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Abstract

The thermodynamic Bethe Ansatz equations arising in the context of the \mathrm{A}\mathrm{d}\mathrm{S}_{5}/\mathrm{C}\mathrm{F}\mathrm{T}_{4}
correspondence exhibit an important dierence with respect to their analogues in relativistic

integrable quantum field theories: their solutions (the \mathrm{Y} functions) are not meromorphic func‐

tions of the rapidity, but live on a complicated Riemann surface with an innite number of

branch points and therefore enjoy a new kind of extended \mathrm{Y}‐system. In this paper we review

the analytic properties of the TBA solutions, and present new information coming from their

numerical study. An identity allowing to simplify the equations and the numerical implemen‐
tation is presented, together with various plots which highlight the analytic structure of the \mathrm{Y}

functions.

§1. Introduction

In 1997 Maldacena [1] (see also [2]) conjectured a correspondence between grav‐

ity and conformal gauge theory of strong/weak type and, in particular, the duality

\mathrm{A}\mathrm{d}\mathrm{S}_{5}/\mathrm{C}\mathrm{F}\mathrm{T}_{4} between the supersymmetric string theory of type IIB on a curved space

\mathrm{A}\mathrm{d}\mathrm{S}_{5}\times \mathrm{S}^{5} and \mathcal{N}=4 super Yang‐Mills (SYM).
A turning point for the study of the correspondence \mathrm{A}\mathrm{d}\mathrm{S}_{5}/\mathrm{C}\mathrm{F}\mathrm{T}_{4} was the discovery

of integrability in the \mathrm{t} Hooft limit, both for the string theory [3, 4] and the conformal
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field theory \mathrm{C}\mathrm{F}\mathrm{T}_{4}[5] . The \mathrm{t} Hooft planar limit is dened by the scaling of the colour

number  N\rightarrow\infty and the SYM coupling  g_{YM}\rightarrow 0 while keeping the coupling Ng_{YM}^{2}=
 $\lambda$=4$\pi$^{2}g^{2} finite, so that g is proportional to the string tensionl. In this limit only

planar Feynman diagrams survive [6].
The Bethe Ansatz (BA) method was originally introduced by H. Bethe [7] in 1931

to study a one‐dimensional quantum system of spin 1/2 and determine its eigenvalues
and eigenstates. This system is also known as the Heisenberg XXX model and, since

the scattering of the possible excitations can always be factored in terms of two‐body

amplitudes, it has the feature of being integrable.
In the \mathcal{N}=4 SYM context, a set of Bethe Ansatz‐like equations were formulated

by Beisert and Staudacher [8] (see also [9]) as a useful tool to compute the anomalous

dimensions of SYM composite single trace operators or the energy of the quantum

states of the string. However, the equations emerging in this framework do not take

into account the wrapping eects due to the finite number of elementary operators in the

trace [ 10 ,
11 ] . Therefore, the Beisert‐Staudacher�s equations lead to exact results only

for asymptotically long operators and are the analogue of the Bethe‐Yang equations
for scattering models describing the quantisation of momenta for a finite number of

interacting particles living on a ring with very large circumference [12, 13].
A first important step towards the partial solution of the wrapping problem was

made in [14]. Adapting the formulas for the finite‐size Lüscher corrections [15, 16] to the

\mathrm{A}\mathrm{d}\mathrm{S}_{5}/\mathrm{C}\mathrm{F}\mathrm{T}_{4} context, Bajnok and Janik were able to predict the four loop contribution to

the Konishi operator. The result was readily conrmed by the perturbative calculations

of [17]. The ideas proposed in [14] can be applied to higher perturbative orders and

twists [18, 19] but technical complications increase dramatically with the loop order

and, through this approach, exact all‐loop results are probably out of reach.

An alternative tool to find the finite‐size corrections to the ground state energy

in 2\mathrm{D} integrable models was proposed many years ago by Aliosha Zamolodchikov [20]
modifying the thermodynamic Bethe Ansatz (TBA) whose original formulation traces

back to Yang and Yang [21]. The TBA method leads to a set of coupled non‐linear

integral equations governing, as the parameters of the model are changed, the ground
state energy of the theory on a cylinder exactly and non‐perturbatively.

As discussed in [22], consider a two‐dimensional euclidean quantum field theory
dened on a torus with circumferences R and L

,
as shown in Figure 1. The quantiza‐

tion of this theory is equivalently obtained by considering two alternative hamiltonian

schemes. In the direct scheme the system is quantised along the direction L and the

hamiltonian \mathcal{H}_{L} propagates the states in the time direction R . In the mirror scheme

the system is described by the hamiltonian \mathcal{H}_{R} and the roles of L and R are swapped.

lAnother denition for the coupling g is also widely used, so that in many works is found the relation

 $\lambda$=16$\pi$^{2}g^{2}.
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Figure 1. The two hamiltonian descriptions of a 2\mathrm{D} euclidean model.

The two descriptions lead to the same partition function

(1.1) Z(R, L)=\mathrm{T}\mathrm{r}(e^{-R\mathcal{H}_{L}})=\mathrm{T}\mathrm{r}(e^{-L\mathcal{H}_{R}}) .

Sending  R\rightarrow\infty ,
in the direct description of the theory the partition function is domi‐

nated by the smallest eigenvalue  E(L) of \mathcal{H}_{L} :

(1.2) Z(R, L)=\mathrm{T}\mathrm{r}(e^{-R\mathcal{H}_{L}})\sim e^{-RE_{0}(L)}.

While, in the mirror description, the  R\rightarrow\infty limit corresponds to the thermodynamics
of a one‐dimensional quantum system with hamiltonian \mathcal{H}_{R} dened on a volume R at

temperature T=\displaystyle \frac{1}{L} . In this picture, the partition function becomes

(1.3) Z(R, L)=\mathrm{T}\mathrm{r}(e^{-L\mathcal{H}_{R}})\sim e^{-LRf(L)},

where f(L) is the free energy per unit length at equilibrium. Comparing (1.2) with (1.3)
we see that the ground state energy of the direct theory is related to the equilibrium
free energy of the mirror theory:

(1.4) E_{0}(L)=Lf(L) .

Starting from the Bethe‐Yang equations for the mirror theory, f(L) can be found [20]
adapting the method proposed in [21] for a one‐dimensional system of bosons with

repulsive delta‐function interaction. As a result of the TBA procedure, the exact finite‐

size ground state energy E(L) is written in terms of the pseudoenergies $\epsilon$_{a} ,
solutions to a

set of coupled non‐linear integral equations. In [23, 24, 25, 26] the method was extended

to excited states and an alternative but equivalent approach was proposed in [27, 28, 29]
(This alternative tool has also been used in the AdS/CFT setup in [30, 31, 32, 33

Starting from the mirror version of the Beisert‐Staudacher�s equations [34, 35], the

ground state TBA equations were independently derived in [36, 37, 38] and precise

conjectures for particular excited state sectors were made in [39, 37, 40].
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Because the equations for excited states are expected to be the analytic continuation

of the ground state equations [24, 25], the understanding of the analytic structure of the

TBA system is essential in the attempt to establish the results of [39, 37, 40] rigorously
and to generalize them to other sectors of the theory.

The rest of this paper is organised as follows. Section 2 contains the TBA equations
of [36, 37, 38]. The pseudoenergies have an innite number of square root branch cuts

and, basically, the \mathrm{A}\mathrm{d}\mathrm{S}_{5}/\mathrm{C}\mathrm{F}\mathrm{T}_{4} TBA equations are equivalent to a set of functional

relations containing also information on the discontinuities across the cuts [41]: the

extended \mathrm{Y}‐systems described in Section 3. Following [41], Section 4 discusses briey the

interpretation of the TBA as dispersion relations and, using byproduct identities of [41],
a variant of the TBA equations more suitable for numerical integration is proposed
in Section 3. Sections 6‐8 contain our preliminary numerical results for the ground
state energy and a study of the pseudoenergies in the complex rapidity plane. Finally,
Section 9 contains our conclusions and the \mathrm{S}‐matrix elements corresponding to the TBA

kernels are listed in Appendix A.

