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Abstract

We review the X=K conjecture and important ingredients for the proof. We also attach

notes on the rank estimate for the X=K theorem to hold and on the strange relation that

was found to be valid without the assumption that the rank is sufficiently large. Using the

latter one obtains an algorithm to calculate the image of the combinatorial R‐matrix and the

value of the coenergy function.

§1. Review on X=K

Let \mathfrak{g} be an affine algebra of nonexceptional type and I=\{0, 1, . . . , n\} the index

set of its Dynkin nodes. Let 0\in I as specified in [4] and set I_{0}=I\backslash \{0\} . For a

pair (r, s)(r\in I_{0}, s\in \mathbb{Z}_{>0}) there exists a crystal B^{r,s} called the Kirillov‐Reshetikhin

(KR) crystal [1]. It is a crystal base in the sense of Kashiwara [5] of the Kirillov‐

Reshetikhin module W^{r,s}(a) for a suitable parameter a[11 , 13 ] over the quantum affine

algebra U_{q}'(\mathrm{g}) without the degree operator q^{d} . Let B be a tensor product of KR crystals
B=B^{r_{1},s_{1}}\otimes B^{r_{2},s_{2}}\otimes\cdots\otimes B^{r_{L},s_{L}} ,

and for a subset J of I set hw(B) =\{b\in B|e_{i}b=
0 for any i\in J} where e_{i} is the Kashiwara operator acting on B . We call an element

of hw(B) J‐highest. For an I_{0} ‐weight  $\lambda$ we define the 1‐dimensional sum \overline{X}_{ $\lambda$,B}(q) by

\displaystyle \overline{X}_{ $\lambda$,B}(q)= \sum q^{\overline{D}(b)}.
 b\in \mathrm{h}\mathrm{w}_{I_{0}}(B),\mathrm{w}\mathrm{t}b= $\lambda$
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Here \overline{D} : B\rightarrow \mathbb{Z} is the intrinsic coenergy function (see [9, §3.5]). Assume now that

n=|I_{0}| is sufficiently large. (We make an attempt to estimate n such that our main

theorem holds.) Then it can be shown that \overline{X}_{ $\lambda$,B}(q) depends only on the attachment

of the node 0 to the rest of the Dynkin diagram of \mathfrak{g} . In the table below we list all

possibilities of the attachment of 0 and enumerate the corresponding nonexceptional
affine algebras.

Dynkin

(1)

(1) (1) (2)

(1)

(2)(2)

Hence, we have four kinds of �stable� 1‐dimensional sums denoted by \overline{X}_{ $\lambda$,B}^{\text{◇}}(q) (◇ =

\emptyset, \mathrm{H} , [I], \square ) . Then the so‐called X=K conjecture proposed by Shimozono and Zabrocki

[14, 15] is stated as follows.

Theorem 1.1 ([9]). For ◇ \neq\emptyset ,

\displaystyle \overline{X}_{ $\lambda$,B}^{\text{◇}}(q)=q^{\frac{|B|-| $\lambda$|}{|\text{◇}|}}\sum_{ $\mu$\in \mathcal{P}_{|B|-| $\lambda$|}^{\text{◇}}, $\nu$\in \mathcal{P}_{|B|}^{\square }}c_{ $\lambda \mu$}^{ $\nu$}\overline{X}_{ $\nu$,B}^{\emptyset}(q^{\frac{2}{|\text{◇}|}}) .

Here |B|=\displaystyle \sum_{j=1}^{L}r_{j}s_{j}, | $\lambda$|=\displaystyle \sum_{i}$\lambda$_{i} for  $\lambda$=($\lambda$_{1}, $\lambda$_{2}, \ldots) where a non‐spin weight  $\lambda$ is

identified with a partition by the standard way, \mathcal{P}_{N}^{\text{◇}}=set of partitions of N tiled by \text{◇，
and c_{ $\lambda \mu$}^{ $\nu$} stands for the Littlewood‐Richardson coefficient.

