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Five-dimensional AGT Relation, ¢-)V Algebra and
Deformed (S-ensemble

By

Hidetoshi AwATA* and Yasuhiko YAMADA™**

Abstract

We define a g-deformation of the f-ensemble which satisfies ¢-Wx constraint. We also
show a relation with the Nekrasov partition function of 5D SU(N) gauge theory with Ny = 2N.

§1. Introduction

In Ref. [1], Alday Gaiotto and Tachikawa discovered remarkable relations between
the 4D N = 2 super conformal gauge theories and the 2D Liouville conformal field
theories. Some explanations have been addressed from S-ensemble (generalized matrix
model) [2, 3] in Ref. [4]-[7].

In the pure SU(2) case, the AGT relation [8] between the instanton part of the
partition functions of the gauge theory and correlation functions of the Virasoro algebra
is extended naturally to 5D in Ref. [9] (see also [10]). The instanton counting [11]-[14]
of the 5D gauge theory [15] can be viewed as a g-analog of 4D cases, [16]-[18] and there
also exists a natural g-deformation of the Virasoro/Wy algebra. [19]-[22]

In this talk, we will study a 5D extension of the AGT relation with Ny = 2N in
terms of S-ensemble. The Ayx_1 type quiver matrix model (the ITEP model) [23] was
generalized as a (-ensemble [2] satisfying the Wy constraint by Ref. [3]. The partition
function of the Ayx_; type [-ensemble is defined as the singular vector of the Wy
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algebra as follows|3]

N-1 Ta a -
cli a _a+1l
(1‘1) Zcf — f J H Acﬁ N (z%,297)
a=1 j=1
with z¥ := 0. Here A%(z) := [Tic; (1— zj/zi)ﬁ (zi/z; — 1)? is the B-deformed kernel
and
(1.2)
Ta Ta+1
Web(ze, 22t Z B Z ymple) — Z log (1 —2{*1/2) — (sa + 1) log 2}
=1 n>0 j=1

is the Penner type potential. The partition function Z]C\f is a function in coupling

(@) and is specified by a set of integers r, and s, (n € Nanda =1,2,---, N).

constants pp,
Since Z§ is the singular vector, it satisfies the Wy constraint W%, Z¢ = 0 (n > 0)
with the Wy generators W9, . which Virasoro central charge is c = N — 1 — N(N? —
1) (vVB-1/ \/3)2 Under the strategy of Ref. [3], we will introduce a g-deformed g-
ensemble which automatically satisfies ¢-Wp constraint. The partition function Zy
of the An_1 type ¢-deformed [S-ensemble will be defined as the singular vector of the

¢-Wy algebra and is given by replacing A%(z) and W (2%, 2+1) in (1.1) with

—q'pzi/zi YT _(r41-2i
(1.3) A(z)::H(l—zj/zi)H—ll 4/ JIE,

— oty ]
i<j £>0 q“tzj /% i=1
Tq [6] . Ta+1
W (2%, 2°T1) = Z Z — | (2" pl@ + Z (p2 z““/z ) — (84 + 1) log 2
n
=1 | n>0

Here [B]q = (q§ - q_g)/(q% - q—%), t = ¢® and p = ¢/t. Then this satisfies the ¢-Wy
constraint with the ¢-Wy generators defined in (3.12). If we specialize the mass param-
eters appropriately, the 5D Nekrasov partition function of SU(N) gauge theory with
Ny = 2N reduces to the g-hypergeometric function. For N = 2, we will show that if we
specialize the coupling constants appropriately, Z5 also reduces to the g-hypergeometric
function and coincides with the corresponding Nekrasov partition function.

