
RIMS Kôkyûroku Bessatsu
B23 (2010), 213−232

Algorithms and Lower Bounds for Submodular Cuts

and Approximating Submodular Functions

By

Zoya Svitkina * and Lisa FLEISCHER**

Abstract

We study the submodular sparsest cut problem, which is a generalization of the classical

sparsest cut problem obtained by replacing the graph cut function with a general submodular

function, and establish matching upper and lower bounds for its approximability. Then we

apply the approximation algorithm for submodular sparsest cut to obtain bicriteria approxi‐
mation results for a related problem, submodular balanced cut, which generalizes the balanced

cut problem on graphs.
We also give an improved lower bound for the problem of approximating a monotone

submodular function everywhere. Then we present an algorithm for approximating monotone

submodular functions with special structure, called two‐partition functions. This algorithm�s
guarantee is close to the lower bound, which uses two‐partition functions, and therefore applies
even in this special case.

§1. Introduction

A function f defined on subsets of a ground set V is called submodular if for all

subsets S, T\subseteq V ,
it satisfies the inequality f(S)+f(T)\geq f(S\cup T)+f(S\cap T) . Sub‐

modular functions generalize cut functions of graphs and rank functions of matrices and

matroids, and arise in a variety of applications including facility location, assignment,

scheduling, and network design.
In this paper, we study the submodular sparsest cut and submodular balanced cut

problems, which generalize their respective graph cut problems. In particular, they are

obtained by replacing graph cut functions in the objectives of the classical problems

Received September 16, 2008. Revised June 20, 2009.

2000 Mathematics Subject Classication(s): 68\mathrm{Q}25
This paper summarizes and extends some of the results that have appeared in [24]. The work was

supported in part by NSF grant CCF‐0728869.
*

Department of Computing Science, University of Alberta, Canada.
**

Department of Computer Science, Dartmouth College, USA.

© 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

214 Zoya Svitkina and Lisa Fleischer

with arbitrary submodular functions. Another problem that we study is approximating
a submodular function everywhere, which was recently introduced by Goemans, Harvey,

Iwata, and Mirrokni [6, 9]. All of these problems are defined on a set V of n elements

with a nonnegative submodular function f : 2^{V}\rightarrow \mathbb{R}_{\geq 0} . Since the amount of information

necessary to convey a general submodular function may be exponential in n
,

we rely on

value‐oracle access to f to develop algorithms with running time polynomial in n. \mathrm{A}

value oracle for f is a black box that, given a subset S ,
returns the value f(S) . The

following are formal definitions of the problems.
Submodular Sparsest Cut (SSC): Given a set of unordered pairs of elements

\{\{u_{i}, v_{i}\}|u_{i}, v_{i}\in V\} ,
each with a demand d_{i}\geq 0 ,

find a subset S\subseteq V minimizing

f(S)/\displaystyle \sum_{i:|S\cap\{u_{i},v_{i}\}|=1}d_{i} . The denominator is the amount of demand separated by the

cut (S,\overline{S})^{1} . A special case of the SSC problem is the weighted SSC problem, in which

each element v\in V has a non‐negative weight w(v) ,
and the demand between any pair

of elements (u, v) is equal to the product w(u)\cdot w(v) .

Submodular b‐Balanced Cut (SBC): Given a weight function w:V\rightarrow \mathbb{R}_{\geq 0}, \mathrm{a}

cut (S,\overline{S}) is called b‐balanced (for b\displaystyle \leq\frac{1}{2}) if w(S)\geq b\cdot w(V) and w(\overline{S})\geq b\cdot w(V) ,
where

w(S)=\displaystyle \sum_{v\in S}w(v) . The goal of the problem is to find a b‐balanced cut (S,\overline{S}) that

minimizes f(S) . A special case is the balanced cut problem for symmetric submodular

functions, which are functions that satisfy f(S)=f(\overline{S}) for all sets S\subseteq V.

Approximating a Submodular Function Everywhere: Produce a function \hat{f}
(not necessarily submodular) that for all sets S\subseteq V satisfies \hat{f}(S)\leq f(S)\leq γ(n)\hat{f}(S) ,

with approximation ratio γ(n)\geq 1 as small as possible. We consider the special case

of monotone two‐partition functions, defined as follows. A submodular function f on a

ground set V is a two‐partition (2P) function if there is a set R\subseteq V such that for all

sets S ,
the value of f(S) depends only on the sizes |S\cap R| and |S\cap\overline{R}| . A function f is

monotone if f(S)\leq f(T) whenever S\subseteq T.

§1.1. Motivation

Submodular functions arise in a variety of contexts, often in optimization settings.
The submodular sparsest and balanced cut problems considered in this paper use sub‐

modular functions to generalize two well‐studied problems in computer science. These

generalizations capture many variants of their corresponding classical problems. For ex‐

ample, they generalize not only graph cuts, but also hypergraph cuts. In addition, they

may be useful as subroutines for solving other problems, in the same way that sparsest

and balanced cuts are used for approximating graph problems, such as the minimum

cut linear arrangement, often as part of divide‐and‐conquer schemes.

lFor any set S\subseteq V ,
we use \overline{S} to denote its complement set, V\backslash S.

Submodular Cuts and Approximating Submodular Functions 215

§1.2. Related work

Because of the relation of submodularity to cut functions and matroid rank func‐

tions, and their exhibition of decreasing marginal returns, there has been substantial

interest in optimization problems involving submodular functions. Finding the set that

has the minimum function value is a well‐studied problem that was first shown to be

polynomially solvable using the ellipsoid method [7, 8]. Further research has yielded
several more combinatorial approaches [12, 13, 14, 19, 20, 22].

Submodular functions arise in facility location and assignment problems, and this

has spawned interest in the problem of finding the set with the maximum function

value. Since this is NP‐hard, research has focused on approximation algorithms for

maximizing submodular functions, perhaps subject to a cardinality constraint or other

simple constraints [3, 5, 15, 18, 23]. Research on other optimization problems has also

used submodular functions or their minimization, including [10, 11, 25, 26, 27, 28].
Since it is impossible to learn a general submodular function exactly without looking

at the function value on all (exponentially many) subsets [4], there has been recent

interest in approximating submodular functions everywhere with a polynomial number

of value oracle queries. Some lower bounds on the approximation guarantees achievable

in this model are given in [6, 9].
The sparsest and balanced cut problems are NP‐hard even on graphs. The best

approximation known for the sparsest cut problem is O(\sqrt{\log n})[1 ,
2] ,

and the balanced

cut problem is approximable to a factor of O(\log n)[21].

§1.3. Our results and techniques

We establish matching upper and lower bounds for the approximability of the

submodular sparsest cut problem. Surprisingly, these factors are quite high, of the

order of \sqrt{\frac{n}{\ln n}} . Our lower bounds are unconditional, and rely on the difficulty of

distinguishing different submodular functions by performing only a polynomial number

of queries in the oracle model. The proofs are based on the techniques in [5, 6]. To prove

the upper bound, we present a randomized approximation algorithm which samples a

random subset of the ground set, and assigns weights to elements based on this random

set and the input demands. Then, based on these weights, it uses submodular function

minimization to find a candidate solution. We show that with relatively high probability

(inverse polynomial), a sample is obtained which separates a higher than expected
fraction of demand separated by the optimal solution. And if this is the case, then the

obtained solution satisfies the algorithm�s guarantee.
For submodular balanced cut, we also show an approximation lower bound of

 Ω(\sqrt{\frac{n}{\ln n}}) . Then we use the algorithm for weighted SSC as a subroutine to obtain

two bicriteria approximation algorithms in a similar way as Leighton and Rao [16] do

216 Zoya Svitkina and Lisa Fleischer

for graphs. Our first algorithm works for symmetric submodular functions, and for a

given b'\leq 1/3 ,
it finds a b'‐balanced cut whose cost is within a factor O(\displaystyle \frac{ γ}{b-b}) of the

cost of any b‐balanced cut, for b'<b\displaystyle \leq\frac{1}{2} . The second algorithm works for arbitrary

non‐negative submodular functions and produces a b'/2‐balanced cut of cost within

O(\displaystyle \frac{ γ}{b-b}) of any b‐balanced cut, for any b' and b with b'<b\leq 1/2.
For approximating monotone submodular functions everywhere, our lower bound

is Ω(\sqrt{\frac{n}{\ln n}}) ,
which improves the bound of Ω(\displaystyle \frac{\sqrt{n}}{\ln n}) in [6], and matches the lower bound

for arbitrary submodular functions, also in [6]. Our lower bound proof for this problem,
as well as those in [6], use 2\mathrm{P} functions, and thus still hold for this special case. We

show that monotone 2\mathrm{P} functions can be approximated within a factor O(\sqrt{n}) . Besides

leaving a relatively small gap between the upper and lower bounds, this shows that if

much stronger lower bounds for the approximation problem exist, they rely on more

general submodular functions.