§2. The TBA equations

The TBA equations with arbitrary chemical potentials \{$\mu$_{a}\} are [36, 37, 38] :

$\epsilon$_{Q}(u)=$\mu$_{Q}+L\displaystyle \tilde{E}_{Q}(u)-\sum_{Q'}L_{Q'}*$\phi$_{QQ}^{ $\Sigma$}(u)
(2.1)

+\displaystyle \sum_{ $\alpha$}(\sum_{M}L_{(v|M)}^{( $\alpha$)}*$\phi$_{(v|M),Q}(u)+L_{y}^{( $\alpha$)_{*_{\overline{ $\gamma$}_{\mathrm{o}}}}}$\phi$_{y,Q}(u)) ,

(2.2)

$\epsilon$_{(v|K)}^{( $\alpha$)}(u)=$\mu$_{(v|K)}^{( $\alpha$)}-\displaystyle \sum_{Q}L_{Q}*$\phi$_{Q,(v|K)}(u)+\sum_{M}L_{(v|M)}^{( $\alpha$)}*$\phi$_{MK}(u)+L_{y}^{( $\alpha$)}*_{\overline{ $\gamma$}_{\mathrm{o}}}$\phi$_{K}(u) ,

(2.3) $\epsilon$_{(w|K)}^{( $\alpha$)}(u)=$\mu$_{(w|K)}^{( $\alpha$)}+\displaystyle \sum_{M}L_{(w|M)}^{( $\alpha$)}*$\phi$_{MK}(u)+L_{y}^{( $\alpha$)}*_{\overline{ $\gamma$}_{\circ}}$\phi$_{K}(u) ,

(2.4) $\epsilon$_{y}^{( $\alpha$)}(u)=$\mu$_{y}^{( $\alpha$)}-\displaystyle \sum_{Q}L_{Q}*$\phi$_{Q,y}(u)+\sum_{M}(L_{(v|M)}^{( $\alpha$)}-L_{(w|M)}^{( $\alpha$)})*$\phi$_{M}(u) ,

where L\in \mathbb{N} is the inverse of the temperature, while the sums are taken as \displaystyle \sum_{ $\alpha$=1,2},
\displaystyle \sum_{K=1}^{\infty} ,

with

\displaystyle \tilde{E}_{Q}(u)=\ln\frac{x(u-i\frac{Q}{g})}{x(u+i\frac{Q}{g})}, x(u)=(\frac{u}{2}-i\sqrt{1-\frac{u^{2}}{4}}) , {\rm Im}(x)<0,
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Figure 2. The contour \overline{ $\gamma$}_{\mathrm{o}} . Figure 3. The contour \overline{ $\gamma$}_{\mathrm{x}}.

(2.5) Y_{a}(u)=e^{$\epsilon$_{a}(u)}, L_{a}(u)=\ln(1+1/Y_{a}(u)) ,

and the symbols
(
* and (*_{ $\gamma$} denote the convolutions

\displaystyle \mathcal{F}* $\phi$(u)=\int_{\mathbb{R}}dz\mathcal{F}(z) $\phi$(z, u) , \mathcal{F}*_{ $\gamma$} $\phi$(u)=\oint_{ $\gamma$}dz\mathcal{F}(z) $\phi$(z, u) .

The kernels are derived from the matrix elements S_{ab}(z, u) listed in Appendix A using
the relation: $\phi$_{ab}(z, u)=\displaystyle \frac{1}{2 $\pi$ i}\frac{d}{dz}\ln S_{ab}(z, u) . $\phi$_{QQ}^{ $\Sigma$} in (2.1) can be written as:

(2.6) $\phi$_{QQ}^{ $\Sigma$}(z, u)=-$\phi$_{Q'Q}(z-u)-2K_{QQ}^{ $\Sigma$}(z, u) ,

with [36, 37, 38, 42, 43, 44, 45, 41]

(2.7) $\phi$_{Q'Q}(u)=\displaystyle \frac{1}{2 $\pi$ i}\frac{d}{du}\ln S_{Q'Q}(u) , K_{ $\Gamma$}^{[2]}(z-t)=\frac{1}{2 $\pi$ i}\frac{d}{dz}\ln\frac{ $\Gamma$(1-ig(z-t)/2)}{ $\Gamma$(1+ig(z-t)/2)},

(2.8) K_{QQ}^{ $\Sigma$}(z, u)=\displaystyle \frac{1}{2 $\pi$ i}\frac{d}{dz}\ln$\Sigma$_{Q'Q}(z, u)=\oint_{\overline{ $\gamma$}_{\mathrm{x}}}ds$\phi$_{Q',y}(z, s)\oint_{\overline{ $\gamma$}_{\mathrm{x}}}dtK_{ $\Gamma$}^{[2]}(s-t)$\phi$_{y,Q}(t, u) .

The contours of integration \overline{ $\gamma$}_{\mathrm{o}} and \overline{ $\gamma$}_{\mathrm{x}} are represented in Figure 2 and Figure 3, respec‐

tively. The functions Y_{a}(u)=e^{$\epsilon$_{a}(u)} solutions of equations (2.1‐2.4) live on branched

coverings of the complex \mathrm{u}‐plane with an innite number of square root singularities

u=\{\pm 2+im/g\} with m\in \mathbb{Z} . For the mirror \mathrm{A}\mathrm{d}\mathrm{S}_{5}/\mathrm{C}\mathrm{F}\mathrm{T}_{4} theory under consideration

‐on the sheet containing the physical values of the Ys‐ all the cuts are conventionally
set parallel to the real axis and external to the strip |{\rm Re}(u)|<2 . This will be referred

to as the reference or first sheet. Table 1 shows the location of the square branch points
for the various Ys. Finally, we shall denote with Y_{(y1-)}^{( $\alpha$)}(u) (or simply Y_{y}^{( $\alpha$)}(u) ) the first

Singularity positions
\mathrm{u} = 2 + \mathrm{i} \mathrm{J} = 0; 1; 2; : : :

Function

()

()

()
\mathrm{u} = 2 + \mathrm{i} \mathrm{J} = \mathrm{M}; (\mathrm{M} + 2); (\mathrm{M} + 4); : : :

Table 1. Square root branch points for the \mathrm{Y} functions.
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sheet determination of Y_{y}^{( $\alpha$)} and with Y_{(y1+)}^{( $\alpha$)}(u)=Y_{y}^{( $\alpha$)}(u) its second sheet evaluation

obtained by analytically continuing u to u_{*} through the branch cut u\in(-\infty, -2) (see,
Figure 5).

