoRK): An in‐

put consists of an undirected graph G=(V, E) ,
an edge‐cost c : E\rightarrow \mathbb{Q}+ ,

a skew

supermodular set function f : 2^{V}\rightarrow \mathbb{N} , and a degree‐bound  b:V\rightarrow \mathbb{Q}+\cdot A solution

 F\subseteq E is feasible if G^{\ovalbox{\tt\small REJECT}}=(V, F) is f‐connected and degree constraint d(v;F)\leq b(v) is

satisfied for each v\in V . The objective is to find a feasible solution that minimizes its

cost \displaystyle \sum_{e\in F}c(e) .

If f(X)=1 for all non‐empty X\subset V ,
then minimal feasible solutions of the

problem are trees. We call instances with such f degree bounded spanning tree problem

(DBOUNDEDTREE).

Feasible solutions of DBouNDEDTREE are Hamiltonian paths when b(v)=2 for all

v\in V . This means that it is NP‐hard to test whether an instance of DBouNDEDTREE

(and hence DBouNDEDNETwoRK) is feasible or not. One way to avoid this difficulty is

to restrict instances. Fukunaga and Nagamochi [7] considered the metric case of problem
DBOUNDEDNETWORK. That is to say, they assume that the graph G is complete, c

satisfies triangle inequalities, and each edge can be chosen more than once as multiple

edges. Another way is to consider bi‐criteria approximation algorithms by relaxing the

degree constraints. Lau et al. [18] proposed an algorithm that outputs a network of cost

at most twice the optimal while the degree of v\in V is at most 2b(v)+3 . This result

was improved in Lau and Singh [19]. These results are based on the iterative rounding
of an LP relaxation.

This paper has two aims. One is to briefly review previous approaches for problem
DBOUNDEDNETWORK. The other is to show that the approach of Lau and Singh [19]
can be applied to more general setting.

Define a weight function w : E\times V\rightarrow \mathbb{Q}+\mathrm{o}\mathrm{n} pairs of edges and their end vertices.

We define the weighted degree of a vertex v\in V in G as \displaystyle \sum_{e\in $\delta$(v;E)}w(e, v) ,
and denote

it by d_{w}(v;E) . The weighted degree of G is defined as \displaystyle \max_{v\in V}d_{w}(v;E) . The weighted

degree of a vertex measures load on the vertex in applications. For constructing a
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network with balanced load, it is important to consider weighted degree of networks.

Take a communication network for example, and suppose that w(e, v) represents the

load (e.g., communication traffic, communication charge) for the communication device

on a node v to use a link e incident with v . Then the weighted degree of v indicates the

total load of v for using the network. In this paper, we consider constraints on weighted

degrees of vertices instead of degree constraints.

We also introduces two types of edges. This is useful for modeling various ways

to allocating loads. For an edge e=uv of the first type, weights of e on u and v are

given as an input. For an edge e=uv of the second type, the sum of weights of e on

u and v is given, and we can decide how much is allocated to the end vertices u and v.

In the example of a communication network, the first type models the situation where

the administrator decides the charge for each user to use the link, and the second type

models the situation where the users can decide by theirselves how much charge they

pay.

Weighted Degree Bounded Survivable Network Problem (WDBOUNDEDNET‐
WORK): Let G=(V, E) be an undirected graph where E is the union of disjoint sets E_{1}

and E_{2} . For those edge sets, weights w_{1}:E_{1}\times V\rightarrow \mathbb{Q}+ and  $\mu$ :  E_{2}\rightarrow \mathbb{Q}+ are respec‐

tively defined. An input consists of the graph G=(V, E=E_{1}\cup E_{2}) with the weights w_{1}

and  $\mu$ ,
an edge‐cost  c:E\rightarrow \mathbb{Q} ( \mathbb{Q} is the set of rational numbers), a skew supermodular

set function f : 2^{V}\rightarrow \mathbb{N} , and a degree‐bound  b:V\rightarrow \mathbb{Q}+\cdot A solution consists of  F\subseteq E,

weights w_{2}(e, u)\in \mathbb{Q}+ and w_{2}(e, v)\in \mathbb{Q}+ for each e=uv\in F_{2} ,
where F_{i} denotes F\cap E_{i}.

We call w_{2} allocation of  $\mu$ when  w_{2}(e, u)+w_{2}(e, v)= $\mu$(e) for e=uv\in F_{2} . Throughout
this paper, we let w : F\times V\rightarrow \mathbb{Q}+ refer to the function that returns w_{i}(e, v) for e\in F_{i}
and v\in V . The solution is defined to be feasible if G^{\ovalbox{\tt\small REJECT}}=(V, F) is f‐connected, w_{2} is an

allocation of  $\mu$ ,
and degree constraint  d_{w}(v;F)\leq b(v) is satisfied for each v\in V . The

goal of this problem is to find a feasible solution that minimizes its cost \displaystyle \sum_{e\in F}c(e) .

Similarly for the previous problems, we call the instances where f(X)=1 for non‐

empty X\subset V weighted degree bounded spanning tree problem (WDBOUNDEDTREE).
It is sometimes more useful to minimize the maximum weighted degree of networks.

Hence we also consider a variation of the problem.