We sketch the proof of this theorem from [9]. Since \overline{X}_{ $\lambda$,B}^{\text{◇}}(q) depends only on the

symbol ◇,we choose an affine algebra \mathfrak{g}^{\text{◇}} from each kind such that i\mapsto n-i(i\in I)
gives a Dynkin diagram automorphism. Namely, we set \mathfrak{g}^{\text{◇}}=A_{n}^{(1)}, D_{n}^{(1)}, C_{n}^{(1)}, D_{n+1}^{(2)} for

◇ =\emptyset, \mathrm{H} , [I], \square . Let ◇ =\mathrm{H} ,
[I] or \square from now on. Then there exists an automorphism

 $\sigma$ on the KR crystal  B^{r,s} for \mathfrak{g}^{\text{◇}} satisfying

 $\sigma$(e_{i}b)=e_{n-i} $\sigma$(b)

for any i\in I, b\in B^{r,s} . This automorphism  $\sigma$ is extended to  B by  $\sigma$(b)= $\sigma$(b_{1})\otimes $\sigma$(b_{2})\otimes
. . . \otimes $\sigma$(b_{L}) . Then the important facts for the proof are summarized as follows.

(i)  $\sigma$ restricts to the following bijection.

\left\{\begin{array}{lll}
 & I_{0}- \mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{t} & \mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}\\
\mathrm{i}\mathrm{n} & \mathrm{o}\mathrm{f}B & \mathrm{w}\mathrm{t} $\lambda$
\end{array}\right\}\rightarrow^{ $\sigma$}\left\{\begin{array}{lll}
I & \backslash \{0,n\}- \mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{t} & \mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}\\
 & \max(B)\mathrm{o}\mathrm{f}\mathrm{i}\mathrm{n} & \mathrm{w}\mathrm{t}\overline{ $\lambda$}
\end{array}\right\}
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Here \displaystyle \max(B)=\oplus_{ $\gamma$}B( $\gamma$) ,
where B( $\gamma$) is the highest weight U_{q}(\mathfrak{g}_{I_{0}}^{\text{◇}}) ‐crystal of

highest weight  $\gamma$ and  $\gamma$ runs over all weights with | $\gamma$|=|B| such that B( $\gamma$) appears

in the restriction of B . Namely, \displaystyle \max(B) is the disjoint union of classical highest

weight crystals of maximal highest weights. We remark that \mathfrak{g}_{I\backslash \{0,n\}} is isomorphic
to A_{n-1} and set \overline{ $\lambda$}=(-$\lambda$_{n}, \ldots, -$\lambda$_{1}) if  $\lambda$=($\lambda$_{1}, \ldots, $\lambda$_{n}) .

(ii) \overline{D}(b)=\overline{D}( $\sigma$(b))+(|B|-|\mathrm{w}\mathrm{t}b|)/| ◇ | for b\in \mathrm{h}\mathrm{w}_{I_{0}}(B) .

(iii) We have [V^{G}(v)\displaystyle \downarrow_{GL_{n}}^{G} : V^{GL_{n}}(\overline{ $\lambda$})]=\sum_{ $\mu$\in \mathcal{P}^{\text{◇}\mathcal{C}_{ $\lambda \mu$}^{ $\nu$}}} ,
where G=SO_{2n}, Sp_{2n}, SO_{2n+1}

for ◇ =\mathrm{H} , [I], \square and V^{G}(v) stands for the irreducible G‐module of non‐spin highest

weight v.

(iv) If we represent elements of a KR crystal by Kashiwara‐Nakashima tableaux [6], I_{0^{-}}

highest elements in \displaystyle \max(B) contain no barred letters and can therefore be viewed

as elements of type A . Under this correspondence we have \displaystyle \overline{D}^{\text{◇}}(b)=\frac{2}{|\text{◇}|}\overline{D}^{\emptyset}(b) .