§3. The extended \mathrm{Y}‐system

The \mathrm{Y}‐system [46, 47, 48, 49] for \mathrm{A}\mathrm{d}\mathrm{S}_{5}/\mathrm{C}\mathrm{F}\mathrm{T}_{4} was conjectured in [39], rigorously
derived in [36, 37, 38] and it is associated to the diagram represented in Figure 4. Setting

$\Lambda$_{Q}=\displaystyle \prod_{Q'}e^{$\mu$_{Q'}C_{Q'Q}}, $\Lambda$_{(y1-)}^{( $\alpha$)}=e^{2$\mu$_{y}^{( $\alpha$)}-$\mu$_{(v|1)}^{( $\alpha$)}+$\mu$_{(w|1)}^{( $\alpha$)}},
(3.1)

$\Lambda$_{(w|K)}^{( $\alpha$)}=\displaystyle \prod_{M}e^{$\mu$_{(w|M)}^{( $\alpha$)}C_{MK}}, $\Lambda$_{(v|K)}^{( $\alpha$)}=\prod_{M}e^{$\mu$_{(v|M)}^{( $\alpha$)}C_{MK}},
with C_{MN}=2$\delta$_{M,N}-A_{MN}, A_{1,M}=$\delta$_{2,M}, A_{NM}=$\delta$_{M,N+1}+$\delta$_{M,N-1} and A_{MN}=A_{NM},
the \mathrm{Y}‐system with arbitrary chemical potentials is:

(3.2) Y_{Q}(u-\displaystyle \frac{i}{g})Y_{Q}(u+\frac{i}{g})=$\Lambda$_{Q}\prod_{Q}(1+Y_{Q'}(u))^{A_{QQ'}}\prod_{ $\alpha$}\frac{(1+\frac{1}{Y_{(v|Q-1)}^{( $\alpha$)}(u)})^{$\delta$_{Q,1}-1}}{(1+\frac{1}{Y_{(y1-)}^{( $\alpha$)}(u)})^{$\delta$_{Q,1}}},
(3.3) Y_{(y1-)}^{( $\alpha$)}(u+\displaystyle \frac{i}{g})Y_{(y1-)}^{( $\alpha$)}(u-\frac{i}{g})=$\Lambda$_{(y1-)}^{( $\alpha$)}\frac{(1+Y_{(v|1)}^{( $\alpha$)}(u))}{(1+Y_{(w|1)}^{( $\alpha$)}(u))}\frac{1}{(1+\frac{1}{Y_{1}(u)})},
(3.4)

Y_{(w|M)}^{( $\alpha$)}(u+\displaystyle \frac{i}{g})Y_{(w|M)}^{( $\alpha$)}(u-\frac{i}{g})=$\Lambda$_{(w|M)}^{( $\alpha$)}\prod_{N}(1+Y_{(w|N)}^{( $\alpha$)}(u))^{A_{MN}}[\frac{(1+\frac{1}{Y_{(y1-)}^{( $\alpha$)}(u)})}{(1+\frac{1}{Y_{(y1+)}^{( $\alpha$)}(u)})}]^{$\delta$_{M,1}},
(3.5)

Y_{(v|M)}^{( $\alpha$)}(u+\displaystyle \frac{i}{g})Y_{(v|M)}^{( $\alpha$)}(u-\frac{i}{g})=$\Lambda$_{(v|M)}^{( $\alpha$)}\frac{\prod_{N}(1+Y_{(v|N)}^{( $\alpha$)}(u))^{A_{MN}}}{(1+\frac{1}{Y_{M+1}(u)})}[\frac{(1+Y_{(y1-)}^{( $\alpha$)}(u))}{(1+Y_{(y1+)}^{( $\alpha$)}(u))}]^{$\delta$_{M,1}}
In relativistic integrable models the \mathrm{Y} functions are in general meromorphic in the

rapidity u with zeroes and poles both linked to 1+Y_{a} zeroes through the \mathrm{Y}‐system.

Unfortunately, the situation for \mathrm{A}\mathrm{d}\mathrm{S}_{5}/\mathrm{C}\mathrm{F}\mathrm{T}_{4} is further complicated by the presence of

square root branch cuts inside and at the border of the fundamental strip |{\rm Im}(u)|\leq
 1/g . According to the known \mathrm{Y}\rightarrow \mathrm{T}\mathrm{B}\mathrm{A} transformation procedures, together with the
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(\mathrm{w}|\mathrm{N}) .

(\mathrm{w}|2)
(\mathrm{y}|+) $\alpha$=1

(\mathrm{w}|1)

(\mathrm{v}|1) (\mathrm{v}|2) (\mathrm{v}|\mathrm{N})
(\mathrm{y}|-)

(\mathrm{y}|-)
(\mathrm{v}|1) (\mathrm{v}|2)

(\mathrm{w}|1)
(\mathrm{y}|+) $\alpha$=2

(\mathrm{w}|2)

(\mathrm{w}|\mathrm{N}) .

Figure 4. The \mathrm{Y}‐system diagram corresponding to the \mathrm{A}\mathrm{d}\mathrm{S}_{5}/\mathrm{C}\mathrm{F}\mathrm{T}_{4} TBA equations.

asymptotics of the \mathrm{Y} functions this extra information on their analytic behaviour should

be independently supplied.

However, the crucial discontinuity information is stored into functions which depend

non‐locally on the TBA pseudoenergies [38, 41] and thus on the particular excited state

under consideration.

The main objective of the paper [41] was to show how this problem can be over‐

come and that all the necessary analytic information can compactly be encoded in the

basic \mathrm{Y}‐system (3.2‐3.5) extended by the following set of local and state‐independent

discontinuity relations. Setting

(3.6) \triangle(u)=[\ln Y_{1}(u)]_{+1},

then \triangle is the function introduced in [38] and the discontinuity relations are:

(3.7)

[\displaystyle \triangle]_{\pm 2N}=\mp\sum_{ $\alpha$=1,2}([\ln(1+\frac{1}{Y_{(y1\mp)}^{( $\alpha$)}})]_{\pm 2N}+\sum_{M=1}^{N}[\ln(1+\frac{1}{Y_{(v|M)}^{( $\alpha$)}})]_{\pm(2N-M)}+\ln(\frac{Y_{(y1-)}^{( $\alpha$)}}{Y_{(y1+)}^{( $\alpha$)}})) ,

(3.8) [\displaystyle \ln(\frac{Y_{(y1-)}^{( $\alpha$)}}{Y_{(y1+)}^{( $\alpha$)}})]_{\pm 2N}=-\sum_{Q=1}^{N}[\ln(1+\frac{1}{Y_{Q}})]_{\pm(2N-Q)},
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with N=1
, 2, . . .

,
\infty and

(3.9) [\displaystyle \ln Y_{(w|1)}^{( $\alpha$)}]_{\pm 1}=\ln(\frac{1+1/Y_{(y1-)}^{( $\alpha$)}}{1+1/Y_{(y1+)}^{( $\alpha$)}}) , [\ln Y_{(v|1)}^{( $\alpha$)}]_{\pm 1}=\ln(\frac{1+Y_{(y1-)}^{( $\alpha$)}}{1+Y_{(y1+)}^{( $\alpha$)}}) ,

where the symbol [f]_{Z} with Z\in \mathbb{Z} denotes the discontinuity of f(z)

(3.10) [f]_{Z}=\displaystyle \lim_{ $\epsilon$\rightarrow 0+}f(u+iZ/g+i $\epsilon$)-f(u+iZ/g-i $\epsilon$) ,

on the semi‐infinite segments described by z=u+iZ/g with u\in(-\infty, -2)\cup(2, \infty)
and the function [f(u)]_{Z} is the analytic extension of the discontinuity (3.10) to generic

complex values of u . Finally, \triangle(u) has an additional constant discontinuity running

along the imaginary axis:

(3.11) \triangle(iv+ $\epsilon$)-\triangle(iv- $\epsilon$)=i2L $\pi$, (v\in \mathbb{R}) .