For the problems studied in this paper, our lower bounds show the impossibility of

constant or even polylogarithmic approximations in the value oracle model. This means

that in order to obtain better results for specific applications, one has to resort to more

restricted models, avoiding the full generality of arbitrary submodular functions.

§2. Preliminaries

In the analysis of our algorithms, we use the facts that the sum of submodular

functions is submodular, and that submodular functions can be minimized in polynomial
time. For example, this allows us to minimize (over all subsets T\subseteq V) expressions like

f(T)- α\cdot|T\cap S| ,
where α is a constant and S is a fixed subset of V.

We present our algorithm for the SSC problem by providing a randomized relaxed

decision procedure for it. Given an instance of a minimization problem, a target value

B
,

and a probability p ,
this procedure either declares that the problem is infeasible

(outputs fail), or finds a solution to the instance with objective value at most γ B ,
where

 γ is the approximation factor. We say that an instance is feasible if it has a solution

with cost strictly less than B (we use strict inequality for technical reasons; this can

be avoided by adding a small value ϵ>0 to B). The guarantee provided with each

decision procedure is that for any feasible instance, it outputs a γ‐approximate solution

with probability at least p . On an infeasible instance, either of the two outcomes is

allowed. Our procedure runs in time polynomial in n and \displaystyle \ln\frac{1}{1-p} ,
and can be turned

into a randomized approximation algorithm by finding upper and lower bounds for the

optimum and performing binary search.

We say that an algorithm distinguishes two functions f_{1} and f_{2} if the output that

it produces upon receiving (an oracle for) the function f_{1} as input is different than the

output that it produces upon receiving the function f_{2} as input. The following result is

Submodular Cuts and Approximating Submodular Functions 217

used for obtaining all of our lower bounds.

Lemma 2.1. Let f_{1} and f_{2} be two set functions, with f_{2} ,
but not f_{1} , parametrized

by a string of random bits r . If for any set S ,
chosen without knowledge of r

,
the proba‐

bility (over r) that f_{1}(S)\neq f(S) is n^{- ω(1)}
,

then any algorithm that makes a polynomial
number of oracle queries has probability at most n^{- ω(1)} of distinguishing f_{1} and f_{2}.

Proof. We use reasoning similar to [5]. Consider first a deterministic algorithm
and the computation path that it follows if it receives the values of f_{1} as answers to all

its oracle queries. Note that this is a single computation path that does not depend on

r
,

because f_{1} does not depend on r . On this path the algorithm makes some polynomial
number of oracle queries, say n^{a} . Using the union bound, we know that the probability
that f_{1} and f_{2} differ on any of these n^{a} sets is at most n^{a} n^{- ω(1)}=n^{- ω(1)} . So,
with probability at least 1-n^{- ω(1)}

,
if given either f_{1} or f_{2} as input, the algorithm

only queries sets for which f_{1}=f_{2} ,
and therefore stays on the same computation path,

producing the same answer in both cases.

A randomized algorithm can be viewed as a distribution over a set of deterministic

algorithms. Since, by the discussion above, each of these deterministic algorithms has

probability at most n^{- ω(1)} of distinguishing f_{1} and f_{2} ,
the randomized algorithm as a

whole also has probability at most n^{- ω(1)} of distinguishing these two functions. \square

§3. Lower bounds for submodular sparsest and balanced cuts

To show the lower bounds for submodular sparsest and balanced cuts, we use the

following result from [6], whose proof we present for completeness, and then apply
Lemma 2.1.

Lemma 3.1. (Goemans et al. [6]) Fix an arbitrary subset S\subseteq V ,
and then

let R be a random subset of V of size n/2 . Then for any ϵ such that ϵ^{2}=\displaystyle \frac{1}{n}\cdot ω(\ln n) ,
for β=\displaystyle \frac{n}{4}(1+ ϵ) ,

and for the submodular2 functions

f_{1}(S)=\displaystyle \min(|S|, \frac{n}{2}) — \displaystyle \frac{|S|}{2}, f_{2}(S)=\displaystyle \min(β+|S\cap\overline{R}|, |S|, \frac{n}{2}) — \displaystyle \frac{|S|}{2},
the probability (over the choice of R) that f_{1}(S)\neq f(S) is at most n^{- ω(1)}.

2To see that these functions are submodular, it is helpful to consider an equivalent denition of

submodularity: for all a, b\in V and S\subset V, f(S\cup\{a\})-f(S)\leq f(S\cup\{a\}-\{b\})-f(S-\{b\}) .

Then it is straightforward to verify for these, and submodular functions appearing later in the

paper, that if adding a to S-\{b\} increases the function value by x
,

then adding a to S increases

the function value by at most x.

218 Zoya Svitkina and Lisa Fleischer

Proof. Since f_{1}\geq f_{2} for all sets, the two functions differ on S if and only if

f_{2}(S)-f_{1}(S)<0 . First, we claim that the probability Pr[f(S) -f_{1}(S)<0] is

maximized when |S|=\displaystyle \frac{n}{2} . For this, suppose that |S|\displaystyle \geq\frac{n}{2} . Then

f_{2}(S)-f_{1}(S) = \displaystyle \min(β+|S\cap\overline{R}|, \frac{n}{2}) — \displaystyle \frac{n}{2}.
This quantity is negative whenever β+|S\displaystyle \cap\overline{R}|-\frac{n}{2} is negative. But this expression
can only decrease if an element is removed from S ,

so we conclude that in the range

|S|\geq n/2 ,
the two functions are most likely to be different when |S|=n/2.

A similar argument can be made for the case of |S|\leq n/2 . In that case,

f_{2}(S)-f_{1}(S) = \displaystyle \min(β+|S\cap\overline{R}|, |S|)-|S|,

and this expression is negative whenever β+|S\cap\overline{R}|-|S|= β-|S\cap R|<0 . This

expression can only decrease if an element is added to S ,
so again the probability of f_{1}

and f_{2} having different values is maximized when |S|=n/2.
We now show that for a set S of size n/2 ,

the probability that f_{1}(S)\neq f(S) is

low. This probability is

\displaystyle \mathrm{P}\mathrm{r}[f_{1}(S)\neq f_{2}(S)] = \mathrm{P}\mathrm{r}[\min(β+|S\cap\overline{R}|, |S|, \frac{n}{2})<\min(|S|, \frac{n}{2})]
= \displaystyle \mathrm{P}\mathrm{r}[β+|S\cap\overline{R}|<\frac{n}{2}] = \mathrm{P}\mathrm{r}[|S\cap\overline{R}|<\frac{n}{4}(1- ϵ)]

If instead of choosing R as a random subset of V of size n/2 ,
we consider a set R'

for which each element is chosen independently with probability 1/2, the probability
that we are interested in becomes

\displaystyle \mathrm{P}\mathrm{r}[f_{1}(S)\neq f_{2}(S)]=\mathrm{P}\mathrm{r}[|S\cap\overline{R}'|<\frac{n}{4}(1- ϵ)||R'|=\frac{n}{2}]

=\displaystyle \frac{\mathrm{P}\mathrm{r}[|S\cap\overline{R}'|<\frac{n}{4}(1- ϵ)\wedge|R'|=\frac{n}{2}]}{\mathrm{P}\mathrm{r}[|R'|=\frac{n}{2}]}
\displaystyle \leq(n+1)\cdot \mathrm{P}\mathrm{r}[|S\cap\overline{R}'|<\frac{n}{4}(1- ϵ)]

This allows us to make a switch to independent variables, so that we can use Chernoff

bounds [17]. The expectation μ of |S\cap\overline{R}'| is equal to |S|/2=n/4 ,
so

\mathrm{P}\mathrm{r}[|S\cap\overline{R}'|<(1- ϵ) μ] < e^{- $\mu \epsilon$^{2}/2} =e^{- ω(\ln n)} =n^{- ω(1)},

since ϵ^{2}=\displaystyle \frac{1}{n} . ω(\ln n) . This gives \mathrm{P}\mathrm{r}[f_{1}(S)\neq f_{2}(S)]<(n+1)\cdot n^{- ω(1)}=n^{- ω(1)}. \square

Corollary 3.2. Any algorithm that makes a polynomial number of oracle queries
has probability at most n^{- ω(1)} of distinguishing the functions f_{1} and f_{2} in Lemma 3.1.