This paper is organized as follows: In section 2, we start with recapitulating the
result of the ¢-Wpy algebra and also define primary fields. In section 3, we introduce
q-deformed S-ensemble which automatically satisfies ¢-Wy constraint. Section 4 deals
with the N = 2 case. Finally in section 5, we explain a reduction of the 5D Nekrasov
partition function to the g-hypergeometric function and show a coincidence with the
partition function of our g-deformed (-ensemble. Appendix A contains a definition of
the Macdonald polynomial and several useful formulas.
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Notation. Let [n], := (p? — p~%)/(p2 — p~2). Parameters are ¢ := e/VP = ¢9:F,

ti=qP =e"VP = 9P 4 .= ¢/t = e MVB-1VB) 4 =7 and v := (q/t)%. We will use
the same letter p also for the set of power sums p := (p1,pa,---), but this appears only
at Px(z[p]) or Za(p). The integral § 59 f(z) denotes the constant term in f.

§2. Quantum deformation of Wy algebra

We start with recapitulating the results of the ¢-Wy algebra [21, 22] and define
primary fields.

§2.1. ¢-Wy algebra

We use three kinds of basis for bosons. First we define fundamental bosons h?, and
Qt fori=1,2,---,N and n € Z such that!

w0 N —1]

. : ]. n n n n n : ;
2.1 tpl = "(g2 —qg2)(t? — Pr 3 Nsgn(G—i)g

pn

N N
(2.2) [hn, ‘;l] = (5” - N) 5n,07 [Qha ;z] = 07 Zp hn =0, ZQh =0

with ¢, t := ¢® € C, p := q/t, [n], = (p? —p~%)/(p2z —p~7) and sgn(i) := 1, 0 or —1
fori > 0,7 =0ori <0, respectively. Here [A, B] := AB — BA. This bosons correspond
to the weights h; of the vector representation whose inner product is (k;-h;) = 6i;—1/N.
This algebra is invariant under the following involutions: w3 =1,

(23) wi: VB 1/VB (0t (), By b Qe @,
(24) w_: VB VB, (g,t) = (Y, B BT Qe QT
We also use root type bosons a? := h% — h2t! and Q¢ := Q% — ZH and weight type
bosons A% := Y7 hbp(®=0=5)" and Q% == Y¢_, Qb fora=1,2,--- ,N — 1.

Let us define fundamental vertices A;(z) and ¢-Wy generators We(z) for i =
1,2,---, N as follows:

N4+1 .

(2.5) Ai(z) :=sexp Zh%z‘” s qVPhop i
n#0

Z :Ajl (Z)Ajz (Zp_l) ’ "Aji(zpl_i):
1<j1 << <N

(2.6) Wi(zp%) :

1To obtain the ¢ = 1 limit, we need to change the normalization of bosons by
R = R (gF — g ) — B m? = b 1B (aF — qF)/n (n # 0) with

hf)old = hénew and onld = sznew unchanged. Letting ¢ — 1 yields the four-dimensional case.[3]
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and W9(z) := 1. Here g * g stands for the usual bosonic normal ordering such that
the bosons h! with non-negative mode n > 0 are in the right. These generators are
obtained from the following quantum Miura transformation:

N
1—i

(27) Y (FL)Wiep = )pN TP
1=0

=: (0" = A1(2)) (0 = Aa(zp™)) -+ (0 — An(2p' ™)) s

with D, := z%. Remark that pP= is the p-shift operator such that pP= f(z) = f(pz).
The mode n generator W} is defined by Y-, ., Wiz"" := W'(z).
By using root type bosons we define screening currents S%(z) as follows:

(2.8)

ol _ +1 ya +1 4
S4(2) = rexp q F Y e pre®YPTQEEITE g =g € =,
nro &1 — &4

with a? = h% — ho*! and Q% := Q¢ — Q¢'. Note that the Langlands duality
w_wi S (z) = S%(z). We denote the negative mode part of S¢(z) by (S4(z))- =
exp {:F Y n<o —nL"_%—z_"} Then the screening charges defined by § dzS%(z) com-

RN
mute with any ¢-Wy generators

(2.9) []f 4288 (2), WP(w)] =0,  a,b=1,2,--- ,N—1.