In conclusion, while the \mathrm{Y} functions are defined on an infinite sheeted Riemann surface,
the basic \mathrm{Y}‐system (3.2‐3.5) connects points lying on a single reference sheet missing a

huge amount of analyticity data. To recover this information it is necessary to extend

(3.2‐3.5) by including relations among different Riemann sheets. This is precisely the

information contained in discontinuity relations and, to highlight this fact, one could

write equations (3.6‐3.9) in a more explicit functional form involving points from differ‐

ent sheets. For example (cf (3.9)):

(3.12) \displaystyle \frac{Y_{(w|1)}^{( $\alpha$)}(u\pm\frac{i}{g})}{Y_{(w|1)}^{( $\alpha$)}(u_{*}\pm\frac{i}{g})}=(\frac{1+1/Y_{(y1-)}^{( $\alpha$)}(u)}{1+1/Y_{(y1+)}^{( $\alpha$)}(u)}) , \frac{Y_{(v|1)}^{( $\alpha$)}(u\pm\frac{i}{g})}{Y_{(v|1)}^{( $\alpha$)}(u_{*}\pm\frac{i}{g})}=(\frac{1+Y_{(y1-)}^{( $\alpha$)}(u)}{1+Y_{(y1+)}^{( $\alpha$)}(u)}) ,

where u_{*} is the second sheet image of u reached by analytic continuation through the

branch cut u\in(-\infty, -2) (see, Figure 5).

\underline{2}
1

\sim ‐‐‐,
\mathrm{r}'\prime

�

Figure 5. The second sheet image  u_{*} of u.

§4. TBA equations as dispersion relations

As already mentioned in the introductory section, contrary to the more studied

relativistic invariant cases, the transformation from \mathrm{Y}‐system to TBA equations is by
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no means straightforward since the local form of the \mathrm{A}\mathrm{d}\mathrm{S}_{5}/\mathrm{C}\mathrm{F}\mathrm{T} ‐related \mathrm{Y}‐system (3.2‐
3.5) alone does not contain information on the branch points and it is almost totally
insensitive to the precise form of the dressing factor $\Sigma$_{Q'Q} defined through equation (2.8).
The purpose of this section is to give some hints on why the extension of the basic Y‐

system by the discontinuity relations (3.7‐3.9) resolves this problem completely. The

interested reader is addressed to [41] for a more complete discussion on this important
issue. Consider the following equation directly descending from (2.4):

(4.1) In (Y_{(y1-)}^{( $\alpha$)}(u)/Y_{(y1+)}^{( $\alpha$)}(u))=-\displaystyle \sum_{Q}\int_{\mathbb{R}}dzL_{Q}(z)(K(u-iQ/g, z)-K(u+iQ/g, z)) ,

where

(4.2) K(z, u)=\displaystyle \frac{\sqrt{4-u^{2}}}{2 $\pi$ i\sqrt{4-z^{2}}}\frac{1}{z-u}.
Then, it can be shown that the functional relation (3.8) on the discontinuities

(4.3) [\displaystyle \ln(Y_{(y1-)}^{( $\alpha$)}/Y_{(y1+)}^{( $\alpha$)})]_{\pm 2N}=-\sum_{Q=1}^{N}[L_{Q}]_{\pm(2N-Q)},
combined with some more general analyticity information, is equivalent to (4.1). This

result comes from the observation that the quantity:

\ln(Y_{(y1-)}^{( $\alpha$)}(u)/Y_{(y1+)}^{( $\alpha$)}(u))
\overline{\sqrt{4-u^{2}}},

is analytic at the points u=\pm 2
,

but it still has an infinite set of branch points at

u=\pm 2\pm i2N/g with N\in \mathbb{N} . From the Cauchy�s integral theorem we can first write

(4.4) \displaystyle \frac{\ln(Y_{(y1-)}^{( $\alpha$)}(u)/Y_{(y1+)}^{( $\alpha$)}(u))}{\sqrt{4-u^{2}}}=\oint_{ $\gamma$}\frac{dz}{2 $\pi$ i}\frac{\ln(Y_{(y1-)}^{( $\alpha$)}(z)/Y_{(y1+)}^{( $\alpha$)}(z))}{(z-u)\sqrt{4-z^{2}}},
where  $\gamma$ is a positive oriented contour running inside the strip |{\rm Im}(u)|<1/g ,

and

then deform  $\gamma$ into the homotopically equivalent contour  $\Gamma$_{\mathrm{O}} represented in Figure 6

as the union of an infinite number of rectangular contours lying between the branch

cuts of (4.1). Restricting the analysis to the solutions that behave asymptotically as

\ln(Y_{(y1-)}^{( $\alpha$)}/Y_{(y1+)}^{( $\alpha$)})\rightarrow 0(1) uniformly as |u|\rightarrow\infty the sum of the vertical segment con‐

tributions vanishes as the horizontal size of the rectangles tends to infinity. Then,

equation (4.1) is recovered after inserting relation (4.3) and observing that several can‐

celations take place between adjacent integral contributions. In [41] the entire set of

TBA equations was retrieved starting from the extended \mathrm{Y}‐system and adopting cer‐

tain minimality assumptions for the number of logarithmic singularities in the reference
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Figure 6. The deformed contour $\Gamma$_{\mathrm{O}}.

Riemann sheet. These are precisely the analytic conditions fulfilled by the ground state

TBA solutions as  $\mu$_{y}\rightarrow i $\pi$ . Here, we would like to mention that is possible to show [50]
that these assumptions can be relaxed, and that logarithmic singularities of the  $\epsilon$_{a} and

L_{a} functions can lie on the first sheet without affecting the derivation provided they are

far enough from the real axis and organized in complexes as required by the \mathrm{Y}‐system
relations. We can summarize the situation at zero chemical potentials in the following

proposition.

Proposition 4.1.

Let the singularities on the first sheet be organized in complexes such as the follow‐

ing:

Y_{Q}(u_{1}^{(-1)})=Y_{Q}(u_{1}^{(-1)}+\displaystyle \frac{2i}{g})=-1 ;

Y_{Q+1}((u_{1}^{(-1)}+\displaystyle \frac{i}{g})=Y_{Q-1}((u_{1}^{(-1)}+\frac{i}{g})=1/Y_{(v|Q-1)}^{( $\alpha$)}(u_{1}^{(-1)}+\frac{i}{g})=0,
(4.5)

or

Y_{(v|M)}^{( $\alpha$)}(u_{2}^{(-1)})=Y_{(v|M)}^{( $\alpha$)}(u_{2}^{(-1)}+\displaystyle \frac{2i}{g})=-1 ;

Y_{(v|M+1)}^{( $\alpha$)}((u_{2}^{(-1)}+\displaystyle \frac{i}{g})=Y_{(v|M-1)}^{( $\alpha$)}((u_{2}^{(-1)}+\frac{i}{g})=0;Y_{M+1}(u_{2}^{(-1)}+\frac{i}{g})=\infty^{2} (double pole),

(4.6)
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or

Y_{(w|M)}^{( $\alpha$)}(u_{3}^{(-1)})=Y_{(w|M)}^{( $\alpha$)}(u_{3}^{(-1)}+\displaystyle \frac{2i}{g})=-1 ;

Y_{(w|M+1)}^{( $\alpha$)}((u_{3}^{(-1)}+\displaystyle \frac{i}{g})=Y_{(w|M-1)}^{( $\alpha$)}((u_{3}^{(-1)}+\frac{i}{g})=0,
(4.7)

or

Y_{(y1-)}^{( $\alpha$)}(u_{4}^{(-1)})=Y_{(y1-)}^{( $\alpha$)}(u_{4}^{(-1)}+\displaystyle \frac{2i}{g})=-1 ;

Y_{(v|1)}^{( $\alpha$)}((u_{4}^{(-1)}+\displaystyle \frac{i}{g})=Y_{(w|1)}^{( $\alpha$)}((u_{4}^{(-1)}+\frac{i}{g})=0;Y_{1}(u_{4}^{(-1)}+\frac{i}{g})=\infty^{2} (double pole),

(4.8)

where, by definition, in equation (4\cdot 5):Y_{(v|0)}^{( $\alpha$)}=Y_{(y1-)}^{( $\alpha$)}, Y_{0}=0 ,
and in equations (4\cdot 6,

4 \cdot 7):  Y_{(v|0)}^{( $\alpha$)}=1/Y_{(w|0)}^{( $\alpha$)}=Y_{(y1\pm)}^{( $\alpha$)}.