Submodular Cuts and Approximating Submodular Functions 219

We now use these results to establish the hardness of the SSC and SBC problems.
For concreteness, assume that the output of an approximation algorithm for one of these

problems consists of a set S\subseteq V as well as the objective function value on this set.

Theorem 3.3. The SSC and the SBC problems cannot be approximated to a

ratio o(\sqrt{\frac{n}{\ln n}}) in the oracle model with polynomial number of queries.

Proof. Suppose for the sake of contradiction that there is a polynomial‐time γ-

approximation algorithm for the SSC problem, for some γ=o(\sqrt{\frac{n}{\ln n}}) ,
that succeeds

with high probability. Let us set ϵ=\displaystyle \frac{1}{2 γ} ,
which satisfies ϵ^{2}=\displaystyle \frac{1}{n}\cdot ω(\ln n) ,

and consider

the uniform demands, with d=1 for any pair of distinct elements. If the algorithm
is given the function f_{2} of Lemma 3.1 as input, then with high probability it has to

output a set S with ratio \displaystyle \frac{f_{2}(S)}{|S|\cdot|\overline{S}|}\leq\frac{ $\gamma \epsilon$}{n}=\frac{1}{2n} ,
since the optimal uniform sparsest cut

for f_{2} ,
achieved by the set R ,

has ratio \displaystyle \frac{ β-n/4}{n^{2}/4}=\frac{ ϵ}{n} . However, for the function f_{1} ,
all

non‐empty sets have ratio \displaystyle \frac{f_{1}(S)}{|S|\cdot|\overline{S}|}=\frac{1/2}{\max(|S|,|\overline{S}|)}>\frac{1}{2n} . So if the algorithm is given f_{1} as

input, its output value differs from the case of f_{2} , contradicting Corollary 3.2.

A very similar proof establishes the lower bound for submodular balanced cut. \square

§4. Algorithm for submodular sparsest cut

Our approach for solving SSC uses a random set S to assign weights to nodes (see
Algorithm 1). For each demand pair separated by the set S ,

we add a positive weight
of d_{i} to its node that is in S ,

and a negative weight of -d_{i} to its node that is outside of

S . This biases the subsequent function minimization to separate the demand pairs that

are on different sides of S . We begin by presenting a technical lemma about random

sampling that is used for bounding probabilities in the analysis of the algorithm. We

use the constant c=1/(e^{2}\sqrt{2 π}) throughout.

Lemma 4.1. Suppose that m elements are selected independently, with proba‐

bility q each. Then for ϵ<\displaystyle \frac{1-q}{q} ,
the probability that qm(1+ ϵ) elements are selected is

at least \displaystyle \frac{c}{\sqrt{m}}\exp[\frac{-ϵ^{2}qm}{1-q}].
Proof. For convenience, let κ=q(1+ ϵ) . Using an approximation that \sqrt{2 π n} (\displaystyle \frac{n}{e})^{n}\leq

 n!\leq e\sqrt{2 π n} (\displaystyle \frac{n}{e})^{n} ,
which is derived from Stirling�s formula, we obtain the bound

\displaystyle \left(\begin{array}{l}
m\\
m κ
\end{array}\right)=\frac{m!}{(m κ)!(m-m κ)!}\geq\frac{\sqrt{2 π}}{(e\sqrt{2 π})^{2}} \displaystyle \frac{\sqrt{m}}{\sqrt{m κ}\sqrt{m-m κ}} \displaystyle \frac{(m/e)^{m}}{(m κ/e)^{m κ}((m-m κ)/e)^{m-m κ}}
\displaystyle \geq\frac{1}{e^{2}\sqrt{2 π}} \frac{1}{\sqrt{m}} \frac{1}{κ^{m κ}(1- κ)^{m-m κ}}.

220 Zoya Svitkina and Lisa Fleischer

Then the desired probability is

\displaystyle \left(\begin{array}{l}
m\\
m κ
\end{array}\right)q^{m κ}(1-q)^{m-m κ}\geq c\cdot m^{-\frac{1}{2}} \frac{q^{m κ}(1-q)^{m-m κ}}{κ^{m κ}(1- κ)^{m-m κ}}
=c\displaystyle \cdot m^{-\frac{1}{2}} (\frac{1}{1+ ϵ})^{m κ} (\frac{1-q}{1-q(1+ ϵ)})^{m-m κ}
=c\displaystyle \cdot m^{-\frac{1}{2}} \frac{1}{(1+ ϵ)^{m κ}} \frac{1}{(1-\frac{ ϵ q}{1-q})^{m-m κ}}
\displaystyle \geq c\cdot m^{-\frac{1}{2}}\cdot\exp[- ϵ m κ+\frac{ ϵ q}{1-q}m(1- κ)],

where we have used the fact that 1+x\leq e^{x} for all x . The assumption that ϵ<\displaystyle \frac{1-q}{q}
ensures that the second denominator is positive. Now, the exponent of e is equal to

- ϵ qm(1+ ϵ)+\displaystyle \frac{ ϵ q}{1-q}m(1-q- ϵ q)= - ϵ qm-ϵ^{2}qm+ ϵ qm-\displaystyle \frac{ϵ^{2}q^{2}m}{1-q}=\frac{-ϵ^{2}qm}{1-q},
concluding the proof. \square

\displaystyle \frac{\mathrm{A}1\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}1\mathrm{S}\mathrm{u}\mathrm{b}\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{u}1\mathrm{a}\mathrm{r}\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{c}\mathrm{u}\mathrm{t}.\mathrm{I}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}:V,f,d,B,p}{1:\mathrm{f}\mathrm{o}\mathrm{r}\frac{4n^{2}}{c}\ln(\frac{1}{1-p})\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{d}\mathrm{o}}
2 : Choose a random set S by including each v\in V independently with prob. \displaystyle \frac{1}{2}
3: for each v\in V ,

initialize a weight w(v)=0
4: for each pair \{u_{i}, v_{i}\} with |\{u_{i}, v_{i}\}\cap S|=1 do

5: Let s_{i}\in\{u_{i}, v_{i}\}\cap S and t_{i}\in\{u_{i}, v_{i}\}\backslash S\triangleright name the unique node in each set

6: Update weights w(s_{i})\leftarrow w(s_{i})+d_{i};w(t_{i})\leftarrow w(t_{i})-d_{i}
7: end for

8: Let α=4\sqrt{\frac{n}{\ln n}}\cdot B
9: Let T be a subset of V minimizing f(T)- α\displaystyle \cdot\sum_{v\in T}w(v)

10: if f(T)- α\displaystyle \cdot\sum_{v\in T}w(v)<0 ,
return T

11: end for

12: return fail

The following lemma shows that any set T satisfying the condition on line 10 of

the algorithm is a solution that satisfies the algorithm�s approximation guarantee.

Lemma 4.2. If for some T\subseteq V ,
it holds that f(T)- α\displaystyle \cdot\sum_{v\in T}w(v)<0 ,

then

\displaystyle \frac{f(T)}{\sum_{i:|T\cap\{u_{i},v_{i}\}|=1}d_{i}}< α.

Submodular Cuts and Approximating Submodular Functions 221

Proof. \displaystyle \sum_{v\in T}w(v) is equal to

\displaystyle \sum_{i:s_{i}\in T}d_{i}-\sum_{i:t_{i}\in T}d_{i}=\sum_{i:s_{i}\in T,t_{i}\not\in T}d_{i}-\sum_{i:t_{i}\in T,s_{i}\not\in T}d_{i}\leq\sum_{i:s_{i}\in T,t_{i}\not\in T}d_{i}\leq\sum_{i:|T\cap\{u_{i},v_{i}\}|=1}d_{i}.
Now using the assumption of the lemma we have

(4.1) f(T)- α\displaystyle \sum_{i:|T\cap\{u_{i},v_{i}\}|=1}d_{i} \leq f(T)- α\sum_{v\in T}w(v) < 0.
Since the function f is non‐negative, it must be that \displaystyle \sum_{i:|T\cap\{u_{i},v_{i}\}|=1}d_{i}>0 . Rearrang‐

ing the terms, we get f(T)/\displaystyle \sum_{i:|T\cap\{u_{i},v_{i}\}|=1}d_{i}< α. \square

Assuming that the input instance is feasible, let U^{*} be a set with size m=|U^{*}|,
separated demand D^{*}=\displaystyle \sum_{i:|U^{*}\cap\{u_{i},v_{i}\}|=1}d_{i} ,

and value f(U^{*})/D^{*}<B.