Minimum Weighted Degree Survivable Network Problem (MINIMUMWDNET‐
WORK): An input consists of an undirected graph G=(V, E=E_{1}\cup E_{2}) with weights
w_{1} : E_{1}\times V\rightarrow \mathbb{Q}+ and  $\mu$ :  E_{2}\rightarrow \mathbb{Q}+ ,

and a skew supermodular set function f : 2^{V}\rightarrow \mathbb{N}

are given. A feasible solution consists of an f‐connected subgraph (V, F) of G and an

allocation w_{2} :  E_{2}\times V\rightarrow \mathbb{Q}+\mathrm{o}\mathrm{f} $\mu$ . The objective is to minimize the maximum weighted
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degree \displaystyle \max_{v\in V}d_{w}(v;F) .

Again, we call the instances where f(X)=1 for non‐empty X\subset V minimum

weighted degree spanning tree problem (MINIMUMWDTREE).
For an instance of WDBouNDEDNETwoRK and some  $\alpha$,  $\beta$\geq 1 ,

we call a solution

consisting of F\subseteq E and an allocation w_{2} of  $\mu$ by ( $\alpha$,  $\beta$) ‐approximate solution if it

satisfies

\displaystyle \ovalbox{\tt\small REJECT}\sum_{e\in F}c(e)\leq $\alpha$\min{ \displaystyle \sum_{e\in F}, c(e)|F^{\ovalbox{\tt\small REJECT}}\subseteq E is in a feasible solution},

\ovalbox{\tt\small REJECT} d_{w}(v;F)\leq $\beta$ b(v) for all v\in V.

So far, there are a few works on the network design problem with weighted degree
constraints. All of these correspond to the case with  E_{2}=\emptyset and  w_{1}(e, u)=w_{1}(e, v) for

e=uv\in E_{1} . Ravi [22] presented an (O(\log|V|), O(\log|V|)) ‐approximation algorithm to

problem WDBOUNDEDTREE. Ghodsi et al. [9] presented a 4.5‐approximation algorithm
to the metric case of MINIMuMWDTREE while they also showed that it is NP‐hard to

approximate it within a factor less than 2. Nutov [21] considered a similar problem
for digraphs. For problems WDBouNDEDTREE and WDBOUNDEDNETWORK, we have

proposed algorithms which achieve approximation ratios (1, 4+3 $\theta$) and (2, 7+5 $\theta$)
respectively where  $\theta$ is defined as \{b(u)/b(v), b(v)/b(u)| uv \in E_{2}\} if  E_{2}\neq\emptyset and  0

otherwise. For problems MINIMuMWDTREE and MINIMUMWDNETWORK, we have

proposed algorithms which achieve approximation ratios  7+ $\epsilon$ and  12+ $\epsilon$ in polynomial
time of \log(1/ $\epsilon$) and input size for an arbitrary  $\epsilon$>0 . If  E_{2}=\emptyset ,

we can remove  $\epsilon$ from

the ratios while the algorithms run in polynomial time of only input size.

The rest of this paper is organized as follows. In Section 2, we briefly review the

previous approaches to problem DBOUNDEDNETWORK. Section 3 gives our algorithms
to problems WDBouNDEDNETwoRK and MINIMUMWDNETWORK.

§2. Previous Works for DBouNDEDNETwoRK

In this section, we briefly review how to solve problem DBOUNDEDNETWORK.

As stated in Section 1, it is hard to test the feasibility of instances in this problem.

Fukunaga and Nagamochi [7] considered the metric case with the following assump‐

tions: The given graph  G is complete and each edge can be picked more than once as

multiple edges; The cost function c satisfies the triangle inequality; f(X) is defined as

\displaystyle \max\{r(u, v)|u\in X, v\in V-X\} from some r : V\times V\rightarrow \mathbb{N} such that r(u, v)\geq 2 for

all u, v\in V . With this assumption, it is easy to characterize instances having feasible

solutions. Note that even with this assumption, the problem generalizes metric TSP.

Their algorithm is strongly based on a graph operation called splitting. Let e

denote an edge joining vertices u and s
,

and e
� denote an edge joining vertices v and
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s . Splitting the pair \{e, e^{\ovalbox{\tt\small REJECT}}\} of the edges incident to s denotes the operation replacing
those edges by a new edge joining u and v . This operation decreases the degree of s

by 2 while it preserves the degrees of the other vertices. Although it may decrease the

edge‐connectivity of the graph, several results [1, 6, 14, 20] present conditions for the

existence of pairs of edges such that the graph obtained by splitting them satisfies some

edge‐connectivity requirements. One of the results is the essential part of the algorithm
due to Fukunaga and Nagamochi [7].

Theorem 2.1 ([7]). Let G=(V, E) be an undirected connected graph, and s\in V

be a vertex such that d(s;G)\neq 3 and no cut‐edge is incident to s . Then there exists

at least one pair \{e=us, e^{\ovalbox{\tt\small REJECT}}=vs\} of edges such that the graph G � obtained from G by

splitting \{e, e^{\ovalbox{\tt\small REJECT}}\} satisfies  $\lambda$(x, y;G^{\ovalbox{\tt\small REJECT}})= $\lambda$(x, y;G) for all x, y\in V-\{s\} and  $\lambda$(x, s;G^{\ovalbox{\tt\small REJECT}})=
\displaystyle \min\{ $\lambda$(x, s;G), d(s;G^{\ovalbox{\tt\small REJECT}})\} for all x\in V-\{s\}.