For parameters u and v with u :=t7, let us define the following vertex operators

(2.10) V.2 (z) := sexp Z (u? —u 27 Y e e WVBQR ,—VBAG

n#0

with A% := 57 hbpt=a=3)7 and Q% := 3¢ Qb. They satisfy
a,L E . a 1@ . a,R i
211 gif (2) MV ) - ViwA)gnr (2)
=t =1)) b0 (
b=1

where g%-l'(x) and g [f(x) are inverse of the OPE factors,

w
1
U2

) A2V (w)s,

z

A (2)VE(w)s uF —ut [a]pn . _a
2.12 a,L — 7 u L p (a_N),.n
(2.12)  gpp(z) = T2 eXp{nZ>0 TR SR L

)
)
a Ry . :VJ’ w)Aj(Z): - u¥ —u"z [a]p" %(N—a)xn
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for any 7 > a.

§2.2. Highest weight module of ¢-)Vy algebra

Next we refer to the representation of the ¢-Wy algebra. Let F, be the boson
Fock space generated by the highest weight state |«) such that a®]|0) = 0 for n > 0
and |a) := eXp{Za 1 a“Q‘]\HO). Note that af|a) = a®|a). The dual module Fris
generated by («| such that (0ja®,, = 0 for n > 0 and («| := (0| exp{— Za 1 a“Q‘}\}.
The bilinear form F} ® F, — C is uniquely defined by (0/0) = 1.

Let |A) be the highest weight vector of the ¢-Wy algebra which satisfies W|A) = 0
forn >0anda=1,2,---,N—1and W§|A) = A?|A) with \* € C. Let M) be the Verma
module over the ¢g-Wy algebra generated by |A). The dual module M} is generated by
(A such that (A|W2 = 0 for n < 0 and (A|W§ = A*(A|. The bilinear form My®@M, — C
is uniquely defined by (A|A) = 1. A singular vector |x) € M) is defined by W2|x) =0
for n > 0 and W{|x) = (A* + N%)|x) with N* € C.

The highest weight vector |a) € F, of the boson algebra is also that of the ¢-Wy
algebra, i.e., W“|a) =0forn>0anda=1,2,---,N — 1. Note that Wg|0) = [N]3]0)
with [N, := (p* —p~%)/(p? —p~%).

For a set of non-negative integers s, and ry, > r441 >0 witha=1,---, N —1, let
+1 F1
(2.14) :I:a;'f;,“ =(147re —Tac)VB — A +s)VB ro =0,
~ +1 F1
(2.15) taf =1 -1 +rar1)VB —(L+s)VB .  rnv:=0.

The singular vectors |xt,) € F, o= are realized by the screening currents as follows:

£\ _ " dzj ql .. aN-1/ N-1y _ gN-1
216)[xt) = ¢ T T1 52 Shh - SLG) - sE TGN s N las)
a=1 1
N— 1ra]
;leHlm )7 () - Al G (27,21 E5) o)

with 2V := 0,7 :=1/2, £, := q and £_ :=t. Note that w_wi|X; ) = |x;,)- Here

(217) H(Z,w): Z wig,t HeXp{ [B] _% } HH 11_—qqtziz'lfj:ﬂ7

n>0 i,j £>0
n 2 ! g
(2.18)  A(z):=A(z;q,t Hexp{ Z [2],n [ 4 } Hz (r+1-20)8
1<g n>0 =1
1 - q pz] /Zz (r+1 2z)B
=[J(—z/2) [ —2— H lq] <1
i<j £>0 L—q%zj/zi

with 3 :=logt/logq. Note that A(cz) = A(z).
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§3. Quantum deformation of S-ensemble

Note that the singular vector in (2.16) is naturally mapped to the Macdonald
polynomial [24] defined in the appendix A. [22] As a generalization of this map one
can define, under the strategy of Ref. [3], a quantum deformation of the generalized
matrix model, i.e., g-deformed [-ensemble.