Lemma 4.3. In one iteration of the outer loop of Algorithm 1, the probability

that \displaystyle \sum_{v\in U^{*}}w(v)\geq D^{*}\cdot\frac{1}{4}\sqrt{\frac{\ln n}{n}} is at least \displaystyle \frac{c}{4n^{2}}.

Proof. Let ϵ=\sqrt{\frac{\ln n}{n}} . We denote by A the event that |U^{*}\displaystyle \cap S|\geq\frac{m}{2}(1+ ϵ) ,
where

S is the random set chosen by Algorithm 1, and bound the above probability by the

following product:

\displaystyle \mathrm{P}\mathrm{r}[\sum_{v\in U^{*}}w(v)\geq\frac{ ϵ}{4}D^{*}] \geq \mathrm{P}\mathrm{r}[\sum_{v\in U^{*}}w(v)\geq\frac{ ϵ}{4}D^{*}|A]\cdot \mathrm{P}\mathrm{r}[A].
We apply Lemma 4.1 to the set U^{*} and the sample S ,

with parameters m, ϵ ,
and q=\displaystyle \frac{1}{2}.

The condition ϵ=\displaystyle \sqrt{\frac{\ln n}{n}}<\frac{1-q}{q}=1 is satisfied for all natural numbers n . Since m\leq n,

this allows us to lower‐bound the probability of event A by cn^{-3/2} . All the probabilities
and expectations in the rest of the proof are conditioned on the event A.

Let us now consider the expected value of \displaystyle \sum_{v\in U^{*}}w(v) . Fix a particular demand

pair \{u_{i}, v_{i}\} that is separated by the optimal solution, and assume without loss of

generality that u_{i}\in U^{*} and v_{i}\not\in U^{*} . Let p_{u} be the probability that u_{i}\in S ,
and p_{v} be

the probability that v_{i}\in S . Then p_{u}=\displaystyle \frac{|U^{*}\cap S|}{|U^{*}|}\geq(1+ ϵ)/2, p_{v}=\displaystyle \frac{1}{2} ,
and the two events

are independent. So

\mathrm{P}\mathrm{r}[u_{i}=s_{i}]=\mathrm{P}\mathrm{r}[u_{i}\in S\wedge v_{i}\not\in S]=p_{u}\cdot(1-p_{v})\geq(1+ ϵ)/4,

\mathrm{P}\mathrm{r}[u_{i}=t_{i}]=\mathrm{P}\mathrm{r}[u_{i}\not\in S\wedge v_{i}\in S]=(1-p_{u})\cdot p_{v}\leq(1- ϵ)/4.

Then the expected contribution of this demand pair to \displaystyle \sum_{v\in U^{*}}w(v) is equal to

\displaystyle \mathrm{P}\mathrm{r}[u_{i}=s_{i}]\cdot d_{i}+\mathrm{P}\mathrm{r}[u_{i}=t_{i}] (-d_{i})\geq d_{i} \frac{ ϵ}{2}.

222 Zoya Svitkina and Lisa Fleischer

By linearity of expectation,

\displaystyle \mathrm{E}[\sum_{v\in U^{*}}w(v)] \geq D^{*} \frac{ ϵ}{2}.
We now use Markov�s inequality [17] to bound the desired probability. For this we define

a nonnegative random variable Y=D^{*}-\displaystyle \sum_{v\in U^{*}}w(v) . Then \mathrm{E}[Y]\leq(1- ϵ/2)D^{*} . So

\displaystyle \mathrm{P}\mathrm{r}[\sum_{v\in U^{*}}w(v)\leq\frac{ ϵ}{4}D^{*}] = \mathrm{P}\mathrm{r}[Y\geq(1-\frac{ ϵ}{4})D^{*}] \leq\frac{\mathrm{E}[Y]}{(1- ϵ/4)D^{*}}
\displaystyle \leq \frac{1- ϵ/2}{1- ϵ/4}=1-\frac{ ϵ}{4- ϵ}\leq 1-\frac{ ϵ}{4}

It follows that

\displaystyle \mathrm{P}\mathrm{r}[\sum_{v\in U^{*}}w(v)\geq\frac{ ϵ}{4}D^{*}] \geq\frac{ ϵ}{4}=\frac{1}{4}\sqrt{\frac{\ln n}{n}}\geq\frac{1}{4\sqrt{n}},
concluding the proof of the lemma. \square

Theorem 4.4. For any feasible instance of SSC problem, Algorithm 1 returns

a solution with cost at most 4\sqrt{\frac{n}{\ln n}}\cdot B ,
with probability at least p.

Proof. By Lemma 4.3, the inequality \displaystyle \sum_{v\in U^{*}}w(v)\geq D^{*}\cdot\frac{1}{4}\sqrt{\frac{\ln n}{n}} holds with prob‐

ability at least c/4n^{2} in each iteration. Then the probability that it holds in any of

the \displaystyle \frac{4n^{2}}{c}\ln(\frac{1}{1-p}) iterations is at least p . Now, assuming that it does hold, the algorithm
finds a set T such that

f(T)- α\displaystyle \sum_{v\in T}w(v)\leq f(U^{*})- α\sum_{v\in U^{*}}w(v)\leq f(U^{*})-(4\sqrt{\frac{n}{\ln n}}\cdot B)(\frac{D^{*}}{4}\sqrt{\frac{\ln n}{n}})<0.
Applying Lemma 4.2, we get that f(T)/\displaystyle \sum_{i:|T\cap\{u_{i},v_{i}\}|=1}d_{i}< α=4\sqrt{\frac{n}{\ln n}}\cdot B ,

which

means that T is the required approximate solution. \square

§5. Algorithms for submodular balanced cut

For submodular balanced cut, we use as a subroutine the weighted SSC problem
that can be approximated to a factor γ=O(\sqrt{\frac{n}{\ln n}}) using Algorithm 1. This allows us

to obtain a bicriteria approximation for SBC in a similar way that Leighton and Rao [16]
use their algorithm for sparsest cut on graphs to approximate balanced cut on graphs.

Leighton and Rao present two versions of an algorithm for the balanced cut problem

Submodular Cuts and Approximating Submodular Functions 223

on graphs — one for undirected graphs, and one for directed graphs. The algorithm
for undirected graphs has a better balance guarantee. We describe adaptations of these

algorithms to the submodular version of the balanced cut problem. Our first algorithm
extends the one for undirected graphs, and it works for symmetric submodular functions.

For a given b'\leq 1/3 ,
it finds a b'‐balanced cut whose cost is within a factor o(\displaystyle \frac{ γ}{b-b})

of the cost of any b‐balanced cut, for b'<b\displaystyle \leq\frac{1}{2} . The second algorithm works for

arbitrary non‐negative submodular functions and produces a b'/2‐balanced cut of cost

within O(\displaystyle \frac{ γ}{b-b}) of any b‐balanced cut, for any b' and b with b'<b\leq 1/2.

§5.1. SBC algorithm for symmetric submodular functions

The algorithm for SBC on symmetric functions (Algorithm 2) repeatedly finds

approximate weighted submodular sparsest cuts (S_{i},\overline{S}_{i}) and collects their smaller sides

into the set T
,

until (T,\overline{T}) becomes b'‐balanced. The algorithm and analysis basically
follow Leighton and Rao [16], with the main difference being that instead of removing

parts of the graph, we set the weights of the corresponding elements to zero. Then the

obtained sets S_{i} are not necessarily disjoint.

\overline{\mathrm{A}\mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}2}Submodular balanced cut for symmetric functions. Input: V, f, w,

b'\displaystyle \leq\frac{1}{3}
1: Initialize w'=w, i=0, T=\emptyset

2: while w'(V)>(1-b')w(V) do

3: Let S be a γ‐approximate weighted SSC on V, f ,
and weights w'

4 : if w'(S)\leq w'(\overline{S}) then let S_{i}=S else let S_{i}=\overline{S}
5: w'(S_{i})\leftarrow 0;T\leftarrow T\cup S_{i};i\leftarrow i+1
6: end while

7: return T

Theorem 5.1. If the system (V, f, w) contains a b ‐balanced cut of cost B
,

then

Algorithm 2 finds a b' ‐balanced cut T with f(T)=O(\displaystyle \frac{B}{b-b}\sqrt{\frac{n}{\ln n}}) , for a given b'<b,

b'\displaystyle \leq\frac{1}{3}.