Let us describe outline of the algorithm. At first, the algorithm constructs an f‐
connected graph whose cost is at most 2+1/\displaystyle \min\{r(u, v)|u, v\in V\} times the optimal.
Then it transforms the graph into a feasible solution by using Theorem 2.1. Since

the splitting does not increase the cost by the triangle inequality, this finally gives a

(2+1/\displaystyle \min\{r(u, v)|u, v\in V\}) ‐approximate solution. We note that this is the same

approach with the classic approximation algorithms to metric TSP [5].
Another approach for problem DBouNDEDNETwoRK is to relax the degree con‐

straint and consider bi‐criteria algorithms. By this approach, problem DBouNDEDTREE

has been studied extensively in the last two decades [3, 4, 16, 17, 23, 24]. In particular,
Goemans [10] gave an algorithm to compute a spanning tree of the minimum cost al‐

though it violates degree upper‐bounds by at most two. The algorithm obtains such a

spanning tree by rounding a basic optimal solution of an LP relaxation with the matroid

intersection algorithm. Afterwards this was improved by Singh and Lau [25] using more

sophisticated rounding algorithm. It computes a spanning tree of minimum cost which

violates degree upper‐bounds by at most one. We remark that the algorithm extends

the iterative rounding due to Jain [13], who applied it for designing a 2‐approximation

algorithm to the generalized Steiner network problem.
For problem DBOUNDEDNETWORK, a bi‐criteria algorithm is given by Lau et al. [18].

Their algorithm outputs a network of cost at most twice the optimal and the degree
of v\in V is at most 2b(v)+3 . This is achieved by rounding an optimal basic solution

x^{*}\in \mathbb{Q}_{+}^{E} for a linear program:

mlnimlze c^{T}x

subject to x( $\delta$(U;E))\geq f(U) for each non‐empty U\subset V,

x( $\delta$(v;E))\leq b(v) for each v\subset A,

x\in \mathbb{Q}_{+}^{E},
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where x(F) denotes \displaystyle \sum_{e\in F}x(e) for F\subseteq E . Here A\subseteq V is defined as a set of vertices

whose degrees are bounded. This is introduced for the rounding algorithm to work in

an inductive manner.

Let x^{*} be an optimal basic solution for the linear program, and E_{x}*\mathrm{b}\mathrm{e}\{e\in E|
x^{*}(e)>0\} . Lau et al. [18] observed that x^{*} satisfies at least one of the following
conditions for any c :

\ovalbox{\tt\small REJECT} There exists an edge e\in E_{x}* such that x^{*}(e)\geq 1/2 ;

\ovalbox{\tt\small REJECT} There exists a vertex v\in A such that | $\delta$(v;E_{x}*)|\leq 4.

This property enables the algorithm to round x^{*} into a good solution although we omit

the detail.

The result due to Lau et al. [18] was improved by Lau and Singh [19] for some special
cases. For example, if f(U) is defined from a demand r : V\times V\rightarrow \mathbb{N} as \displaystyle \max\{r(u, v)|u\in
 U, v\in V-U\} for U\subseteq V (i.e., feasible solutions are Steiner networks), then the degree
of a vertex v\in V in a solution is guaranteed to be at most b(v)+3+6\displaystyle \max_{u,v\in V}r(u, v) .

Furthermore, if r(u, v)\in\{0 ,
1 \} for every u, v\in V (i.e., feasible solutions are Steiner

forests), then the degree is at most b(v)+3.
Inspired by these results, the iterative rounding has been applied to many opti‐

mization problems with degree bounds. Bansal et al. [2] applied the iterative rounding
for the degree bounded arborescence problem and degree bounded survivable network

problem with intersecting supermodular connectivity. Kiraly et al. [15] generalized de‐

gree bounded spanning trees to degree bounded matroid bases. Kiraly et al. [15] also

considered degree bounded submodular flow problem.

§3. Survivable Network with Weighted Degree Constraints

The section describes a bi‐criteria approximation algorithm for problem WD‐

BOUNDEDNETWORK. We let I stand for the set of an undirected graph G=(V, E)
with E=E_{1}\cup E_{2} , weights w_{1}:E_{1}\times V\rightarrow \mathbb{Q}+ and  $\mu$ :  E_{2}\rightarrow \mathbb{Q}+ ,

a skew supermodular
set function f : 2^{V}\rightarrow \mathbb{N} , a subset A of V ,

and  b:A\rightarrow \mathbb{Q}+\cdot We denote by \mathrm{P}_{\mathrm{N}}(I) the

polytope that consists of vectors x\in \mathbb{Q}^{E} and y\in \mathbb{Q}^{E_{2}\times V} that satisfy

(3.1) 0\leq x(e)\leq 1 for all e\in E,

(3.2) 0\leq y(e, u) , y(e, v) for all e=uv\in E_{2},

(3.3) y(e, u)+y(e, v)=x(e) for all e=uv\in E_{2},

(3.4) x( $\delta$(U))\geq f(U) for all non‐empty U\subset V,

and

(3.5) \displaystyle \sum_{e\in $\delta$(v;E_{1})}w_{1}(e, v)x(e)+\sum_{e\in $\delta$(v;E_{2})} $\mu$(e)y(e, v)\leq b(v) for all v\in A.
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Observe that \displaystyle \min\{c^{T}x|(x, y)\in \mathrm{P}_{\mathrm{N}}(I)\} with A=V is an LP relaxation of problem
WDBOUNDEDNETWORK.