Moreover, let the zeroes u^{(0)}=u^{(-1)}+\displaystyle \frac{i}{g} all lie outside the strip |Im(u)|<\displaystyle \frac{1}{g}.
Then the extended Y‐system implies the ground state TBA equations.

The ground state equations are modified only when the two points u^{(-1)} and u^{(-1)}+\displaystyle \frac{2i}{g}
lie on different sides with respect to the real axis, which can be interpreted as the result

of a singularity having crossed the integration contour.

As we shall see in the following sections, the ground state TBA solution at $\mu$_{a}=0
shows indeed several of these complexes of singularities, in the reference sheet but far

from the real axis.

§5. A useful variant of the TBA equations

To facilitate the numerical implementation of the equations, the following auxiliary
functions E^{( $\alpha$)}, G^{( $\alpha$)}, T^{( $\alpha$)} and U^{( $\alpha$)} are introduced:

E^{( $\alpha$)}(u)=$\epsilon$_{(y1-)}^{( $\alpha$)}(u)-$\epsilon$_{(y1+)}^{( $\alpha$)}(u)
(51)

=-\displaystyle \sum_{Q}\int_{\mathbb{R}}dzL_{Q}(z)(K(z-i\frac{Q}{g}, u)-K(z+i\frac{Q}{g}, u)) ,
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G^{( $\alpha$)}(u)=$\epsilon$_{(y1-)}^{( $\alpha$)}(u)+$\epsilon$_{(y1+)}^{( $\alpha$)}(u)

(5.2) =2\displaystyle \sum_{M}\int_{\mathbb{R}}dz(L_{(v|M)}^{( $\alpha$)}(z)-L_{(w|M)}^{( $\alpha$)}(z))$\phi$_{M}(z-u)+2$\mu$_{y}^{( $\alpha$)}
-\displaystyle \sum_{Q}\int_{\mathbb{R}}dzL_{Q}(z)$\phi$_{Q}(z-u) ,

(5.3) T^{( $\alpha$)}(u)=L_{(y1-)}^{( $\alpha$)}(u)-L_{(y1+)}^{( $\alpha$)}(u) , U^{( $\alpha$)}(u)=L_{(y1-)}^{( $\alpha$)}(u)+L_{(y1+)}^{( $\alpha$)}(u) .

Using these definitions the TBA equations (2.1‐2.4) can be recast in the form:

(5.4)

$\epsilon$_{(w|K)}^{( $\alpha$)}(u)=$\mu$_{(w|K)}^{( $\alpha$)}+\displaystyle \sum_{M}\int_{\mathbb{R}}dzL_{(w|M)}^{( $\alpha$)}(z)$\phi$_{MK}(z-u)+\int_{-2}^{2}dzT^{( $\alpha$)}(z)$\phi$_{K}(z-u) ,

(5.5)

$\epsilon$_{(v|K)}^{( $\alpha$)}(u)=$\mu$_{(v|K)}^{( $\alpha$)}+\displaystyle \sum_{M}\int_{\mathbb{R}}dzL_{(v|M)}^{( $\alpha$)}(z)$\phi$_{MK}(z-u)+\int_{-2}^{2}dz(T^{( $\alpha$)}(z)+E^{( $\alpha$)}(z))$\phi$_{K}(z-u)
-\displaystyle \sum_{Q}\int_{\mathbb{R}}dzL_{Q}(z)$\psi$_{QK}(z-u) ,

$\epsilon$_{Q}(u)=$\mu$_{Q}+L\displaystyle \tilde{E}_{Q}(u)+\sum_{Q'}\int_{\mathbb{R}}dzL_{Q'}(z)$\phi$_{Q'Q}(z-u)
+\displaystyle \sum_{ $\alpha$}\int_{-2}^{2}dz($\varphi$^{( $\alpha$)}(z)+\frac{1}{2}U^{( $\alpha$)}(z))(K(z, u-i\frac{Q}{g})-K(z, u+i\frac{Q}{g}))

(5.6)

-\displaystyle \frac{1}{2}\sum_{ $\alpha$}\int_{-2}^{2}dzT^{( $\alpha$)}(z)$\phi$_{Q}(z-u)+\sum_{ $\alpha$,M}\int_{\mathbb{R}}dzL_{(v|M)}^{( $\alpha$)}(z)$\psi$_{MQ}(z-u)
-\displaystyle \sum_{ $\alpha$}(\int_{-\infty}^{-2}dz+\int_{2}^{\infty}dz)E^{( $\alpha$)}(z)$\chi$_{Q}(z, u) ,

with

(5.7) $\chi$_{Q}(z, u)=(\displaystyle \int_{-\infty}^{-2}dt+\int_{2}^{\infty}dt)K_{ $\Gamma$}^{[2]}(z-t)(K(t, u-i\frac{Q}{g})-K(t, u+i\frac{Q}{g})) ,

where the last term of (5.6) is obtained from the last term of (2.6) using the following

important relation discussed in Appendix \mathrm{D} of [41]:

\displaystyle \sum_{Q'}L_{Q'}*K_{QQ}^{ $\Sigma$}(v)=\sum_{Q'}L_{Q'}*\oint_{\overline{ $\gamma$}_{\mathrm{X}}}ds$\phi$_{Q,y}^{( $\alpha$)}(s)\oint_{\overline{ $\gamma$}_{\mathrm{X}}}dtK_{ $\Gamma$}^{[2]}(s-t)$\phi$_{y,Q}(t, v)
(5.8)

=-\displaystyle \oint_{\overline{ $\gamma$}_{\mathrm{X}}}ds\ln Y_{y}^{( $\alpha$)}(s)\oint_{\overline{ $\gamma$}_{\mathrm{X}}}K_{ $\Gamma$}^{[2]}(s-t)$\phi$_{y,Q}(t, v) .
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To further optimize the implementation of the equations, we have minimized the number

of terms that depend on the two variables z and u separately 2. The last term appearing
on the rhs of (5.5) was rewritten considering relation (E8) in [41]:

-\displaystyle \sum_{Q}\int_{\mathbb{R}}dzL_{Q}(z)$\phi$_{Q,(v|K)}(z, u)=\int_{-2}^{2}dzE^{( $\alpha$)}(z)$\phi$_{K}(z-u)
(5.9)

-\displaystyle \sum_{Q}\int_{\mathbb{R}}dzL_{Q}(z)$\psi$_{QK}(z-u) ,

with

(5.10) $\psi$_{QM}(u)=\displaystyle \sum_{j=0}^{M-1}$\phi$_{Q-M+2j}(u)=\{
2

\displaystyle \sum_{j=|Q-M|}^{}|Q+M|-2$\phi$_{j}(u);Q>M ;

2

\displaystyle \sum_{j=|Q-M|+2}^{}|Q+M|-2$\phi$_{j}(u);Q\leq M.
Similarly for the penultimate term on the rhs of (5.6) we have used

(5.11)

\displaystyle \sum_{ $\alpha$,M}\int_{\mathbb{R}}dzL_{(v|M)}^{( $\alpha$)}(z)$\phi$_{(v|M),Q}(z, u)=\sum_{ $\alpha$}\int_{-2}^{2}dz$\varphi$^{( $\alpha$)}(z)(K(z, u-i\frac{Q}{g})-K(z, u+i\frac{Q}{g}))
-\displaystyle \sum_{ $\alpha$,M}\int_{\mathbb{R}}dzL_{(v|M)}^{( $\alpha$)}(z)$\psi$_{MQ}(z-u) ,

with

(5.12) $\varphi$^{( $\alpha$)}(u)=\displaystyle \sum_{N}\int_{\mathbb{R}}dzL_{(v|N)}^{( $\alpha$)}(z)$\phi$_{N}(z-u) .