Proof. Algorithm 2 terminates in O(n) iterations, as the weight of at least one new

element is set to zero on line 5 (otherwise the cost of SSC solution would be infinite).
Now we consider w(T) . By the termination condition of the while loop, we know

that when it exits, w'(V)\leq(1-b')w(V) ,
which means that w' has been set to zero for

elements of total weight at least b'w(V) . But those are exactly the elements in T
,

so

w(T)\geq b'w(V) . Now consider the last iteration of the loop. At the beginning of this

iteration, we have w'(V)>(1-b')w(V) ,
which means that at the end of it we have

224 Zoya Svitkina and Lisa Fleischer

w'(V)>\displaystyle \frac{1}{2}(1-b')w(V) ,
because the weight of the smaller (according to w') of S or \overline{S}

is set to zero. But w'(V) at the end of the algorithm is exactly the weight of \overline{T}
,

which

means that w(\displaystyle \overline{T})>\frac{1}{2}(1-b')w(V)\geq\frac{1}{3}w(V)\geq b'w(V) , using the assumption b'\leq 1/3
twice. So the cut (T,\overline{T}) is b'‐balanced.

Suppose that U^{*} is a b‐balanced cut with f(U^{*})=B . In any iteration i of the

while loop, we know that two inequalities hold: w'(U^{*})+w'(\overline{U}^{*})>(1-b')w(V) (by
the loop condition), and \displaystyle \max(w'(U^{*}), w'(\overline{U}^{*}))\leq(1-b)w(V) (by b‐balance). Given

these inequalities, the minimum value that the product w'(U^{*}) w'(\overline{U}^{*}) can have is

(b-b')w(V) (1-b)w(V) . So with weights w'
,

there is a solution to SSC with value

\displaystyle \frac{f(U^{*})}{w'(U^{*})w'(\overline{U}^{*})}\leq\frac{B}{(b-b')w(V)(1-b)w(V)},
and the set S_{i} found by the γ‐approximation algorithm satisfies

\displaystyle \frac{f(S_{i})}{w'(S_{i})w(\overline{S}_{i})}\leq\frac{ γ B}{(b-b')w(V)(1-b)w(V)}.
Since in iteration i, w'(S_{i})=w(S_{i}\displaystyle \backslash \bigcup_{j=0}^{i-1}S_{j}) , w'(\overline{S}_{i})\leq w(V) ,

and (1-b)\geq 1/2,

f(S_{i})\displaystyle \leq w(S_{i}\backslash \bigcup_{j=0}^{i-1}S_{j})\underline{2B γ}(b-b')w(V)
.

Now f(T)\displaystyle \leq\sum_{i}f(S_{i})\leq w(T)\cdot 2B γ/(b-b')w(V)=B\cdot O(\frac{ γ}{b-b}) . \square

§5.2. SBC algorithm for general submodular functions

The algorithm for general functions (Algorithm 3) also repeatedly finds weighted
submodular sparsest cuts (S_{i},\overline{S}_{i}) ,

but it uses them to collect two sets: either it puts

S_{i} into T_{1} ,
or it puts \overline{S}_{i} into T_{2} . Thus, the values of f(T) and \overline{f}(T) can be bounded

using the guarantee of the SSC algorithm (recall that \overline{f}(S)=f(\overline{S})).

\displaystyle \frac{\mathrm{A}1\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}3\mathrm{S}\mathrm{u}\mathrm{b}\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{u}1\mathrm{a}\mathrm{r}\mathrm{b}\mathrm{a}1\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{d}\mathrm{c}\mathrm{u}\mathrm{t}.\mathrm{I}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}:V,f,w,b'}{1:\mathrm{I}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}1\mathrm{i}\mathrm{z}\mathrm{e}w'=w,i=0,T_{1}=T_{2}=\emptyset}
2: while w'(V)>(1-b')w(V) do

3: Let S_{i} be a γ‐approximate weighted SSC on V, f ,
and weights w'

4: if w'(S_{i})\leq w'(\overline{S}_{i}) then set T_{1}\leftarrow T_{1}\cup S_{i};w'(S_{i})\leftarrow 0;i\leftarrow i+1
5: else set T_{2}\leftarrow T_{2}\cup\overline{S}_{i};w'(\overline{S}_{i})\leftarrow 0;i\leftarrow i+1
6: end while

7: if w(T_{1})\geq w(T) then return T_{1} else return \overline{T}_{2}

Submodular Cuts and Approximating Submodular Functions 225

Theorem 5.2. If the system (V, f, w) contains a b ‐balanced cut of cost B
,

then

Algorithm 3 finds a b'/2 ‐balanced cut T with f(T)=O(\displaystyle \frac{B}{b-b}\sqrt{\frac{n}{\ln n}}) , for a given b'<b.

Proof. When the while loop exits, w'(V)\leq(1-b')w(V) ,
so the total weight of

elements in T_{1} and T_{2} (the ones for which w' has been set to zero) is at least b'w(V) .

So \displaystyle \max(w(T_{1}), w(T_{2}))\geq b'w(V)/2 . At the beginning of the last iteration of the loop,

w'(V)>(1-b')w(V) . Since the weight of the smaller of S_{i} and \overline{S}_{i} is set to zero, at the

end of this iteration w'(V)>\displaystyle \frac{1}{2}(1-b')w(V) . Let T be the set output by the algorithm.
Since w'(T)=0 ,

we have w(\displaystyle \overline{T})\geq w'(V)>\frac{1}{2}(1-b')w(V)\geq b'/2 , using b'\leq 1/2 . Thus

we have shown that Algorithm 3 outputs a b'/2‐balanced cut.

The function values can be bounded as f(T_{1})=B\displaystyle \cdot O(\frac{ γ}{b-b}) and \displaystyle \overline{f}(T_{2})=B\cdot O(\frac{ γ}{b-b})
using a proof similar to that of Theorem 5.1. \square

§6. Lower bound for approximating monotone submodular functions

We present a lower bound for the problem of approximating submodular functions

everywhere, which holds even for the special case of monotone functions. Let R be a

random subset of V of size α=\displaystyle \frac{x\sqrt{n}}{5} ,
let β=\displaystyle \frac{x^{2}}{5} ,

and x be any parameter satisfying

x^{2}= ω(\ln n) . We use the following two submodular functions:

(6.1) f_{1}(S)=\displaystyle \min(|S|, α) , f_{2}(S)=\min(β+|S\cap\overline{R}|, |S|, α)
Lemma 6.1. Any algorithm that makes a polynomial number of oracle queries

has probability n^{- ω(1)} of distinguishing the functions f_{1} and f_{2} above.

Proof. By Lemma 2.1, it suffices to prove that for any set S ,
the probability that

f_{1}(S)\neq f(S) is at most n^{- ω(1)} . For the two functions above, it is easy to check

(similarly to the proof of Lemma 3.1) that \mathrm{P}\mathrm{r}[f_{1}(S)\neq f(S)] is maximized for sets S of

size α . And for a set S with |S|= α, f_{1}(S)\neq f(S) if and only if β+|S\cap\overline{R}|<|S| , or,

equivalently, |S\cap R|> β . So we analyze the probability that |S\cap R|> β.
R is a random subset of V of size α . Let us consider a different set, R' ,

which

is obtained by independently including each element of V with probability α/n . The

expected size of R' is α
,

and the probability that |R'|= α is at least 1/(n+1) . Then

\mathrm{P}\mathrm{r}[|S\cap R|> β] =\mathrm{P}\mathrm{r}[|S\cap R'|> β |R'|= α] \leq(n+1)\cdot \mathrm{P}\mathrm{r}[|S\cap R'|> β],

and it suffices to show that \mathrm{P}\mathrm{r}[|S\cap R'|> β]=n^{- ω(1)} . For this, we use Chernoff bounds.

The expectation of |S\cap R'| is α|S|/n=α^{2}/n=x^{2}/25 . Then β=5\cdot \mathrm{E}[|S\cap R'|] . So

\displaystyle \mathrm{P}\mathrm{r}[|S\cap R'|> β] < (\frac{e^{4}}{5^{5}})^{\frac{x^{2}}{25}} \leq 0.851^{x^{2}}
Since x^{2}= ω(\ln n) ,

we get that this probability is n^{- ω(1)}. \square

226 Zoya Svitkina and Lisa Fleischer

Theorem 6.2. Any algorithm that makes a polynomial number of oracle queries
cannot approximate monotone submodular functions to a fa ctor o(\sqrt{\frac{n}{\ln n}}) .