We say that \mathrm{P}_{\mathrm{N}}(I) is ( $\alpha$,  $\beta$) ‐bounded for some  $\alpha$,  $\beta$\geq 1 if every extreme point

(x^{*}, y^{*}) of the polytope satisfies at least one of the following:

\ovalbox{\tt\small REJECT} There exists an edge e\in E_{x^{*}} such that  x^{*}(e)\geq 1/ $\alpha$ ;

\ovalbox{\tt\small REJECT} There exists a vertex v\in A such that | $\delta$(v;E_{x^{*}})|\leq $\beta$.

Notice that this notion has appeared in Lau et al. [18]. Below we describe an approxi‐
mation algorithm that works when \mathrm{P}_{\mathrm{N}}(I) has this property. Afterwards, we show that

polytope \mathrm{P}_{\mathrm{N}}(I) is (2, 5)‐bounded. Combining these tells that problem WDBOUNDED‐

NETWORK can be solved approximately.

Algorithm for problem WDBouNDEDNETwoRK

Input: An undirected graph G=(V, E) with E=E_{1}\cup E_{2} , weights w_{1} : E_{1}\times V\rightarrow \mathbb{Q}+
and  $\mu$ :  E_{2}\rightarrow \mathbb{Q}+ ,

an edge‐cost c : E\rightarrow Q ,
a skew supermodular set function

f : 2^{V}\rightarrow \mathbb{N} , and a degree‐bound  b:V\rightarrow \mathbb{Q}+\cdot

Output: A solution consisting of an  f‐connected subgraph (V, F) of G and an allocation

 w_{2}:F_{2}\times V\rightarrow \mathbb{Q}+\mathrm{o}\mathrm{f} $\mu$ ,
or message �INFEASIBLE�

Step 1: Set  A:=V and F :=\emptyset.

\ovalbox{\tt\small REJECT} Delete e=uv\in E_{1} from G if w_{1}(e, u)>b(u) or if w_{1}(e, v)>b(v) .

\ovalbox{\tt\small REJECT} Delete e=uv\in E_{2} from G if  $\mu$(e)>b(u)+b(v) .

If \mathrm{P}_{\mathrm{N}}(I)=\emptyset ,
then output �INFEASIBLE� ;

Step 2: Compute a basic solution (x^{*}, y^{*}) that minimizes \displaystyle \sum_{e\in E}c(e)x^{*}(e) over (x^{*}, y^{*})\in
\mathrm{P}_{\mathrm{N}}(I) ;

Step 3: Remove edges in E-E_{x^{*}} from E ;

Step 4: If there exists an edge e=uv \in E such that  x^{*}(e)\geq 1/ $\alpha$ ,
then add  e to F,

delete e from E
,

set f(U) :=f(U)-1 for all U\subset V with e\in $\delta$(U) . Moreover,
execute one of the following operations according to the class of e :

Case of e\in E_{1} : If u\in A ,
then set b(u) :=b(u)-w_{1}(e, u)x^{*}(e) . If v\in A ,

then set

b(v) :=b(v)-w_{1}(e, v)x^{*}(e) .

Case of e\in E_{2} : Set w_{2}(e, u) := $\mu$(e)y^{*}(e, u)/x^{*}(e) and w_{2}(e, v) := $\mu$(e)y^{*}(e, v)/x^{*}(e) .

If u\in A ,
then set b(u) :=b(u)- $\mu$(e)y^{*}(e, u) . If v\in A ,

then set b(v) :=

b(v)- $\mu$(e)y^{*}(e, v) ;
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Step 5: If there exists a vertex v\in A such that | $\delta$(v;E_{x^{*}})|\leq $\beta$ ,
then remove  v from A ;

Step 6: If  E=\emptyset ,
then output  F as a solution, and terminate. Otherwise, return to

Step 2.

Now we define  $\theta$=\displaystyle \max\{b(u)/b(v), b(v)/b(u)| uv \in E_{2}\} if  E_{2}\neq\emptyset ,
and  $\theta$=0

otherwise.

Theorem 3.1. If each \mathrm{P}_{\mathrm{N}}(I) constructed in Step 2 of the algorithm is ( $\alpha$,  $\beta$)-
bounded, then problem WDBouNDEDNETwoRK is ( $\alpha$,  $\alpha$+ $\beta$(1+ $\theta$)) ‐approximable in

polynomial time.

Proof. It is clear that the algorithm described above runs in polynomial time. In

what follows, we see that the algorithm computes an ( $\alpha$,  $\alpha$+ $\beta$(1+ $\theta$)) ‐approximate
solution.