The equations for the pseudoenergies used in the numerical work to be described shortly

correspond to an appropriately discretized version of (5.4‐5.12) where the infinite sums

are truncated to a finite number of terms N_{\max} and the integrals performed only in the

range (-z_{\max};z_{\max}) . The chemical potentials are set to zero but for those associated

to the fermionic particles (y|\pm) where $\mu$_{y}=$\mu$_{y}^{(1)}=-$\mu$_{y}^{(2)} . The results obtained and

partially discussed in this paper correspond to the parameters in the ranges reported in

Table 2.

2This was particularly useful to optimize the occupation of the computer internal memory.
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Table 2. Parameter ranges.

§6. TBA numerical solution: the real axis

The functions L_{a}(u) ,
solutions of the thermodynamic Bethe Ansatz equations, are

represented in Figure 7 to Figure 12.

{\rm Re} \mathrm{L}(\mathrm{u})

Figure 7. Solutions {\rm Re}(L_{Q}):L=4, g=0.5, $\mu$_{y}=0.

Figure 7 shows the real parts of L_{Q}(u) for Q=1 and Q=2 at L=4, g=0.5 and

$\mu$_{y}= O. The solutions are well localized around the origin, tend exponentially to the

asymptotic value L_{Q}^{0}=0 and in addition L_{1}(u)\gg L_{2}(u) . These are general features of

the solutions of this TBA: at moderate values of the coupling constant g the difference

between L_{a}(u) and its asymptotic value L_{a}^{0} is always well localized about the origin
and a given component L_{a}(u) strongly dominates over the next, ie L_{a}(u)\gg L_{a+1}(u) .

This justifies both the relatively small range of integration and the truncation of the

sums to a finite number of terms N_{\max} . Unfortunately, both the localization and the

subdominancy features get ‐for generic values of $\mu$_{y} and L‐ worse and worse as g is
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increased above 1 and in the strong coupling regime one has to push the computer

internal resources to the extreme. Figure 8 shows the results for the excitations of type
v and w with M=1

, they also reach the asymptotic values L_{(v|1)}^{0}=L_{(w|1)}^{0}= In \displaystyle \frac{4}{3}
exponentially fast in the large |u| region. Figure 9 shows instead the real parts of L(u)
for the excitations v, w with M=2

, they are smaller and reach the asymptotic value

L_{(v|2)}^{0}=L_{(w|2)}^{0}=\displaystyle \ln\frac{9}{8} faster that the M=1 cases. Again we see that the M components

dominate over the M+1 ones.

{\rm Re} \mathrm{L}(\mathrm{u})

Figure 8. Solutions {\rm Re}(L_{(v|1)}) , {\rm Re}(L_{(w|1)}):L=4, g=0.5, $\mu$_{y}=0.

{\rm Re} \mathrm{L}(\mathrm{u})

Figure 9. Solutions {\rm Re}(L_{(v|2)}) , {\rm Re}(L_{(w|2)}):L=4, g=0.5, $\mu$_{y}=0.
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The imaginary parts of L(u) for the

computer working precision.

M. MATTELLIANO AND R. TATEO

,lxcitations Q, v and w vanish within our

{\rm Re} \mathrm{L}(\mathrm{u})

Figure 10. Solutions {\rm Re}(L_{(y1\pm)}):L=4, g=0.5, $\mu$_{y}=0.

Figure 10 compares the real parts for the (y|\pm) fermionic particles. These solutions

have a physical interpretation in terms of particle and hole densities only in the rapidity

range u\in(-2,2)[36 , 37, 38].
Indeed, one can see cusps at u=\pm 2 highlighted in Figure 11. Outside the physical

interval (-2,2) both functions tend to the corresponding asymptotic value In2.

The imaginary parts are depicted in Figure 12 and they vanish for u\in(-2,2) ,

confirming that only in such interval the pseudoenergies $\epsilon$_{(y1\pm)}^{( $\alpha$)}(u) are physically mean‐

ingful.
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{\rm Re} \mathrm{L}(\mathrm{u})

Figure 11. The square root branch point of {\rm Re}(L_{y}):L=4, g=0.5, $\mu$_{y}=0.

lm \mathrm{L}(\mathrm{u})

-15 -10 -5 0 5 10 15

\mathrm{u}

Figure 12. Solutions {\rm Im}(L_{(y1\pm)}):L=4, g=0.5, $\mu$_{y}=0.

The solutions of the TBA equations expressed in terms of the functions L_{a}(u) have,
in principle, a maximum precision of the order of the threshold of convergence shown in

Table 2. In fact, the solutions are mainly affected by errors due to the discretisation of

the domain of integration and the truncation of the infinite sums. The TBA equations
are non‐linear, this makes it difficult to assess a priori the magnitude of those errors but

we have estimated the precision by comparing solutions at various values of N_{\max}, z_{\max}

and \triangle z . As a result of this analysis, in the range of parameters reported in Table 2,
the estimated precision is between 10^{-6} and 10^{-9}.
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§7. E=0 protected state and scale quantisation

The ground state energy of the model is obtained from the pseudoenergies for the

Q‐particles as:

(7.1) E_{0}(L)=-\displaystyle \sum_{Q=1}^{\infty}\int_{\mathbb{R}}\frac{du}{2 $\pi$}\frac{d\tilde{p}^{Q}}{du}L_{Q}(u) ,

where

(7.2) \tilde{p}^{Q}(u)=gx(u-iQ/g)-gx(u+iQ/g)+iQ,

is the mirror theory momentum. In \mathcal{N}=4 SYM the true vacuum state is protected by

supersymmetry and from the TBA this state is found by sending the chemical potential
for the fermionic particles to [52]

(7.3) $\mu$_{y}=$\mu$_{y}^{(1)}=-$\mu$_{y}^{(2)}\rightarrow i $\pi$ \Rightarrow E_{0}(L, $\mu$_{y}, g)\rightarrow 0 \forall g, L,
while all the other chemical potentials are kept at zero.

Figure 13 shows the occurrence of this condition at different values of the parame‐

ters while Figure 14 compares the numerical result with the asymptotic estimate given
in [51]:

(7.4) E_{0}\displaystyle \sim-\sum_{Q=1}^{\infty}\int_{\mathbb{R}}\frac{du}{2 $\pi$}\frac{d\tilde{p}^{Q}}{du}\ln(1+16Q^{2}\sin^{2}\frac{h}{2}e^{-L\tilde{E}_{Q}(u)}) ; general h
, large L.

with h=-i$\mu$_{y}- $\pi$.

\mathrm{c}\mathrm{c}\mathrm{u}^{\mathrm{o}} $\omega$\lrcorner

Figure 13.  E_{0} versus $\mu$_{y} and g:L=4.
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\mathrm{c}\mathrm{c}\mathrm{u}^{\mathrm{o}} $\omega$\lrcorner

Figure 14.  E_{0} ,
numerical versus the exact asymptotic result: L=4, g=0.5.

Further, from the point of view of \mathcal{N}=4 super Yang‐Mills the parameter L should

be restricted to strictly positive integer values. In fact, L is related to the number

of elementary operators building the composite trace operator of which we would like

to determine the anomalous dimension. On the contrary, within the TBA setup L is

simply the inverse of the temperature and does not necessarily need be quantised. In

[51] and more generally in [41] a drastic simplification of the analytic properties of the

solutions was observed at integer L but, up to now, these mathematical facts have not

been neatly linked to the gauge theory origin of the equations.

Indeed, the pseudoenergies change smoothly on the real axis with the scale and the

chemical potential $\mu$_{y} giving a smooth variation of E_{0}(L, $\mu$_{y}) ,
as shown in Figures 15

and 16.