§3.1. g¢-deformed p-ensemble

With a new parameters p@ = (p{*,p{®,--+) let us define the following vertex
operator
Av @
(3.1) H exp Z T~z Pn
ns04? — 4

with A2 := 30 hlp®=a=2)" and Q% := Yp_, Q4. Note that [A%, AL ] = 0 for n,m >
1<a<N

0. Then (a|Vy defines the isomorphism between the boson algebras (hy.), 27~ and
< (a) ) >1<a<N by
Pn ", ’ap @) /nEN
‘ ﬂ t 72LN 1

(3.2) (a|Vyht, = A (p~)p®) (a|Vy,

b=1

N-1
(33) (alvivki, = (a* —a™5) 3 B <b) pWORGIA

for n > 0 and (a|VNhl = ht{a|Vy with bt = [ évz_il — évz_ll b/N] a®. Here

: [NOG <b)—i], | .
(3.4 AM(p) = P 3 (b=N6(i>b))
) ( ],
(3.5) B (p) :=p3 iy — p_%(si—l,b

with 6(P) :=1 or 0 if the proposition P is true or false, respectively.

The vector [St,) := HN_II o1 (ST (22)) = - lajf,) in (2.16) also defines another

1<a<N t < Ta ( k) >1<a<N b

linear map from (h“)neN 1 neN

ﬂ n N— Tb
(3.6) hi ISy = ISt Z P> ()", n>0.
b=1 k=1

Let us define the following partition function

Definition 3.1.  Let Zy := Zy ({p'Y}05") == (o, |V X))
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Then by (2.16), (2.8) and (3.3), we have

N—-1 r,
ZN rs|VNSl(zl) S-li-(z}'l)s:’l-v_l(zl ) SN 1( 'I’N_l) &;—,s>
a=1 j= 1
%NHI ﬁ —Sq exp Z [B]qn (zq)np(a,) . A(z“)H (Z_a’ pza+1)
2mz n 700" ’
a=1 j=1 n>0
N—1 rq
:% H ﬁ dz H A W(za’za—'rl)
271
a=1 —1 a=1
with
(3.7)
W(Za Za+1) ’rza Z @ (a) + % <p_za+1> B (8 + 1) ],nga
n “ ¢
1=1 | n>0
Here 2V := 0. This Zy is regarded as a ¢-deformation of the partition function of the

generalized matrix model,[3] i.e., S-ensemble. One can define other type of partition
functions by acting involutions (2.3), (2.4) and (A.8).

We can calculate this integral by using the Macdonald polynomials Py(x) with the
Young diagram A, their fusion coefficient fY , and the inner products (x,*) and (x,);
defined in the appendix A.

Proposition 3.2.

Sa e Pa x| p® La Ta:\ Ha a ;«Ia
09 Zu= 1] 3 5 i oy Dol Dy el 0]

a=1 g, pta

with (0) := 1. Here Ag, ptq and v, are Young diagrams such that \g; > Ag it1, and so
on. Px(z[p]) denotes the Macdonald function in power sums p := (p1,p2,--).

One can show that (3.8) is summed over (N — 2) + (N — 3) Young diagrams for
N > 3.

For any function O in z§’s, the correlation function with respect to O is defined by

N-1 Ta dZ

(39) (o= 7y p L II55© TI Ao e

a=1

The effective action Seg defined by Zy =: ¢ H H
(310)

[6] N-1 AN N-1 r,
Seft = ZW a1l 2[2]19"anzz<z%> +5ZZ(Ta+1—2i)10ng-

n>0 a=1 1<j a=1 1=1

o1 2m Seff is now
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§3.2. ¢-Wn constraint, Loop equation and quantum spectral curve

Next let us define A;(z) and Wi(z) by the isomorphism (3.3) as follows:

~

(311) Ai(z)<a’r,s|VN = <a’r,s|VNAi(Z)7
(3.12) W (2){ s [V := (o o[ VN W (2)

and Y o, Wiz™" := W¥(z), which are the power sum realization of fundamental ver-
tices A;(z) and ¢-Wy generators W(z), respectively. Then the highest weight condition
for the singular vector W%|x) = 0 for n > 0 is equivalent to the following ¢-Wy con-
straint:

Theorem 3.3.
(3.13) WeZn =0, 0> 0.
Let us define A;(z) and 17\7’(2) by linear maps (3.3) and (3.6) as follows:

(3.14) (h VNS (2) = (o [VivAi(2) S]),
(3.15) (0 VISV (2) 1= (o VAW (2)]S,,)

and » W};z_" = Wz(z) Hence

(3.16) (W@ )) = = @ )

Therefore the highest weight condition for the singular vector W%|x) = 0 for n > 0 is
equivalent to the following loop equation:

Theorem 3.4.