Once these properties are established, our theorem can easily be proved as

\displaystyle \overline{X}_{ $\lambda$,B}^{\text{◇}}(q)=\sum_{b\in \mathrm{h}\mathrm{w}_{I_{0}}(B),\mathrm{w}\mathrm{t}b= $\lambda$}q^{\overline{D}(b)}
(ii)=q^{d}\displaystyle \sum_{b}q^{\overline{D}( $\sigma$(b))}
(i)(iii)=q^{d}\displaystyle \sum_{ $\mu$\in \mathcal{P}^{\text{◇}}, $\nu$\in \mathcal{P}}c_{ $\lambda \mu$}^{ $\nu$}\sum_{\hat{b}\in \mathrm{h}\mathrm{w}_{I_{0}}(\max(B)),\mathrm{w}\mathrm{t}\hat{b}= $\nu$}q^{\overline{D}(\hat{b})}
(iv)=q^{d}\displaystyle \sum_{ $\mu,\ \nu$}c_{ $\lambda \mu$}^{ $\nu$}\overline{X}_{ $\nu$,B}^{\emptyset}(q^{\frac{2}{|\text{◇}|}})

where we have set d = ( | B | — | $\lambda$| )/ | ◇ | .

Example 1.2. Consider the affine algebra \mathfrak{g}=D_{6}^{(1)} of kind \mathrm{H} and the following
three elements of B=B^{2,2}\otimes B^{3,1}\otimes B^{1,3} . They all have weight  $\lambda$=(211) . Their images

by the automorphism  $\sigma$ are also given.
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By the property (i) each  $\sigma$(b) should belong to \displaystyle \max(B) . Actually, by applying the raising

operators e_{i}(i\in I_{0}) one finds that these three elements have the common I_{0}‐highest
element

\mathrm{b} =

of weight v= (33211). It is also true that they are the all I_{0}‐highest elements in B

whose images under  $\sigma$ belong to the same  I_{0} ‐component as the above one. We can check

the property (iii), since we get c_{ $\lambda \mu$}^{ $\nu$}=1 if  $\mu$=(33) ,
=2 if  $\mu$=(2211) , =0 if  $\mu$ are other

elements in \mathcal{P}^{\mathrm{H}} and therefore

\displaystyle \sum_{ $\mu$\in \mathcal{P}\mathrm{H}}c_{ $\lambda \mu$}^{ $\nu$}=3.
The intrinsic coenergies \overline{D}(b) are all equal and can be calculated using the property (ii)
as

\displaystyle \overline{D}(b)=\overline{D}( $\sigma$(b))+\frac{10-4}{2}.
Since \overline{D} is constant on each I_{0} ‐component, we have \overline{D}( $\sigma$(b))=\overline{D}(\hat{b}) . The r.h. \mathrm{s} . is

calculated to be 4 using the knowledge of the type A crystal [14]. Therefore we obtain

\overline{D}(b)=7.

Remark. The so‐called X=M conjecture [3, 2] claims that the 1‐dimensional

sum \overline{X}_{ $\lambda$,B}(q) is equal to the fermionic formula \overline{M}( $\lambda$, \mathrm{L};q) . Hence, when n is sufficiently

large, one can expect that \overline{M}( $\lambda$, \mathrm{L};q) has a similar formula to Theorem 1.1. This is

confirmed in [12]. Combining these results with [7], the X=M conjecture is settled

when the affine algebra is of nonexceptional type and its rank is sufficiently large.

§2. Rank Estimate

In this section we make an attempt to estimate n such that Theorem 1.1 holds.

Proposition 2.1. Let \ell be the length of  $\lambda$ . Then Theorem 1.1 holds if

 n>(2\ell+1)+|B|-| $\lambda$|.

Proof. The obstacle for the theorem to hold lies in the fact that the property (i) is

no longer valid when n is not large enough. In [9] this property is stated as Theorem 7.1.