Figure 15 corresponds to a truncation at N_{\max}=2 ,
and we see that the energy tends

uniformly to zero as  $\mu$_{y}\rightarrow i $\pi$ . Notice also that, regardless of  $\mu$_{y} ,
there is a particular

value of L\approx 2.3 where the curves simultaneously intersect the horizontal axis.
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\mathrm{c}\mathrm{c}\mathrm{u}^{\mathrm{o}} $\omega$\lrcorner

Figure 15.  E_{0} versus L, $\mu$_{y}:g=0.5, N_{rnax}=2.

Figure 16 corresponds to a truncation N_{\max}=5 , again the ground state energy

tends uniformly to zero as  $\mu$_{y}\rightarrow i $\pi$ and at  L\approx 2.07 the various curves intersect on the

horizontal axis. Increasing N_{\max} we observed that the intersection point approaches
L=2

,
but unfortunately the program fails to converge at L=2 for N_{\max}\geq 8.

\mathrm{c}\mathrm{c}\mathrm{u}^{\mathrm{o}} $\omega$\lrcorner

Figure 16.  E_{0} versus L, $\mu$_{y}:g=0.5, N_{rnax}=5.
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§8. Mapping the complex plane

In this section we shall describe qualitatively the analytic properties of the TBA

solutions in the complex rapidity plane. Following [24, 25] the solutions for complex
values of the rapidity were first obtained in the fundamental strip |{\rm Im}(u)|\displaystyle \leq\frac{1}{g} starting
from the L_{a}(u) computed on the real axis and using the TBA equations as integral

representations for the pseudoenergies.

Then, the solutions were calculated in the other strips, defined as

Stri\displaystyle \mathrm{p}^{(+k)}=\{u/{\rm Re}(u)\in(-\infty, +\infty), {\rm Im}(u)\in(+\frac{k}{g}, +\frac{k+1}{g})\},
(8.1)

Stri\displaystyle \mathrm{p}^{(-k)}=\{u/{\rm Re}(u)\in(-\infty, +\infty), {\rm Im}(u)\in (- \frac{k+1}{g}, - \frac{k}{g})\},
with k=1

, 2, \cdots

, using the basic \mathrm{Y}‐system (3.2‐3.5) and connecting two points in a

given strip k to a point outside it, as exemplified in Figure 17. In this way the whole

complex plane can be mapped. Notice that the basic \mathrm{Y}‐system does not contain a

Figure 17. Mapping of the complex plane of rapidity u.

functional equation for Y^{( $\alpha$)} to overcome this problem we used equation (5.2)(y|+)

(8.2) $\epsilon$_{(y1+)}^{( $\alpha$)}(u)=G^{( $\alpha$)}(u)-$\epsilon$_{(y1-)}^{( $\alpha$)}(u) ,

with

(8.3) G^{( $\alpha$)}(u)=\displaystyle \sum_{M}\mathcal{L}_{M}^{( $\alpha$)}*$\phi$_{M}(u)+2$\mu$_{y}^{( $\alpha$)},
and \mathcal{L}_{M}^{( $\alpha$)}(u)=2L_{(v|M)}^{( $\alpha$)}(u)-2L_{(w|M)}^{( $\alpha$)}(u)-L_{M}(u) and analytically continued it to a

generic strip in the complex plane:

(8.4) u\displaystyle \in \mathrm{S}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{p}^{(\pm k)};G^{( $\alpha$)}(u)=\sum_{M}\mathcal{L}_{M}^{( $\alpha$)}*$\phi$_{M}(u)+2$\mu$_{y}^{( $\alpha$)}+\sum_{n=1}^{k}\mathcal{L}_{n}^{( $\alpha$)}(u\mp\frac{i}{g}n) .



38 A. CAVAGLIÀ, D. FIORAVANTI, M. MATTELLIANO AND R. TATEO

The last term on the rhs of (8.4) comes from the residues of the simple pole singularities
in $\phi$_{M}(u) . In order to unveil the analytical properties of the \mathrm{Y} functions in the complex

rapidity plane we have introduced the functions [25]

(8.5) F_{a}^{\pm}(u)=\displaystyle \frac{|1+Y_{a}^{\pm 1}(u)|}{1+|1+Y_{a}^{\pm 1}(u)|}\in[0, 1],

and considered the special or critical points u^{(0)},u^{(-1)},u^{(\infty)} such that

(8.6) Y_{A}(u^{(0)})=0;Y_{A}(u^{(-1)})=-1;Y_{A}(u^{(\infty)})\rightarrow\infty.

Table 3 summarizes the values assumed by F_{a}^{(\pm)}(u) in correspondence to these points.
The functions F_{a}^{+} emphasize better the u^{(-1)} and u^{(\infty)} points, on the contrary the

function F_{a}^{-} are best suited to highlight the points u^{(0)} and u^{(-1)}.

Table 3. F^{\pm} values corresponding to u^{(0)}, u^{(-1)}, u^{(\infty)}.

Figure 18 shows a three dimensional plot of F_{1}^{-}(u) where the square root branch

cuts emerge and we also see peaks at zero (u^{(-1)}) and peaks at one (u^{(0)}) . A picture of

this kind is certainly nice looking but it is not very easy to interpret.
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0.91
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0.7
0.6
0.5

\mathrm{F}_{1}^{(-)} 0.3
0.4

0.2

00.1

Figure 18. 3\mathrm{D} plot of F_{1}^{-}(u):L=4, g=0.5, $\mu$_{y}=0.

We therefore consider two dimensional plots with contour lines, in which the value

of the functions F_{a}^{(\pm)} is encoded using a scale of colours. Blue corresponds to F_{a}^{(\pm)}=0
while red to F_{a}^{(\pm)}=1 . Figure 19 plots F_{1}^{-} ,

where the critical points of type u^{(0)} and

u^{(-1)} and the branch cuts are easily recognisable. The basic \mathrm{Y}‐system relates poles and

zeroes between adjacent strips on the reference sheet, so that complexes or strings of

critical points emerge. As an example of these phenomena, we shall highlight the link

between points u^{(0)}, u^{(-1)} and u^{(\infty)} induced by equation (3.2) at Q=1 :

(8.7) Y_{1}(u-\displaystyle \frac{i}{g})Y_{1}(u+\frac{i}{g})=(1+Y_{2}(u))(\frac{Y_{(y1-)}^{(1)}(u)}{1+Y_{(y1-)}^{(1)}(u)})^{2},
where we have used the symmetry Y_{(y1-)}^{(1)}=Y_{(y1-)}^{(2)} for $\mu$_{y}^{( $\alpha$)}=0 . Equation (8.7) shows

that there are relations between the zeroes and the poles of the functions

(8.8) Y_{1}, Y_{2}, (1+Y_{2}) , Y_{(y1-)}^{(1)}, (1+Y_{(y1-)}^{(1)}) .

From Figure 20 we see that the functions F_{(y1-)}^{\pm}(u) vanish at  u=u^{(-1)}\approx(3.7,4.4)\in
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{\rm Re}(\mathrm{u})

Figure 19. Contour plot of F_{1}^{-}(u):L=4, g=0.5, $\mu$_{y}=0.

Stri \mathrm{p}^{(+2)} (in blue). At this point the rhs of equation (8.7) tends to infinity, this im‐

plies that F_{1}^{+}(u)=1 at u=u^{(\infty)}\approx(3.7,6.4)\in \mathrm{S}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{p}^{(+3)} (a double pole of Y_{1} ) which

can be clearly spotted in Figure 21 (in red). Consider now Figure 21, the functions

F_{1}^{\pm}(u) show the existence of zeroes at u=u^{(-1)}\approx(3.1,6.5)\in \mathrm{S}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{p}^{(+3)} (in blue) so

at that point the lhs of (8.7) is equal to one. In turn, this implies that F_{2}^{-}(u)=1 at

u=u^{(0)}\approx(3.1,4.5)\in \mathrm{S}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{p}^{(+2)} ,
this also clearly emerges from Figure 22 (in red).