Observe that the linear program over \mathrm{P}_{\mathrm{N}}(I) is still a relaxation of the given instance

after Step 1. Hence the original instance has no feasible solutions when the algorithm

outputs �INFEASIBLE� Each edge e=uv\in E satisfies the following properties after

Step 1:

\ovalbox{\tt\small REJECT} If e=uv\in E_{1} ,
then w_{1}(e, u)\leq b(u) and w_{1}(e, v)\leq b(v) ;

\ovalbox{\tt\small REJECT} If e=uv \in E_{2} ,
then  $\mu$(e)\leq b(u)+b(v)\leq(1+ $\theta$)b(u) and  $\mu$(e)\leq b(u)+b(v)\leq

(1+ $\theta$)b(v) .

In what follows, suppose that \mathrm{P}_{\mathrm{N}}(I)\neq\emptyset after Step 1. We then prove that \mathrm{P}_{\mathrm{N}}(I)\neq\emptyset
also throughout the subsequent iterations and that the edge set  F outputted by the

algorithm satisfies c(F)\displaystyle \leq $\alpha$\min\{c^{T}x|(x, y)\in \mathrm{P}_{\mathrm{N}}(I)\} ,
and d_{w}(v;F)\leq( $\alpha$+ $\beta$(1+ $\theta$))b(v)

for all v\in V.

Let e_{i}=u_{i}v_{i} denote the i‐th edge added to F, I_{i}=(G_{i}=(V, E^{i}), w_{1},  $\mu$,  $\nu$, f_{i}, A_{i}, b_{i})
denote I at the beginning of the iteration in which e_{i} is added to T

,
and (x_{i}^{*}, y_{i}^{*}) denote

the basic solution computed in Step 2 of that iteration. We also let I_{0} stand for I

immediately after Step 1 of the algorithm, and assume that the algorithm outputs

F=\{e_{1}, . . . , e_{j}\} . By Steps 4 and 5, A_{i+1}\subseteq A_{i} holds, and

(3.6) b_{i+1}(v^{\ovalbox{\tt\small REJECT}})=\left\{\begin{array}{ll}
b_{i}(v^{\ovalbox{\tt\small REJECT}})-w_{1}(e_{i}, v^{\ovalbox{\tt\small REJECT}})x_{i}^{*}(e_{i}) & \mathrm{i}\mathrm{f} v^{\ovalbox{\tt\small REJECT}}\in A \mathrm{a}\mathrm{n}\mathrm{d} e_{i}\in E_{1},\\
b_{i}(v^{\ovalbox{\tt\small REJECT}})- $\mu$(e_{i})y_{i}^{*}(e_{i}, v^{\ovalbox{\tt\small REJECT}}) & \mathrm{i}\mathrm{f} v^{\ovalbox{\tt\small REJECT}}\in A \mathrm{a}\mathrm{n}\mathrm{d} e_{i}\in E_{2},\\
b_{i}(v^{\ovalbox{\tt\small REJECT}}) & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
also holds for v^{\ovalbox{\tt\small REJECT}}\in\{u_{i}, v_{i}\}, i\geq 1 . Moreover, all edges in E_{i+1}-E_{i} except e_{i} are

those such that the corresponding variable of x_{i}^{*} took O. These facts indicate that the

projection of (x_{i}^{*}, y_{i}^{*}) satisfies all constraints in \mathrm{P}_{\mathrm{N}}(I_{i+1}) . Hence we have the following:

(3.7) If \mathrm{P}_{\mathrm{N}}(I_{i})\neq\emptyset , then \mathrm{P}_{\mathrm{N}}(I_{i+1})\neq\emptyset for  i\geq 0 ;
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(3.8)
c^{T}x_{i}^{*}\displaystyle \geq c(e_{i})x_{i}^{*}(e_{i})+\min\{c^{T}x|(x, y)\in \mathrm{P}_{\mathrm{N}}(I_{i+1})\}\geq c(e_{i})x_{i}^{*}(e_{i})+c^{T}x_{i+1}^{*} for i\geq 1.

(i) We first see that the algorithm outputs a solution. Recall that we are assuming
that \mathrm{P}_{\mathrm{N}}(I_{0})\neq\emptyset . By this and (3.7), \mathrm{P}_{\mathrm{N}}(I_{i})\neq\emptyset holds for alll \leq i\leq j . Hence the

algorithm terminates with outputting an f‐connected subgraph F=\{e_{1}, . . . , e_{j}\} and

an allocation w_{2} :  F_{2}\times V\rightarrow \mathbb{Q}+\mathrm{o}\mathrm{f} $\mu$ by the way of construction.

(ii) Next we see the  $\alpha$‐approximability of  c(F) . By applying (3.8) repeatedly, we

have

c^{T}x_{1}^{*}\displaystyle \geq c(e_{1})x_{1}^{*}(e_{1})+c^{T}x_{2}^{*}\geq\cdots\geq\sum_{i=1}^{j-1}c(e_{i})x_{i}^{*}(e_{i})+c^{T}x_{j}^{*}\geq\sum_{i=1}^{j}c(e_{i})x_{i}^{*} (ei).