In view of the proof there one recognizes that if n is so large that  $\sigma$(b) for b\in \mathrm{h}\mathrm{w}_{I_{0}}(\mathrm{B})
is contained in \displaystyle \max(B) ,

then everything is ok. Using row and box splittings in [9, §6]
one can also reduce the proof when B is a tensor product of the simplest KR crystal
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B^{1,1}
,
that is, B=(B^{1,1})^{\otimes L} . Hence, our task is to estimate n such that  $\sigma$(b) belongs to

\displaystyle \max((B^{1,1})^{\otimes L}) for any b\in \mathrm{h}\mathrm{w}_{I_{0}}((B^{1,1})^{\otimes L}) of weight  $\lambda$.

Recall that an element of (B^{1,1})^{\otimes L} can be regarded as a word of length L from the

alphabet

\{( $\phi$, )1, 2, . . . , n, (0, )\overline{n}, \overline{n-1}, . . . , \overline{1}\}.

Here letters in parentheses are only for ◇ =\square . Let b be a word of length L that is

I‐highest. Then the letters b lie in the set \{( $\phi$, )1, 2, . . . , m, \mathrm{m}, \overline{m-1}, . . . , \overline{1}\} for some

m(\geq\ell) . Let c_{z} be the number of letters z in b . Then we have c_{j}-c_{\overline{j}}=$\lambda$_{j}>0
for  1\leq j\leq\ell and  c_{j}=c_{\overline{j}}>0 for \ell<j\leq m . Since \displaystyle \sum_{j=1}^{m}(c_{j}+c_{\overline{j}})\leq L ,

we have

\displaystyle \sum_{j=1}^{m}c_{\overline{j}}\leq\frac{L-| $\lambda$|}{2} . Setting M=\displaystyle \max_{\ell<j\leq m}c_{\overline{j}} ,
we get

(2.1) M+(m-\displaystyle \ell-1)\leq\frac{L-| $\lambda$|}{2}.
Next recall the insertion algorithms from [8]. For a word or element of a tensor

product of B^{1,1} the insertion algorithm tells us the highest weight of the I_{0} ‐component

the word belongs to. In our case we wish to apply this algorithm to  $\sigma$(b) to see if the

shape of the resulting tableau has L nodes. This is equivalent to say that at each step

of insertion of a letter to a column the resulting column remains to be admissible. This

in particular means that if letter x and \overline{x} coexist at position p and q in some column of

height N
,

then we have

(2.2) x\geq p+(N+1-q) .

Let us obtain the minimal possible unbarred letter X that could appear in the course of

insertion algorithms. Note that letters of  $\sigma$(b) lie in \{n-m+1, n-m+2 ,
. . .

, n, (0, )\overline{n}, \overline{n-1},
. . .

, \overline{n-m+1}\} . Since plactic relations of [8] contain x\overline{x}y\equiv(\overline{x-1})(x-1)y ,
a pair

(n-m+1, n-m+1) could create (n-m+1-M, n-m+1-M) . Hence we can set

X=n-m+1-M . The worst situation that could break (2.2) is that there exist pairs

(X+j-1, \overline{X+j-1}) for any 1\leq j\leq M+m in the first column during the insertion

procedure. The condition for such a column to be admissible is given by

(2.3) n\geq 2(M+m) .

In view of (2.1) we obtain the desired result. \square 

§3. Strange Relation

In this section we show the following proposition and apply it to give an algorithm
to obtain the image of the combinatorial R‐matrices and the value of the coenergy
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function \overline{H} . As we see in the proof, we do not assume the rank is sufficiently large. So

the algorithm can be used for any n . However, we need to restrict our affine algebras to

\mathfrak{g}^{\text{◇}} (◇ =\mathrm{H}, [1], \square ), since we use the automorphism  $\sigma$ . From the same reason we exclude

the KR crystals  B^{n-1,s} and B^{n,s} for \mathfrak{g}^{\mathrm{H}}=D_{n}^{(1)} and n is odd.