Proof. Suppose that there is a γ‐approximation algorithm for the problem, with

 γ=o(\sqrt{\frac{n}{\ln n}}) ,
which makes a polynomial number of oracle queries. Let x=\sqrt{n}/2 γ,

which satisfies x^{2}= ω(\ln n) . By Lemma 6.1, with high probability this algorithm

produces the same output (say \hat{f}) if given as input either f_{1} or f_{2} ,
defined in (6.1), with

parameter x . Thus, by the algorithm�s guarantee, \hat{f} is simultaneously a γ‐approximation
for both f_{1} and f_{2} . For the set R used in f_{2} ,

this guarantee implies that f_{1}(R)\leq
 γ\hat{f}(R)\leq γ f_{2}(R) . Since f_{1}(R)= α and f_{2}(R)= β ,

we have that γ\geq α/ β=\sqrt{n}/x=2 γ,
which is a contradiction. \square

§7. Approximating monotone two‐partition submodular functions

Recall that a 2\mathrm{P} function is one for which there is a set R\subseteq V such that the value

of f(S) depends only on |S\cap R| and |S\cap\overline{R}| . Our algorithm for approximating monotone

2\mathrm{P} functions everywhere (Algorithm 4) uses the following observation.

Lemma 7.1. Given two sets S and T such that |S|=|T| ,
but f(S)\neq f(T) ,

a

2P function can be found exactly using a polynomial number of oracle queries.

Proof. This is done by inferring what the set R is. Using S and T
,

we find two sets

which differ by exactly one element and have different function values. Fix an ordering
of the elements of S, \{s_{1}, s_{k}\} ,

and an ordering of elements of T, \{t_{1}, t_{k}\} ,
such

that the elements of S\cap T appear last in both orderings, and in the same sequence.

Let S_{0}=S ,
and S_{i} be the set S with the first i elements replaced by the first i

elements of T:S_{i}=\{t_{1}, t_{i}, s_{i+1}, s_{k}\} . Evaluate f on each of the sets S_{i} in order,
until the first time that f(S_{i-1})\neq f(S_{i}) . Such an i must exist since S_{k}=T ,

and by

assumption f(T)\neq f(S) . Let U=\{t_{1}, t_{i-1}, s_{i+1}, s_{k}\} ,
so that S_{i-1}=U\cup\{s_{i}\}

and S_{i}=U\cup\{t_{i}\}.
The fact that f(U\cup\{s_{i}\})\neq f(U\cup\{t_{i}\}) tells us that either s_{i}\in R and t_{i}\not\in R ,

or

vice versa. Without loss of generality, we assume the former (since the names of R and

\overline{R} can be interchanged). Now all elements in V\backslash U can be classified as belonging or

not belonging to R . In particular, if for some element j\in\overline{U}, f(U\cup\{j\})=f(U\cup\{s_{i}\}) ,

then j\in R ; otherwise f(U\cup\{j\})=f(U\cup\{t_{i}\}) ,
and j\not\in R . To test an element u\in U,

evaluate f(U-\{u\}+\{s_{i}, t_{i} This is the set S_{i-1} with element u replaced by t_{i} . If

u\in\overline{R} ,
then replacing one element from \overline{R} by another will have no effect on the function

value, and it will be equal to f(S_{i-1}) . If u\in R ,
then we have replaced an element from

R by an element from \overline{R} , and we know that this changes the function value to f(S_{i}) . So

Submodular Cuts and Approximating Submodular Functions 227

all elements of V can be tested for their membership in R ,
and then all function values

can be obtained by querying sets W with all possible values of |W\cap R| and |W\cap\overline{R}|. \square

\overline{\mathrm{A}\mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}4}Approximating monotone 2\mathrm{P} function everywhere. Input: V, f,p
1 :Query values of f(\emptyset) , f(V) ,

and f(\{j\}) for each j\in V
2: For each i\in\{2, n-1\} , independently generate n^{10}\displaystyle \ln(\frac{4n}{1-p}) random sets by

including each element of V into each set with probability \displaystyle \frac{i}{n} . Query the function

value for each of these sets.

3: If the previous two steps produce any two sets S_{1} and S_{2} with |S_{1}|=|S_{2}| and

f(S_{1})\neq f(S_{2}) ,
then find the function exactly, as described in Lemma 7.1.

4: Else, let j\in V be an arbitrary element, and output

\hat{f}(S)= \left\{\begin{array}{ll}
f(\emptyset) & \mathrm{i}\mathrm{f} S=\emptyset\\
 f(j) & \mathrm{i}\mathrm{f} 1\leq|S|\leq 2\sqrt{n}\\
\frac{f(V)}{2\sqrt{n}} & \mathrm{i}\mathrm{f} |S|>2\sqrt{n}
\end{array}\right.
Theorem 7.2. With probability at least p ,

the function \hat{f} returned by Algorithm
4 satises \hat{f}(S)\leq f(S)\leq 2\sqrt{n}\cdot\hat{f}(S) for all sets S\subseteq V.

Proof. If the algorithm finds two sets S_{1} and S_{2} such that |S_{1}|=|S_{2}| and f(S_{1})\neq
 f(S) during the sampling stage (steps 1 and 2), then the correctness of the output is

implied by Lemma 7.1. If it does not find such sets, then it outputs the function \hat{f} shown

in step 4. It obviously satisfies the inequality for the case that S=\emptyset . For the case that

 1\leq|S|\leq 2\sqrt{n} ,
we observe that if the algorithm reaches step 4, it must be that the

value of f is identical for all singleton sets, i.e. f(\{j\})=f(\{j'\}) for all j, j'\in V . Now,

f(S)\geq f(\{j\})=\hat{f}(S) by monotonicity. Also, by submodularity, f(S)\displaystyle \leq\sum_{j\in S}f(\{j\})=
|S|\cdot\hat{f}(S)\leq 2\sqrt{n}\cdot\hat{f}(S) , establishing the correctness for the case that |S|\leq 2\sqrt{n} . For the

last case, |S|>2\sqrt{n} ,
the inequality f(S)\leq f(V)=2\sqrt{n}\cdot\hat{f}(S) follows by monotonicity.

For the other one, \hat{f}(S)\leq f(S) ,
we need an additional nontrivial lemma.

Since the 2\mathrm{P} function f(S) depends only on two values, |S\cap R| and |S\cap\overline{R}| ,
let us

denote by f(k, l) the value of the function f on a set S with |S\cap R|=k and |S\cap\overline{R}|=l.
We say that such a set S corresponds to the pair (k, l) . We assume that 0<|R|<n,
because if |R|=0 or |R|=n ,

then f(S) is a function that depends only on |S| ,
and it

equally well can be represented as a 2\mathrm{P} function with any other set \hat{R} . Furthermore,
we assume without loss of generality that |R|\leq|\overline{R}| (otherwise interchange R and R

and let K=|R| and L=|\overline{R}| (which are not known to the algorithm).

Lemma 7.3. For any k and any l, f(k, 0)\displaystyle \geq\frac{k}{2n}f(V) and f(0, l)\displaystyle \geq\frac{l}{2n}f(V) .

228 Zoya Svitkina and Lisa Fleischer

Using this lemma to finish the proof, let k=|S\cap R| and l=|S\cap\overline{R}| . We observe that

by monotonicity, f(S)\geq f(k, 0) and f(S)\geq f(0, l) . Moreover, since |S|=k+l\geq 2\sqrt{n},
we have \displaystyle \max(k, l)\geq\sqrt{n} . So by Lemma 7.3, f(S)\displaystyle \geq\frac{\max(k,l)}{2n}f(V)\geq\frac{f(V)}{2\sqrt{n}}=\hat{f}(S) . \square

To prove Lemma 7.3, we use several preliminary lemmas.

Denition 7.4. A pair of integers (k, l) with k\leq K and l\leq L is said to be

balanced if it satisfies

(7.1) l\displaystyle \cdot\frac{K}{L}-2\leq k\leq l\cdot\frac{K}{L}+2.
Intuitively, a balanced pair (k, l) is one in which \displaystyle \frac{k}{l} is close to \displaystyle \frac{K}{L} ,

so that a set S

corresponding to this pair has the number of elements from R and \overline{R} proportional to

the sizes of the two sets.

Lemma 7.5. Suppose that m\leq n elements are selected independently with prob‐

ability q\in [\displaystyle \frac{1}{n}, \frac{n-1}{n}] each, and let X denote the total number of selected elements. Then

for any integer x\in[0, m-1], 1/n^{2}\leq \mathrm{P}\mathrm{r}[X=x+1]/\mathrm{P}\mathrm{r}[X=x]\leq n^{2}.