(3.17) << Wa >> =0, n>0.

The quantum spectral curve should be

(3.18) << (pD" — Kl(z)) (pDZ — Xz(zp_l)) (pD" — KN(zpl_N)) >> =0

which regularity in z is guaranteed by the loop equation (3.17).

Let (q,t) =: (efez, e~ Be1) =: (e9F 9:PR) with the radius R € R of the 5th dimen-
sional circle S'. Let us rescale the variables as 137({1) = gsp%a), Tq i= gsTq and Sy := gsSq4.
Under the limit g, — 0 and 7, s, — oo with fixed 7, and §,, the sift operator p”= tends

to a commutative variable and the quantum spectral curve reduces to the usual one.
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§4. N =2 case

Here we give an example when N = 2, i.e., the g-deformed Virasoro case. The
partition function Z5 is now

n>0

Then we have

Proposition 4.1.  The partz'tz'on function Zy(p) substituting p, =, v+ 11:11:: y"
and i:;npn—( DY, 2 + 1 tny ™) are

Zo <Zz T; + Hy) (0.h) g5t qz
(42) 21 ql_str_l/u; @
% (=)
Z> (Zz Ti + llT:tLy) o | tT ¢tz
(43) Wq,t =21 t1-r s—l/u; u_ :
7 (1 ty) q Y

with wq s in (A.8). Here go(q’ ) [aéb;x] is the multivariate q-hypergeometric function
[28]

a i—1 _ qad =1\ ($i~1 — pgi—1
I T D S O ) e

(1 — cqi=1)(1 — gri—i 10y

/-’(/\)>\SM (1,5)EX
Since Py(w;q,t) = Py(z;q7 1, t71), ggo(lq’t) [“éb; a:] satisfies
wb_ Sty [ bt ab
4.5 (q t) RN C A ’ )
( ) c 2¥1 C_l qc
When M = oo
b b ab
(4.6) Tl AT Sl e R T
c c’c

When M =1, cp(q t) [ ;T ] reduces to the usual ¢g-hypergeometric function

n—1

plan [@b T ; (1 —ag")(1 - bg") _
(4.7) 2 {c,x].—zm{c,q,] > an H 1= egh) (1 =g’ M =1.

n>0

In the next section we will show a relation between our Zs (a: + ll_T";y) and the
5-dimensional SU(2) Nekrasov partition function.
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§5. Five-dimensional Nekrasov partition function

Let Q@ = (Q1, -+ ,QnN) with Hfil Q; = 1 and QF = (Qit,~~ ,Q]j\:,) be sets of
complex parameters. The instanton part of the five-dimensional SU(IN) Nekrasov par-
tition function with Ny = 2N fundamental matters® is written by a sum over N Young
diagrams \; (i =1,2,---, N) as follows(double-sign corresponds):[25, 18]

inst Ny, o (0Q;/QF ) Nax, (vQT /Q:) A\
o) Q) = {)‘Z} H : N, (Qi/AQj) H (v_N>

1 £\
with v := (g/t)2, Na,(Q) := Nau(Q;q,t), AL = A2N H;V=1 (E%) and

(5.2) Nau(@a.t):= ] (1—Qin_jt“3—i+1) I1 (I_Qq—ui+j—1t—>\;+i>

(i,4)EN (i,§)€Em
_ H (1 _ Qin—jtu}—iH) H (1 _ Qq—ui+j—1t—>\;+i> '
(i,§)€Em (i,5)EA

Here A = (A1, A2, - -+ ) is a Young diagram such that A; > X\;11. X is its conjugate Young
diagram and |[A] = Y, A, Z™5%(Q; Q15 Q) is symmetric in masses Qij’s. Note that
Nxu(Q;q,t) satisfies

(5.3) Ny, (vQ; ¢, ) = Naa(Q/viq ' t71) = N (Q/v3 t, q).