Proposition 3.1. Let B be a tensor product of KR crystals. Suppose  b\in

hw(B). Then we have

\displaystyle \overline{D}(b)-\overline{D}( $\sigma$(b))=\frac{|B|-| $\lambda$(b)|}{|\text{◇}|}.
Here  $\lambda$(b) stands for the partition corresponding to the weight of b.

This proposition is essentially the same as Theorem 8.1 of [9] except that we do

not assume n is sufficiently large. We prepare a lemma. Let us extend the definition

of  $\lambda$(b) to an arbitrary element b by  $\lambda$(b)=($\lambda$_{1}, $\lambda$_{2}, \ldots, $\lambda$_{n}) where $\lambda$_{i}= (wt b, $\epsilon$_{i} ) and

\{$\epsilon$_{i}\}_{1\leq i\leq n} stands for the standard basis vectors of the weight lattice. We note that  $\lambda$(b)
is not necessarily a partition. Some $\lambda$_{i} �s may be negative. Hence | $\lambda$|=\displaystyle \sum_{i}$\lambda$_{i} may also

become negative.

Lemma 3.2. Let B_{1}, B_{2} be single KR crystals. Let b_{1}\otimes b_{2} be an element of

B_{1}\otimes B_{2} and suppose it is mapped to b_{2}'\otimes b\'{i} by the affine crystal isomorphism. Then

we have

(3.1) \displaystyle \overline{H}(b_{1}\otimes b_{2})-\overline{H}( $\sigma$(b_{1})\otimes $\sigma$(b2)) =\frac{| $\lambda$(b_{2}')|-| $\lambda$(b_{2})|}{|\text{◇}|}.
Proof. Since B_{1}\otimes B_{2} is connected, it is sufficient to show

(i) if b_{1}=u(B_{1}) , b_{2}=u(B) (see [9, §3.4] for the definition of u(B_{i}) ), (3.1) holds, and

(ii) (3.1) with b_{1}\otimes b_{2} replaced by e_{i}(b_{1}\otimes b_{2}) holds, provided that (3.1) holds and

e_{i}(b_{1}\otimes b_{2})\neq 0.

For (i) recall b\'{i}=b_{1}, b_{2}'=b_{2} if b_{1}=u(B_{1}) , b_{2}=u(B_{2}) . Since u(B_{1})\otimes u(B) can be

reached from  $\sigma$(u(B_{1}))\otimes $\sigma$(u(B)) by applying e_{i}(i\neq 0) ,
we have \overline{H}(u(B_{1})\otimes u(B_{2}))=

\overline{H}( $\sigma$(u(B_{1}))\otimes $\sigma$(u(B_{2})))=0 . Hence (i) is verified.

For (ii) recall | $\lambda$(e_{i}b)|-| $\lambda$(b)|= − | ◇ | (i=0), = | ◇ | (i=n), =0 (otherwise). If

i\neq 0, n
,

both sides do not change when we replace b_{1}\otimes b_{2} with e_{i}(b_{1}\otimes b_{2}) . If i=0,
the first term of the l.h. \mathrm{s} decreases by one in case LL, increases by one in case RR, and

does not change in case LR or RL. (For the meaning of LL, etc, see [9, Prop. 3.7].) The

second term does not change, while the r.h. \mathrm{s} varies in the same way as the first term of

the l.h. \mathrm{s} . The i=n case is similar. \square 
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Proof of Proposition 3.1. Let B=B^{r_{1},s_{1}}\otimes\cdots\otimes B^{r_{p},s_{p}} . We prove by induction

on p . When p=1 ,
the proof is the same as in [9, Th. 8.1].

Let B=B'\otimes B^{r_{p},s_{p}} and b_{1}\otimes b_{2}\in B'\otimes B^{r_{p},s_{p}} is mapped to b_{2}'\otimes b\'{i} \in B^{r_{p},s_{p}}\otimes B' by
the affine crystal isomorphism. Then  $\sigma$(b_{1})\otimes $\sigma$(b) should be mapped to  $\sigma$(b_{2}')\otimes $\sigma$(b_{1}') .