Proof.

\displaystyle \frac{\mathrm{P}\mathrm{r}[X=x+1]}{\mathrm{P}\mathrm{r}[X=x]}=\frac{(_{x+1}m)q^{x+1}(1-q)^{m-x-1}}{(_{x}^{m})q^{x}(1-q)^{m-x}}=\frac{m!x!(m-x)!q}{(x+1)!(m-x-1)!m!(1-q)}
=\displaystyle \frac{(m-x)q}{(x+1)(1-q)},

with the minimum value of 1/m(n-1)\geq 1/n^{2} achieved at x=m-1 and q=\displaystyle \frac{1}{n} ,
and

the maximum value of m(n-1)\leq n^{2} achieved at x=0 and q=\displaystyle \frac{n-1}{n}. \square

Lemma 7.6. If Algorithm 4 reaches step 4, then with probability at least p , for
all balanced (k_{1}, l_{1}) and (k_{2}, l_{2}) such that k_{1}+l_{1}=k_{2}+l_{2} ,

it holds that f(k_{1}, l_{1})=
f(k_{2}, l_{2}) . In other words, for all balanced pairs (k, l) ,

the value of f(k, l) depends only
on k+l.

Proof. The lemma follows if we show that with probability at least p ,
for each

balanced (k, l) with k+l<n ,
the algorithm samples at least one set S corresponding

to (k, l) . This is because the algorithm verifies that the function value for the sets that

it samples depends only on the set size.

So consider a specific balanced pair (k, l) and one random set S generated by the

iteration i=k+l of step 2 of the algorithm. The probability of sampling each element

in this iteration is q=\displaystyle \frac{i}{n}=\frac{k+l}{K+L} . Using (7.1) and its equivalent (k-2)L/K\leq l\leq
(k+2)L/K ,

we see that this probability satisfies the following:

\displaystyle \frac{k}{K}-\frac{2L}{Kn}\leq q\leq\frac{k}{K}+\frac{2L}{Kn} and \displaystyle \frac{l}{L}-\frac{2}{n}\leq q\leq\frac{l}{L}+\frac{2}{n}.

Submodular Cuts and Approximating Submodular Functions 229

So the expected value of |S\cap R| is qK\in[k-2L/n, k+2L/n]\subseteq[k-2, k+2] . Similarly,
the expected value of |S\cap\overline{R}| is qL\in[l-2, l+2] . Let μ_{k} be the most likely number

of sampled elements when independently sampling K elements with probability q each.

Then μ_{k} is equal to either \lfloor qK\rfloor or \lceil qK\rceil . From above considerations and because k is

an integer, we have that μ_{k}\in[k-2, k+2] . Now, since μ_{k} is the most likely value, we

know that \mathrm{P}\mathrm{r}[|S\cap R|=μ_{k}]\geq 1/(K+1)\geq 1/n . By Lemma 7.5 (with m=K),

\mathrm{P}\mathrm{r}[|S\cap R|=k]\geq \mathrm{P}\mathrm{r}[|S\cap R|=μ_{k}]\cdot n^{-2\cdot|k-μ_{k}|}\geq n^{-5}

We similarly define μ_{l} ,
observe that μ_{l}\in[l-2, l+2] ,

and conclude that \mathrm{P}\mathrm{r}[|S\cap\overline{R}|=l]\geq
 n^{-5} . Since the two events are independent, the probability that both of them occur,

and thus that S corresponds to (k, l) ,
is at least n^{-10}.

We observe that for any i
,

there are at most four balanced pairs (k, l) such that

k+l=i . This is because if some pair (k, l) satisfies (7.1), then the pair (k-4, l+4)
doesn�t satisfy it:

k-4\displaystyle \leq (l\frac{K}{L}+2)-4=l\frac{K}{L}-2<(l+4)\frac{K}{L}-2.
So there is a total of at most 4n pairs (k, l) for which we would like the algorithm to

sample their corresponding sets. Since the number of trials for each value of k+l is

n^{10}\displaystyle \ln(\frac{4n}{1-p}) ,
the probability that a set corresponding to any particular pair (k, l) is not

sampled is at most

(1-n^{-10})^{n^{10}\ln(\frac{4n}{1-p})} \displaystyle \leq e^{-\ln(\frac{4n}{1-p})}=\frac{1-p}{4n}.
Since there are at most 4n pairs of interest, by union bound we have that the probability
that at least one of them remains unsampled is at most (1-p) . \square

Suppose the condition in Lemma 7.6 holds. Let us define a function F(i) to be equal
to f(k, l) such that k+l=i and (k, l) is balanced. F(i) is defined for all i\in\{0, n\},
since for any such i there is at least one balanced pair (k, l) with k+l=i.

Lemma 7.7. F(i) is a non‐decreasing concave function.

Proof. Let \triangle(i)=F(i+1)-F(i) . It suffices to show that the sequence of

increments \triangle(i) is non‐negative and non‐increasing. For any i
,

we define a pair (k_{i}, l_{i})=

(\displaystyle \lfloor\frac{iK}{n}\rfloor, \lceil\frac{iL}{n}\rceil) . It can be verified that all pairs (k_{i}, l_{i}) as well as (k_{i}+1, l_{i}) are balanced.

Furthermore, k_{i}+l_{i}=i (and consequently k_{i}+1+l_{i}=i+1), so that f(k_{i}+1, l_{i})-
f(k_{i}, l_{i})=\triangle(i) . Also, both \{k_{i}\} and \{l_{i}\} are non‐decreasing sequences. The decreasing

marginal values of the submodular function f imply that \triangle(i+1)=f(k_{i+1}+1, l_{i+1})-
f(k_{i+1}, l_{i+1})\leq f(k_{i}+1, l_{i})-f(k_{i}, l_{i})=\triangle(i) , showing that \triangle(i) �s are non‐increasing.
The monotonicity of f implies that they are also non‐negative. \square

230 Zoya Svitkina and Lisa Fleischer

We next define two sequences of pairs, (k_{i}^{K}, l_{i}^{K}) and (k_{i}^{L}, l_{i}^{L}) , ranging from i=0

to i=n
,

which we call the K ‐biased sequence and the L ‐biased sequence, respectively.
The properties of these two sequences will be used in the remainder of the proof. The

definitions are inductive, with both sequences starting at (0,0) .

(k_{i+1}^{K}, l_{i+1}^{K})=\left\{\begin{array}{ll}
(k_{i}^{K}+1, l_{i}^{K}) & \mathrm{i}\mathrm{f} k_{i}^{K}\leq l_{i}^{K} \frac{K}{L}\\
(k_{i}^{K}, l_{i}^{K}+1) & \mathrm{i}\mathrm{f} k_{i}^{K}>l_{i}^{K} \frac{K}{L}
\end{array}\right.
(k_{i+1}^{L}, l_{i+1}^{L})=\left\{\begin{array}{ll}
(k_{i}^{L}+1, l_{i}^{L}) & \mathrm{i}\mathrm{f} k_{i}^{L}<l_{i}^{L} \frac{K}{L}\\
(k_{i}^{L}, l_{i}^{L}+1) & \mathrm{i}\mathrm{f} k_{i}^{L}\geq l_{i}^{L} \frac{K}{L}
\end{array}\right.

Let us call the change from (k_{i}, l_{i}) to (k_{i+1}, l_{i+1}) in either of the two sequences a K‐

step if the first component of the pair increases by one, and an L ‐step if the second

component increases. The only difference between the two sequences is that when

equality k=l K/L holds, we take a K‐step in the case of the K‐biased sequence,

and an L‐step in the case of the L‐biased sequence. For both sequences it holds that

k_{i}^{K}+l_{i}^{K}=k_{i}^{L}+l_{i}^{L}=i, k_{i}^{K} and k_{i}^{L} range between 0 and K
,

and l_{i}^{K} and l_{i}^{L} range

between 0 and L.

Lemma 7.8. All pairs in the K ‐biased and L ‐biased sequences are balanced.