(5.4) Nxe(VQ)Nex(vQ') = Nax(v/Q)Nxa (v/Q')(QQ").

There exists @ such that Nye(Q) vanishes except for A = (0), (n) or (1™). Hence one
can adjust N out of Ny = 2N parameters QF,’s so that (5.1) reduces to all A; = (0) but a
Aj = (n) or (1™) with n € Z>o same as Ref. [26]. For example, if (Q1, -+ ,Qn-1,Qn) =
(Qf,---,Q%_,,tQ%) /v with T[Y, QF = vV /t then the right hand side of (5.1) is
summed over only (Ar, -, An—1,An) = ((0),---,(0), (n)) with n € Z>(. On the other
hand,
if (Qu+,Qn-1.Qn) = (QF, -+, Q%_,, Q% /a)/v with [[;L, QF = qu" then only
(A1, s An—1,An) = ((0),---,(0),(1™)) contributes. Therefore we obtain

2The parameters (g,t) are related with those (e1,e2) of the © background through (g,t) =
(efe2 e~ Fe1) where R is the radius of the 5th dimensional circle. The parameter Q is related
with the vacuum expectation value a of the scalar fields in the vector multiplets and the mass m
of the fundamental matter as Q; = q%, Q;" =q ™ and Q; = q ™N+i,



F1vE-DIMENSIONAL AGT RELATION, ¢-WW ALGEBRA AND DEFORMED [3-ENSEMBLE

Proposition 5.1.

11

N +
i + + + Q ’ 7 0@ -1 AN
(5.5) Z™HQT /v, QN1 /v QN /v) = non-1 | 0" o oN
QN 7 QN i
Qn Qn T
vEL vxX
_ A T e
N¥YN-1 4Q N . 4QN 4,V N o
| tQ1 Pt N-1 ]
[ Qf Q% A:l:
i + + + ’ ’ .
(56) ZlnSt(Ql /Ua"' >QN_1/U>QN/QU):NQON—1 tz?QlN‘” t(,g?\r]jl 3 71)_%
| aQnN’ 7 QN
with Hf;l QE = vN/t for (5.5) and Hfil QFE = quN for (5.6) and
1
60 e[ ] = ’h O (- )
bl, , = - 1 _ q£+1 1(1 _ quz.)
Note that
-1 -1 r
a1, , 0y aj .-, 0, 1 ~ - x]li_;a
(5.8 90—1[ ;q:c]=s0_1 i 134 E|, = e
) rPr blv”'vb'l’—l s r¥r bllv . b 1 ’ qH::llb’L

When N = 2, Zi™t coincides with the M = 1 case of the partition function Z, of the

g-deformed f-ensemble (4.2) similar to Ref. [6]

[y Q2 Q2 Z <$+1—_u )
in Vor Vor 2 -t Y
(5.9)  Z™HQT /v, 1Q5 ) =21 | ¥, ¥ g0’ | = —
| O Z2 (I_—ty)
(510) Z0(QF 0, QF fav) =201 | "V it 22 | =y
| 9Q2 Zs (ﬁy>
with
(5.11)
QQT . Q@7  __ tQ7QT g
QiQ?_tW s _ 11, 4T 12 1 ®1w2 —ZQfQ;FA;F
v v q Yy
for (5.9) and
? il Q1Q3 tQTQT ¥y _ QfQF
5.12 +tHt _ T s:QlQl - — w12 _Wawe Y Wil
( ) Ql QQ n ’ q v ’ v ’ q ’ tr Ag:

for (5.10). In the SU(N) case, the Nekrasov partition function (5.5) may coincide with
our partition function Zy by using the formulas (A.11) and the Cor. 1.6 in Ref. [27].
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§ A. Macdonald polynomial

Here we recapitulate basic properties of the Macdonald polynomial.[24] Let A :=
(A1, Ay -+, Ap) with A; > X411 > 0 be a Young diagram. )\ is its conjugate. For any A
with Ay <'s, |A| := >, A Let @ := (21, -+ ,,) and p := (p1,p2,---) with the power
sum py, := pp(z) := >.;_, z?. For any symmetric function f in z with r = oo, f(z[p])
stands for the function f expressed in the power sums p.