Using (3.52) of [9] we have

\overline{D}(b)=\overline{D}(b_{1})+\overline{D}(b_{2}')+\overline{H}(b_{1}\otimes b_{2}) ,

\overline{D}( $\sigma$(b))=\overline{D}( $\sigma$(b_{1}))+\overline{D}( $\sigma$(b_{2}'))+\overline{H}( $\sigma$(b_{1})\otimes $\sigma$(b2)) .

On the other hand, by the previous lemma and [10, Lemma 5.2] we have

\displaystyle \overline{H}(b_{1}\otimes b_{2})-\overline{H}( $\sigma$(b_{1})\otimes $\sigma$(b_{2}))=\frac{| $\lambda$(b_{2}')|-| $\lambda$(b_{2})|}{|\text{◇}|}.
Using the induction hypothesis we obtain

\displaystyle \overline{D}(b)-\overline{D}( $\sigma$(b))=\frac{|B'|-| $\lambda$(b_{1})|}{|\text{◇}|}+\frac{|B^{r_{p},s_{p}}|-| $\lambda$(b_{2}')|}{|\text{◇}|}+\frac{| $\lambda$(b_{2}')|-| $\lambda$(b_{2})|}{|\text{◇}|}
=\displaystyle \frac{|B|-| $\lambda$(b)|}{|\text{◇}|}

as desired. \square 

Using Proposition 3.1 we can give an algorithm to obtain the image of the combi‐

natorial R‐matrix and the value of the coenergy function \overline{H} . This algorithm turns out

effective when it is calculated using computer. For the calculation of  $\sigma$ see [9, Appendix

B.2]. Let  B_{i}=B^{r_{i},s_{i}}(i=1,2) be KR crystals. The affine crystal isomorphism

R:B_{1}\otimes B_{2}\rightarrow B_{2}\otimes B_{1},

which is known to exist uniquely, is called the combinatorial R‐matrix. For an element

b_{1}\otimes b_{2}\in B_{1}\otimes B_{2} we wish to calculate the image R(b_{1}\otimes b_{2}) . Since the application
of Kashiwara operators e_{i}, f_{i} for i\neq 0 is not difficult, one can reduce its calculation

to I_{0}‐highest elements of B_{1}\otimes B_{2} . For an element b in an I_{0} ‐component let High (b)
stand for the I_{0} ‐highest element and set  $\Phi$=High \circ $\sigma$ . From Proposition 3.1 and the

invariance of \overline{D} by classical Kashiwara operators, one has

(3.2) \displaystyle \overline{D}( $\Phi$(b_{1}\otimes b_{2}))=\overline{D}(b_{1}\otimes b_{2})-\frac{|B_{1}\otimes B_{2}|-| $\lambda$(b_{1}\otimes b_{2})|}{|\text{◇}|}.
Note that the second term of the above relation vanishes, if and only if  b_{1}\otimes b_{2}\in

\displaystyle \max(B_{1}\otimes B_{2}) . Since the application of  $\Phi$ decreases \overline{D} and \overline{D} takes a finite number of

values, there exists a positive integer m such that $\Phi$^{m}(b_{1}\displaystyle \otimes b_{2})\in\max(B_{1}\otimes B_{2}) . Namely,
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there exist sequences \mathrm{a}_{1} ,
. . .