Notice that  x_{i}^{*}(e_{i})\geq 1/ $\alpha$ holds for all  1\leq i\leq j by the condition of Step 4. Hence,

\displaystyle \sum_{i=1}^{j}c(e_{i})x_{i}^{*}(e_{i})\geq c(F)/ $\alpha$,
implying that  $\alpha$ c^{T}x_{1}^{*}\geq c(F) . Recall that the algorithm constructs I_{1} from I_{0} by relaxing
the degree constraints (\mathrm{i}.\mathrm{e}., A_{1}\subseteq A_{0}) . Hence \displaystyle \min\{c^{T}x (x, y)\in \mathrm{P}_{\mathrm{T}}(Io)\} \geq c^{T}x_{1}^{*}.
Therefore we have  $\alpha$\displaystyle \min\{c^{T}x|(x, y)\in \mathrm{P}_{\mathrm{N}}(Io)\} \geq c(F) ,

as required.

(iii) Fix v as an arbitrary vertex. Now we prove that d_{w}(v;F)\leq( $\alpha$+ $\beta$(1+ $\theta$))b(v)
holds.

Consider Step 4 of the iterations during v\in A . Let F � be the set of edges that are

added to F during those iterations. By applying (3.6) repeatedly, we obtain

b(v)\displaystyle \geq\sum_{e_{i}\in $\delta$(v;F_{1}')}w_{1}(e_{i}, v)x_{i}^{*}(e_{i})+\sum_{e_{i}\in $\delta$(v;F_{2}')} $\mu$(e_{i})y_{i}^{*}(e_{i}, v)
.

If e_{i}\in $\delta$(v;E_{2}) ,
then w_{2}(e_{i}, v)= $\mu$(e_{i})y_{i}^{*}(e_{i}, v)/x_{i}^{*} (ei). Recall that x_{i}^{*}(e_{i})\geq 1/ $\alpha$.

Therefore,

\displaystyle \sum_{e_{i}\in $\delta$(v;F_{1}')}w_{1}(e_{i}, v)x_{i}^{*}(e_{i})+\sum_{e_{i}\in $\delta$(v;F_{2}')} $\mu$(e_{i})y_{i}^{*}(e_{i}, v)\geq d_{w_{1}}(v;F_{1}^{\ovalbox{\tt\small REJECT}})/ $\alpha$+d_{w_{2}}(v;F_{2}^{\ovalbox{\tt\small REJECT}})/ $\alpha$.
It implies that d_{w}(v;F^{\ovalbox{\tt\small REJECT}})\leq $\alpha$ b(v) holds.

Consider the iterations after v is removed from A . Let F� denote the set of edges
that are added to F during those iterations. When v is removed from A in Step 5, the

number of remaining edges incident with v is at most  $\beta$ by the condition in Step 5.

Hence | $\delta$(v;F^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}})|\leq $\beta$ holds. We have already seen that, after Step 1,  e=uv \in E_{1}

satisfies w_{1}(e, v)\leq b(v) and e=uv \in E_{2} satisfies w_{2}(e, v)\leq $\mu$(e)\leq(1+ $\theta$)b(v) .

So d_{w}(v;F^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}})\leq $\beta$(1+ $\theta$)b(v) . Because d_{w}(v;F)=d_{w}(v;F^{\ovalbox{\tt\small REJECT}})+d_{w}(v;F^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}) ,
we have

d_{w}(v;F)\leq( $\alpha$+ $\beta$(1+ $\theta$))b(v) ,
which completes the claim. \square 
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Theorem 3.2. Suppose that problem WDBouNDEDNETwoRK with uniform b

is ($\alpha$^{\ovalbox{\tt\small REJECT}}, $\beta$^{\ovalbox{\tt\small REJECT}}) ‐approximable for some of and $\beta$^{\ovalbox{\tt\small REJECT}} For an arbitrary  $\epsilon$>0 , problem MIN‐

IMuMWDNETwoRK is ($\beta$^{\ovalbox{\tt\small REJECT}}+ $\epsilon$) ‐approximable in polynomial time of \log(1/ $\epsilon$) and the

input size. If  E_{2}=\emptyset , then it is $\beta$^{\ovalbox{\tt\small REJECT}} ‐approximable in polynomial time of only the input
size.

Proof. For an r\in \mathbb{Q} , define G_{r} as the subgraph obtained from G by deleting each

edge e=uv\in E_{1} such that \displaystyle \max\{w_{1}(e, u), w_{1}(e, v)\}>r and each edge e\in E_{2} such that

 $\mu$(e)>2r . Let b_{r} : V\rightarrow \mathbb{Q}+\mathrm{b}\mathrm{e} the function such that b_{r}(v)=r for all v\in V ,
and

I_{r}=(G_{r}, w_{1},  $\mu$, f, A=V, b_{r}) be the instance for problem WDBOUNDEDNETWORK.