The Macdonald polynomials Py(x) := Py(z;q,t) are degree |A| homogeneous sym-
metric polynomials in x defined as eigenfunctions of the Macdonald operator H as

follows:
(A.1) HPA( ):eAPA( )s
(A.2) H= Z H _—;”a P ey = Z Pt
i=1 ) T i=1
with a normalization condition Py (z) = 23 #3? - - - x> +- - - . Where ¢P+ with D,, := 2

is the g-shift operator such that ¢P= f(z) = f(qz). Note that Py(z) := P (z) = 1.
Two kinds of inner products are known in which the Macdonald polynomials are
orthogonal each other. For any symmetric functions f and ¢ in z, let us define inner

product (x,*) and another one (x, *)!’ as follows: 3

(A3) 0= f I g 16l Datelo)s =y

2mipn 1—tm Opy’

(A4) ﬁ'ﬂﬂfnd%~ D I@ o)., T= —

2mix; x;

with A(z) in (2. 18) Here we must treat the power sums p,, as formally independent
variables, i.e., 6p Pm = Onm for all n,m > 0. The inner products of Macdonald
polynomials are given by

1— q)\i —j—i—]_t)\;»—’b

(A5) <P)\,Pp,>:6)\,u<)‘>> <)‘> = | | A — N —i417
A+ ]_ — g It
(i,5)€A

(A-6) <P>\v Pu)i'/ = 5>\,u< A >//~

T

1—u

Let us denote by f (a: ﬁ]) the function f(z[p]) in the specialization p, :=
(1 —u™)/(1 —t") with u € C, then [24]

(1 —wu il — it
A7 Pz = —,
( ) A 1_¢ H 1_q)\i_jt)\j—z+1
- (4,9)€A
3The usual another inner product (x,*)’. is defined with a different kernel
A'(@)i=TTip 050 { = g (1=1)/(L=a™) @ fa7) /r } = [Ths; TTomo (1 —aa /i) /(1 —t"a; /1)
(lg| < 1). Note that C(z) := A(z)/A’(z) is a pseudo-constant, i.e., ¢7%i C(z) = C(x).
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With the involution wg ¢,

1 1—qg"
(A.8) qu,tPA(x; q,t) = Px(w3t,q), wq,t(Pn) = (—1)n_1ﬁpn
Let us denote a function f in the set of variables (z1, z2, -+ ,y1,¥2,---) by f (z,¥).

Let f} , be the fusion coefficient fy , := (P\Py, P,)/{P,, P,), then we have

(A.9) Py(2)Pu(x) = f{,Pol)
Pl/(x7y)_ P)\(l’) v Pllr(y)
(4.10) ORI ATIR

Let us denote the Young diagram decomposing into rectangles as A = Zf;_ll(s“),

i ! 81,.8 SN-1
ri > iy, e, N = (r'ry? o ory 1 )s
Sk 52 SN—2 SN—-1
...... rN_2 N1
A= 1 T2

Then we have the following integral representation of the Macdonald polynomial [22]

N—-1 r,

N-1
(A.11) Py (= C+]{ H H 2475 I (2, p2t) H IT (27, pz*+1) A(2%)

27mz

= C¥ (o)t |exp {—
n>0

with a singular vector |x;,) in (2.16). Here 2" := 0 and A(M) := X, (@) = = SNl (sh,

fe., A@ = (reery om0y ). Acting w_wiwg, on (A.11) gives

(A.12)

E— ci
Py (x) = C5 (oylexp < = > 1 _"qn D (=aqm)" ¢ [Xs), Oy = w- w+<)\>
=1
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