, \mathrm{a}_{m} from I_{0} and an element \displaystyle \hat{b}_{1}\otimes\hat{b}_{2}\in\max(B_{1}\otimes B_{2}) such

that

\hat{b}_{1}\otimes\hat{b}_{2}=(e_{\mathrm{a}_{m}}\mathrm{o} $\sigma$ 0\cdots \mathrm{o}e_{\mathrm{a}_{1}}\mathrm{o} $\sigma$)(b_{1}\otimes b_{2}) ,

or equivalently,

b_{1}\otimes b_{2}=( $\sigma$\circ f_{\mathrm{R}\mathrm{e}\mathrm{v}(\mathrm{a}_{1})^{\mathrm{O}}}\cdots\circ $\sigma$\circ f_{\mathrm{R}\mathrm{e}\mathrm{v}(\mathrm{a}_{m})})(\hat{b}_{1}\otimes\hat{b}_{2}) .

Here for \mathrm{a}=(i_{1}, \ldots, i_{l})e_{\mathrm{a}} stands for e_{i_{1}}\cdots e_{i_{l}} ( f_{\mathrm{a}} is similar) and Rev(a) =(il, . . . , i_{1}) .

Since R commutes with e_{\mathrm{a}}, f_{\mathrm{a}} and  $\sigma$
,

we have

 R(b_{1}\otimes b_{2})=( $\sigma$\circ f_{\mathrm{R}\mathrm{e}\mathrm{v}(\mathrm{a}_{1})}\circ\cdots\circ $\sigma$\circ f_{\mathrm{R}\mathrm{e}\mathrm{v}(\mathrm{a}_{m})})R(\hat{b}_{1}\otimes\hat{b}_{2}) .

On the other hand, for an I_{0} ‐highest element in \displaystyle \max(B_{1}\otimes B_{2}) the image of R is easily
calculated (see [9, §9.1]). Hence, one can calculate R(b_{1}\otimes b_{2}) .

We proceed to the calculation of \overline{H}(b_{1}\otimes b_{2}) . Firstly, one has the relation

(3.3) \overline{D}(b_{1}\otimes b_{2})=\overline{D}(b_{1})+\overline{D}(b_{2}')+\overline{H}(b_{1}\otimes b_{2}) ,

where R(b_{1}\otimes b_{2})=b_{2}' \otimes bí. The l.h. \mathrm{s} is has been obtained in the course of the previous

process and the known result of the value of \overline{D} for an element in \displaystyle \max(B_{1}\otimes B_{2}) . For

I‐highest elements b_{1}, b_{2}' of a single KR crystal the value of \overline{D} is calculated as

\displaystyle \overline{D}(b)=\frac{rs-| $\lambda$(b)|}{|\text{◇}|} for b\in B^{r,s}

Therefore, one obtains \overline{H}(b_{1}\otimes b_{2}) .

Example 3.3. Consider the affine algebra \mathfrak{g}=D_{6}^{(1)} of kind \mathrm{H} and the following
element of B^{4,3}\otimes B^{3,3}.

b_{1}\otimes b_{2}= \otimes

Then  $\Phi$(b_{1}\otimes b_{2}) and $\Phi$^{2}(b_{1}\otimes b_{2}) are given as follows.

 $\Phi$(b_{1}\otimes b_{2})= \otimes , $\Phi$^{2}(b_{1}\otimes b_{2})= \otimes

with

\mathrm{a}_{1}=(64354643215432643215432643564321543264354643215432643546643215432643546) ,

\mathrm{a}_{2}=(66456435464325436643215432646432154326435643215432643546432154326435466

43215432643546643215432643546).
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Since one knows the image of R of $\Phi$^{2}(b_{1}\otimes b_{2}) is given by

\otimes

one obtains

 R(b_{1}\otimes b_{2})=b_{2}'\otimes b_{1}'= \otimes .

We proceed to the calculation of \overline{H}(b_{1}\otimes b_{2}) . By using (3.2) twice and \overline{D}($\Phi$^{2}(b_{1}\otimes
 b_{2}))=3 one gets \overline{D}(b_{1}\otimes b_{2})=12 . Since \overline{D}(b_{1})=3, \overline{D}(b_{2}')=1 ,

we obtain \overline{H}(b_{1}\otimes b_{2})=8
from (3.3).
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