This is not sufficient to guarantee compatibility between the lhs and rhs of (8.7),
in fact also the part related to Y^{(1)}

(y|-)
on the rhs must tend to one. This implies that

F_{(y1-)}^{+}(u) must have a critical point at u=u^{(\infty)}\approx(3.1,4.5)\in \mathrm{S}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{p}^{(+2)} which presence

is clearly observable in Figure 20 (in red).
Finally, the reader can see that the function F_{2}^{+}(u) plotted in Figure 22 vanishes

at u=u^{(-1)}\approx(2.8,4.7)\in \mathrm{S}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{p}^{(+2)} (in blue), this is related to a critical point  u^{(0)}\approx

(2.8,6.7)\in \mathrm{S}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{p}^{(+3)} (in red) observable in F_{1}^{-}(u) plotted in Figure 21. Notice that the

picture emerging from this quick inspection matches perfectly the complexes of critical

points defined in Proposition 4.1. The interest for the classification of these complexes
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or strings is not purely academic but it is actually an important preliminary step for

the classification of the excited states of the theory.

2 2.5 3 3.5 4 4.5 5

{\rm Re}(\mathrm{u})

2 2.5 3 3.5 4 4.5 5

{\rm Re}(\mathrm{u})

Figure 20. Details of F_{(y1-)}^{\pm}(u):L=4, g=0.5, $\mu$_{y}=0.
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\underline{\wedge\check{\mathrm{E}}\supset}

\underline{\wedge\check{\mathrm{E}}\supset}

2 2.5 3

2 2.5 3

\mathrm{F}_{1}^{(-)}

3.5 4 4. 5 5

{\rm Re}(\mathrm{u})

\mathrm{F}_{1}^{(+)}

3.5 4 4. 5 5

{\rm Re}(\mathrm{u})

Figure 21. Details of F_{1}^{\pm}(u) : L=4, g=0.5, $\mu$_{y}=0.
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\mathrm{F}_{2}^{(-)}

2 2.5 3 3.5 4 4.5 5

{\rm Re}(\mathrm{u})

\mathrm{F}_{2}^{(+)}

2 2.5 3 3.5 4 4.5 5

{\rm Re}(\mathrm{u})

Figure 22. Details of F_{2}^{\pm}(u):L=4, g=0.5, $\mu$_{y}=0.

§9. Conclusions

The correspondence between strings and gauge theories provides exactly soluble

models with remarkable properties. These important systems can be studied using the

powerful tools developed over the years in the integrability context for the study of

models mainly relevant to condensed matter physics in low dimensions.
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A main objective of this article is to describe preliminary numerical results con‐

cerning a new variant of the TBA equations for the \mathrm{A}\mathrm{d}\mathrm{S}_{5}/\mathrm{C}\mathrm{F}\mathrm{T}_{4} correspondence in the

attempt to reveal the analytic properties of their solutions.

Studying the evolution of the ground state energy at different values of the scale

and the chemical potential, we have checked that ‐as predicted by supersymmetry‐ the

equations correctly lead to a vacuum state with zero energy as  $\mu$_{y}\rightarrow i $\pi$ at arbitrary
scale  L.

It was then possible to explore the functions F_{a}^{(\pm)} in the complex plane of the

rapidity, allowing us to study the zeroes and the singularities of the functions Y_{a}(u)
and 1+Y_{a}(u) . We have seen that the basic \mathrm{Y}‐system relates points between adjacent

strips of the complex plane and verified the presence of square root branch cuts exactly
at the points predicted by [41] and summarized in Table 1. These results confirm that

the analytic properties of the \mathrm{A}\mathrm{d}\mathrm{S}_{5}/\mathrm{C}\mathrm{F}\mathrm{T}_{4} thermodynamic Bethe Ansatz equations are

very different from those of the relativistic integrable quantum field theories. The \mathrm{Y}

functions live on a complicated and ‐up to now‐ only superficially explored Riemann

surface with an infinite number of square root branch points.

Finally our set of programs should be easily adaptable to other non‐linear integral

equations, as for example those for the \mathrm{A}\mathrm{d}\mathrm{S}_{4}/\mathrm{C}\mathrm{F}\mathrm{T}_{3} correspondence, linking the type IIA

string theory on \mathrm{A}\mathrm{d}\mathrm{S}_{4}\times \mathbb{C}\mathbb{P}^{3} to the Chern‐Simons model with supersymmetry \mathcal{N}=6

in three dimensions [53, 54, 55].
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§A. The \mathrm{S} ‐matrix elements

Here we report the scalar factors S_{AB} involved in the definition of kernels in the

TBA equations (2.1‐2.4).

(A. 1) s_{y,Q}(u, z)=s_{Q,y}(z, u)=(\displaystyle \frac{x(z-\frac{i}{g}Q)-x(u)}{x(z+\frac{i}{g}Q)-x(u)})\sqrt{\frac{x(z+\frac{i}{g}Q)}{x(z-\frac{i}{g}Q)}}.
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(A.2)

s_{(v|M),Q}(u, z)=S_{Q,(v|M)}(z, u)=(\displaystyle \frac{x(z-\frac{i}{g}Q)-x(u+\frac{i}{g}M)}{x(z+\frac{i}{g}Q)-x(u+\frac{i}{g}M)})(\frac{x(z+\frac{i}{g}Q)}{x(z-\frac{i}{g}Q)})
\displaystyle \times(\frac{x(z-\frac{i}{g}Q)-x(u-\frac{i}{g}M)}{x(z+\frac{i}{g}Q)-x(u-\frac{i}{g}M)})\prod_{j=1}^{M-1}(\frac{z-u-\frac{i}{g}(Q-M+2j)}{z-u+\frac{i}{g}(Q-M+2j)}) ,

(A.3) s_{M}(u)=(\displaystyle \frac{u-\frac{i}{g}M}{u+\frac{i}{g}M}) ,

(A.4 )
K M

S_{KM}(u)=\displaystyle \prod_{k=1}\prod_{l=1}S_{((K+2-2k)}-(M-2l))(u)

=(\displaystyle \frac{u-\frac{i}{g}|K-M|}{u+\frac{i}{g}|K-M|}) (\frac{u-\frac{i}{g}(K+M)}{u+\frac{i}{g}(K+M)})\prod_{k=1}^{\min(K,M)-1}(\frac{u-\frac{i}{g}(|K-M|+2k)}{u+\frac{i}{g}(|K-M|+2k)})^{2}
The elements S^{ $\Sigma$}

Q' Q
are:

(A.5) S_{QQ}^{ $\Sigma$}(z, u)=(S_{Q'Q}(z-u))^{-1}($\Sigma$_{Q'Q}(z, u))^{-2},

where $\Sigma$_{Q'Q} is the improved dressing factor for the mirror bound states

(A. 6) $\Sigma$_{Q'Q}(z, u)=\displaystyle \prod_{k=1}^{Q'}\prod_{l=1}^{Q}(\frac{1-\frac{1}{x(z+\frac{i}{g}(Q'+2-2k))x(u+\frac{i}{g}(Q-2l))}}{1-\frac{1}{x(z+\frac{i}{g}(Q-2k))x(u+\frac{i}{g}(Q+2-2l))}})$\sigma$_{Q'Q}(z, u) ,

with $\sigma$_{Q'Q} evaluated in the mirror kinematics. A precise analytic expression for the

mirror improved dressing factor has been given in [43], and a more compact integral

representation in [37]. The equivalence between these two results was proved in [41]
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