Proof. The proof is by induction, and it is the same for both sequences, so we

denote either sequence by (k_{i}, l_{i}) . The first pair (0,0) is balanced. Now we assume

that the pair (k_{i}, l_{i}) is balanced, and would like to show that the pair (k_{i+1}, l_{i+1}) is also

balanced. Suppose (k_{i+1}, l_{i+1})=(k_{i}+1, l_{i}) . Then it must be that k_{i}\leq l_{i} \displaystyle \frac{K}{L} . Then

l_{i} \displaystyle \frac{K}{L}-2\leq k_{i}\leq k_{i}+1 \leq l_{i} \frac{K}{L}+1.
If (k_{i+1}, l_{i+1})=(k_{i}, l_{i}+1) ,

then it must be that k_{i}\geq l_{i} \displaystyle \frac{K}{L} . Then

(l_{i}+1) \displaystyle \frac{K}{L}-2\leq l_{i} \frac{K}{L}\leq k_{i} \leq l_{i} \frac{K}{L}+2\leq(l_{i}+1) \frac{K}{L}+2,
with the leftmost inequality following because K/L\leq 1. \square

Lemma 7.9. In the K ‐biased sequence, every K ‐step is followed by at most \displaystyle \lceil\frac{L}{K}\rceil
 L ‐steps. In the L ‐biased sequence, every L ‐step is followed by at most one K ‐step.

Proof. Suppose that the K‐biased sequence, after some point (k, l) ,
takes one K‐

step followed by \displaystyle \lceil\frac{L}{K}\rceil L‐steps, reaching the point (k+1, l+\displaystyle \lceil\frac{L}{K}\rceil) . Since the step after

(k, l) is a K‐step, it must be that k\leq lK/L . So

(l+\displaystyle \lceil\frac{L}{K}\rceil) \frac{K}{L}\geq l\cdot\frac{K}{L}+1\geq k+1,

Submodular Cuts and Approximating Submodular Functions 231

which means that the next step in the K‐biased sequence will be a K‐step.

Similarly, for the L‐biased walk, suppose that from some point (k, l) ,
the sequence

takes an L‐step, followed by a K‐step, reaching the point (k+1, l+1) . Then k\geq lK/L
implies that

(l+1) \displaystyle \frac{K}{L}=l\cdot\frac{K}{L}+\frac{K}{L}\leq l\cdot\frac{K}{L}+1\leq k+1,
and thus the next step is an L‐step. \square

Proof of Lemma 7.3. To lower‐bound the value of f(k, 0) ,
we consider the K‐

biased walk from (0,0) to a point (k, l') which is the last point before the K‐step to

(k+1, \cdot) . We let f(k, 0)=F(0)+\displaystyle \sum_{j=1}^{k} δ(j) ,
where δ(j)=f(j, 0)-f(j-1,0) . For

each K‐step in the K‐biased walk, where k_{i-1}^{K}=j-1 and k_{i}^{K}=j ,
let \triangle^{K}(j)=

f(k_{i}^{K}, l_{i}^{K})-f(k_{i-1}^{K}, l_{i-1}^{K})=f(j, l_{i}^{K})-f(j-1, l_{i-1}^{K}) . By submodularity of f it follows

that \triangle^{K}(j)\leq δ(j) .

We claim that \displaystyle \sum_{j=1}^{k}\triangle^{K}(j)\geq[f(k, l')-F(0)]/(1+\lceil\frac{L}{K}\rceil) . In other words, at least

1/(1+\displaystyle \lceil\frac{L}{K}\rceil) fraction of the increase in F as we proceed in the K‐biased walk, is due

to the K‐steps. This follows from several observations. First, the K‐biased walk starts

with a K‐step. Second, by Lemma 7.9, each K‐step is followed by no more than \displaystyle \lceil\frac{L}{K}\rceil
 L‐steps. And third, \triangle^{K}(j) is a decreasing sequence (by concavity of F).

Further, by concavity of F
,

we have that f(k, l')\displaystyle \geq\frac{k+l'}{n}F(n) . By definition of l',
we have l'\geq kL/K . Also, 1+\displaystyle \lceil\frac{L}{K}\rceil\leq 2(L/K+1) . Putting everything together, we have

f(k, 0)=F(0)+\displaystyle \sum_{j=1}^{k} δ(j)\geq F(0)+\sum_{j=1}^{k}\triangle^{K}(j)\geq F(0)+\frac{f(k,l')-F(0)}{1+\lceil\frac{L}{K}\rceil}\geq\frac{f(k,l')}{1+\lceil\frac{L}{K}\rceil}
\displaystyle \geq\frac{k+l'}{n}\frac{F(n)}{2(L/K+1)}\geq\frac{k(L/K+1)}{n}\frac{F(n)}{2(L/K+1)}=\frac{k}{2n}F(n)

To bound f(0, l) ,
we consider the L‐biased walk from (0,0) to (k', l) for some k'

Because of concavity of F
,

the L‐steps in the walk account for at least half the increase

in f , yielding f(0, l)\displaystyle \geq\frac{1}{2}f(k', l) . Also, f(k', l)\displaystyle \geq\frac{k'+l}{n}F(n)\geq\frac{l}{n}F(n) . So we get that

f(0, l)\displaystyle \geq\frac{l}{2n}F(n) . \square

References

[1] S. Arora, E. Hazan, and S. Kale. O(\sqrt{\log n}) approximation to sparsest cut in \tilde{O}(n^{2}) time.

In Proc. 45th FOCS, pages 238‐247, 2004.

[2] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph
partitioning. In Proc. 36th STOC, 2004.

[3] C. Chekuri, G. Calinescu, M. Pal, and J. Vondrák. Maximizing a submodular set function

subject to a matroid constraint. In IPCO, 2007.

232 Zoya Svitkina and Lisa Fleischer

[4] W.H. Cunningham. Minimum cuts, modular functions, and matroid polyhedra. Networks,
15:205−215, 1985.

[5] U. Feige, V. Mirrokni, and J. Vondrák. Maximizing non‐monotone submodular functions.

In Proc. 48th FOCS, 2007.

[6] M. Goemans, N. Harvey, S. Iwata, and V. Mirrokni. Approximating submodular functions

everywhere. In Proc. 20th SODA, 2009.

[7] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in

combinatorial optimization. Combinatorica, 1:169−197, 1981.

[8] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial

Optimization. Springer‐Verlag, 1988.

[9] N. Harvey. Matchings, Matroids and Submodular Functions. PhD thesis, MIT, 2008.

[10] A. Hayrapetyan, C. Swamy, and É. Tardos. Network design for information networks. In

Proc. 16th SODA, pages 933‐942, 2005.

[11] B. Hoppe and É. Tardos. The quickest transshipment problem. Math. Oper. Res., 25(1):36-
62, 2000.

[12] S. Iwata. A faster scaling algorithm for minimizing submodular functions. SIAM J.

Comput., 32:833−840, 2003.

[13] S. Iwata. Submodular function minimization. Math. Programming, 112:45−64, 2008.

[14] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm
for minimizing submodular functions. J. ACM, 48(4):761-777 , 2001.

[15] J. Lee, V. Mirrokni, V. Nagarajan, and M. Sviridenko. Non‐monotone submodular maxi‐

mization under matroid and knapsack constraints. In Proc. 41th STOC� 2009.

[16] F.T. Leighton and S. Rao. Multicommodity max‐flow \displaystyle \min‐cut theorems and their use in

designing approximation algorithms. J. ACM, 46, 1999.

[17] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1990.

[18] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maxi‐

mizing submodular set functions. Mathematical Programming, 14:265−294, 1978.

[19] J. B. Orlin. A faster strongly polynomial time algorithm for submodular function mini‐

mization. In IPCO, 2007.

[20] M. Queyranne. Minimizing symmetric submodular functions. Math. Programming, 82:3‐

12, 1998.

[21] H. Räcke. Optimal hierarchical decompositions for congestion minimization in networks.

In Proc. 40th STOC, pages 255‐263, 2008.

[22] A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly
polynomial time. J. of Combinatorial Theory, Ser. B, 80(2):346-355 , 2000.

[23] M. Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Oper. Res. Lett., 32(1):41-43 , 2004.

[24] Z. Svitkina and L. Fleischer. Submodular approximation: Sampling‐based algorithms and

lower bounds. In Proc. 49th FOCS, 2008.

[25] Z. Svitkina and É. Tardos. Facility location with hierarchical facility costs. In Proc. 17th
SODA, 2006.

[26] C. Swamy, Y. Sharma, and D. Williamson. Approximation algorithms for prize collecting
steiner forest problems with submodular penalty functions. In Proc. 18th SODA, 2007.

[27] L.A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem.
Combinatorica, 2(4):385-393 , 1982.

[28] L. Zhao, H. Nagamochi, and T. Ibaraki. Greedy splitting algorithms for approximating
multiway partition problems. Mathematical Programming, 102(1):167-183 , 2005.