We denote \displaystyle \min\{r\in \mathbb{Q}+|\mathrm{P}_{\mathrm{N}}(I_{r})\neq\emptyset\} by R ,
and the minimum weighted degree of

the given instance by OPT. Let  $\omega$ and  W stand for the minimum and maximum entry

of w_{1} and  $\mu$ , respectively. For given  $\epsilon$
,

define  $\epsilon$^{\ovalbox{\tt\small REJECT}}= $\epsilon \omega$/(2$\beta$^{\ovalbox{\tt\small REJECT}}) . Since  $\omega$/2\leq OPT, we

have  $\epsilon$`\leq $\epsilon$ \mathrm{O}\mathrm{P}\mathrm{T}/$\beta$^{\ovalbox{\tt\small REJECT}} Since the characteristic vector of an optimal solution to the given
instance of problem MINIMuMWDNETwoRK satisfies all constraints of \mathrm{P}_{\mathrm{N}}(I_{OPT}) ,

we

have R\leq \mathrm{O}\mathrm{P}\mathrm{T} . It is possible to compute a value R � such that R\leq R^{\ovalbox{\tt\small REJECT}}\leq R+$\epsilon$^{\ovalbox{\tt\small REJECT}} by the

binary search on interval [0, W] ,
which needs to solve the linear program over \mathrm{P}_{\mathrm{N}}(I_{r})

\log(W/ $\epsilon$`) times.

Let T be an (of, $\beta$^{\ovalbox{\tt\small REJECT}} )‐approximate solution to the instance of problem WDBOUND‐

EDNETwoRK consisting of I_{R'} and an arbitrary edge‐cost c . We then have  d_{w}(v;T)\leq
$\beta$^{\ovalbox{\tt\small REJECT}}b_{R'}(v)\leq$\beta$^{\ovalbox{\tt\small REJECT}}(R+$\epsilon$^{\ovalbox{\tt\small REJECT}})\leq($\beta$^{\ovalbox{\tt\small REJECT}}+ $\epsilon$)\mathrm{O}\mathrm{P}\mathrm{T} for any v\in V . This implies that T is \mathrm{a}($\beta$^{\ovalbox{\tt\small REJECT}}+ $\epsilon$)-
approximate solution to problem MINIMUMWDNETWORK.

When  E_{2}=\emptyset ,
set  $\epsilon$ so that  1/( $\psi$+1)\leq$\epsilon$^{\ovalbox{\tt\small REJECT}}<1/ $\psi$ holds, where  $\psi$ is the maximum

denominator of all entries in  w_{1} and  $\mu$ . In this case, if  R � satisfies R\leq R^{\ovalbox{\tt\small REJECT}}\leq R+$\epsilon$^{\ovalbox{\tt\small REJECT}},
then  R`\leq OPT. Such  R �

can be computed by solving the linear program \log(W/ $\epsilon$`) \leq

\log(W( $\psi$+1)) times. Then we have d_{w}(v;T)\leq$\beta$^{\ovalbox{\tt\small REJECT}}b_{R'}(v)\leq$\beta$^{\ovalbox{\tt\small REJECT}}\mathrm{O}\mathrm{P}\mathrm{T} for any v\in V ,
which

implies that T is a $\beta$^{\ovalbox{\tt\small REJECT}} ‐approximate solution. \square 

For proving the (2, 5)‐boundedness of \mathrm{P}_{\mathrm{N}}(I) ,
let us see that the key property of

tight constraints observed in [13] also holds in our setting.

Lemma 3.3. Let (x^{*}, y^{*}) be any extreme point of\mathrm{P}_{\mathrm{N}}(I) and suppose that x^{*}(e)<
1 for all e\in E. There exists a laminar family \mathcal{L}\subseteq 2^{V} and a subset X of A such that

characteristic vectors of  $\delta$(U;E_{x^{*}}) for U\in \mathcal{L} are linearly independent and |E_{x^{*}}|\leq
|\mathcal{L}|+|X|.

Proof. By the definitions of x^{*} and y^{*} ,
the number of variables is equal to the

dimension of the vector space spanned by the coefficients vectors of tight constraints in

\mathrm{P}_{\mathrm{N}}(I) . If x^{*}(e)=0 (resp., y^{*}(e, v) ), then fix the variable x(e) (resp., y(e, v) ) to 0 and

remove the corresponding tight constraint of (3.1) (resp., (3.2)). We can also remove
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the constraints (3.3) by fixing y(e, u) to x(e)-y(e, v) for all e=uv \in E_{2} . Then the

number of remaining variables, which is at least |E_{x^{*}}| ,
is equal to the dimension of the

vector space spanned by the tight constraints of (3.4) and (3.5).
Let \mathcal{F}=\{U\subset V U\neq\emptyset, x^{*}( $\delta$(U))=f(U)\}(\mathrm{i}.\mathrm{e}. , family of vertex subsets

defining tight constraints of (3.4)) and X=\{v\in A \displaystyle \sum_{e\in $\delta$(v;E_{1})}w_{1}(e, v)x^{*}(e)+
\displaystyle \sum_{e\in $\delta$(v;E_{2})} $\mu$(e)y^{*}(e, v)=b(v)\} (i.e., set of vertices defining tight constraints of (3.5)).
In [13], it is proven that a maximal laminar subfamily \mathcal{F}^{\ovalbox{\tt\small REJECT}} of \mathcal{F} spans the same vector

space with \mathcal{F} . Therefore we can obtain the required \mathcal{L} and X by removing linearly

dependent sets from \mathcal{F}^{\ovalbox{\tt\small REJECT}}. \square 

Theorem 3.4. Polytope \mathrm{P}_{\mathrm{N}}(I) is (2, 5)‐bounded for any I.

Proof. Suppose the contrary, i.e., all edges e\in E_{x^{*}} satisfy x^{*}(e)<1/2 ,
and all

vertices v\in A satisfy | $\delta$(v;E_{x^{*}})|\geq 6.
Let \mathcal{L} and X be those in Lemma 3.3. We define a child‐parent relationship between

all elements in \mathcal{L} and X as follows: For U\in \mathcal{L} or v\in X ,
define its parent as the inclusion‐

wise minimal element in \mathcal{L} that contains it if any. Note that when v\in X and \{v\}\in \mathcal{L},
\{v\} is the parent of v.

We assign one token to each end vertex of edges in E_{x^{*}} . Define the co‐requirement
of U\in \mathcal{L} as | $\delta$(U;E_{x^{*}})|/2-f(U) . Following the approach in [13], we observe that it is

possible to distribute these tokens to all elements in \mathcal{L} and in X so that

\ovalbox{\tt\small REJECT} each element having the parent owns two tokens,

\ovalbox{\tt\small REJECT} each element having no parent owns at least three tokens,

\ovalbox{\tt\small REJECT} and it owns exactly three only if its co‐requirement equals to 1/2.

First two of these mean that the number of all tokens is more than 2 (|\mathcal{L}|+|X|) . Since

the number of tokens is exactly 2|E_{x^{*}}| ,
this indicates that |E_{x^{*}}|>|\mathcal{L}|+|X| ,

which

contradicts |E_{x^{*}}|\leq|\mathcal{L}|+|X|.
We prove the claim inductively. The base case is when the elements have no

child. An element v\in X owns at least six tokens by | $\delta$(v;E_{x^{*}})|\geq 6 . An element

U\in \mathcal{L} with no child owns at least three tokens because | $\delta$(U;E_{x^{*}})|\geq 3 by x^{*}(e)<1/2
for each e\in $\delta$(U;E_{x^{*}}) and f(U)\geq 1 . It owns exactly three tokens if and only if

| $\delta$(U;E_{x^{*}})|=3 . Since | $\delta$(U;E_{x^{*}})|=3 indicates that f(U)=1 ,
it means the co‐

requirement | $\delta$(U;E_{x^{*}})|/2-f(U) equals to 1/2
Let us consider the case in which an element U\in\{\mathcal{L}\} has some children. If U has

children from X
,

then it is possible to redistribute tokens so that U owns at least four

tokens, and each child owns two tokens. If the children of U are all from \mathcal{L} , then the

argument is proven in [13]. \square 
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Figure 1. A counterexample for (2, 4)‐boundedness of \mathrm{P}_{\mathrm{N}}(I)

Corollary 3.5. Problem WDBouNDEDNETwoRK is (2, 7+5 $\theta$) ‐approximable
in polynomial time. Problem MINIMuMWDNETwoRK is 7‐approximable in polynomial
time if  E_{2}=\emptyset , and is (12+ $\epsilon$) ‐approximable in polynomial time of \log(1/ $\epsilon$) and the

input size for any  $\epsilon$>0 otherwise.

Proof. Immediate from Theorems 3.1, 3.2 and 3.4. \square 

As explained in Section 1, Lau et. al. [18] designed their algorithm for w_{1}(e, u)=
w_{1}(e, v)=1, e=uv\in E_{1} and  E_{2}=\emptyset by observing that \mathrm{P}_{\mathrm{N}}(I) is (2, 4)‐bounded with

such instances. However, an example indicates that this does not hold in our problem
even if w_{1}(e, u)=w_{1}(e, v) for all e=uv\in E_{1} and E_{2}=\emptyset.

Let G be the graph in Figure 1, f(U)=1 for all non‐empty U\subset V ,
and A=V.

We suppose that |E|=|E_{1}|=42 tight constraints consists of (3.4) for all singletons, for

\{v_{i}, v_{i+1}, v_{i+2}\} with i=1
, 4, 7, 10, 13, 16, and for \{v_{i}, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}, v_{i+5}\} with

i=1
, 7, 13, and (3.5) for all vertices. We set w_{1} so that the above tight constraints are

linearly independent. Setting b appropriately, we then have a basic optimal solution x^{*}

such that

x^{*}(e)=\{
1/3 for edges represented by black solid lines,

1/6 for edges represented by dotted lines,

1/12 for edges represented by gray solid lines.

Notice that x^{*}(e)<1/2 for all e\in E and | $\delta$(v;E_{x^{*}})|\geq 5 for all v\in V.
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§4. Concluding Remarks

In this paper, we have presented approximation algorithms to problems WD‐

BOUNDEDNETWORK and MINIMUMWDNETWORK. We also have seen that it is hard

to improve the approximation ratios by our approach based on the iterative rounding
method.

For obtaining better approximation ratios to problems WDBouNDEDTREE and

MINIMUMWDTREE, we need stronger LP relaxations. Explaining more concretely, the

relaxation obtained by replacing (3.4) with \displaystyle \sum_{e\subseteq U}x(e)\leq|U|-1, \emptyset\neq U\subset V and

x(E)=|V|-1 gives our results for the problems.
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