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Quantum dilogarithm identities

By

Kentaro NAGAO*

Abstract

In [Nakb], generalizing the dilogarithm identities in conformal field theories, Nakanishi
provided dilogarithm identities for “periodic” quivers. In this note, we suggest a ¢-deformed
version of Nakanishi’s identity.

§1. Introduction

§1.1. Quantum dilogarithm

In this paper we study the following formal power series over C(q) which is called
the quantum dilogarithm :
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The readers may refer [FG09, §1.3] for the history of the quantum dilogarithm.
One of the fundamental property of the quantum dilogarithm is the quantum pen-
tagon identity [Sch53, FK94] : we assume zy = ¢*yx, then we have

E(z)E(y) = E(y)E(q " zy)E().
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It is natural for us to study quantum dilogarithms as elements in (a completion of)
quantum tori Given a skew symmetric integer matrix B = (bi;j)1<s,j<n (0T, equivalently,
a quiver without loops or 2-cycles), the quantum torus QT associated to B is the
C(g)-algebra generated by {zf | 1 < i < n} with the relation z;2; = ¢**9x;z;. The
pentagon identity is an equation in the quantum torus associated to the quiver of type
Aj.

§1.2. Donaldson-Thomas theory and quantum dilogarithm

Recently, the quantum dilogarithm has appeared in moduli theory of quiver rep-
resentations [Reil0, KSb, KSa]. It is essential that the denominator of a coefficient in
the quantum dilogarithm is the Poincare polynomial of the general linear group (or the
polynomial of which computes the order of the general linear group over a finite field
with ¢ elements).

Given a 3-dimensional Calabi-Yau category D, Donaldson-Thomas theory for D is
the moduli theory of objects in D. Given a quiver with a potential, we can define a
3-dimensional Calabi-Yau category. The Donaldson-Thomas theory associated to such
a category is called the non-commutative Donaldson-Thomas theory ([Sze08]).

According to Kontsevich-Soibelman’s conjecture, there is an algebra homomor-
phism from the motivic Hall algebra to the quantum torus. A quantum dilogarithm ia
the image of the moduli stack which parameterizes direct sums of a spherical object.

On the other hand, we have an interesting generalization of the (classical) pentagon
relation which is called the dilogarithm identity in conformal field theory. Nakanishi and
his collaborators found that periodicity of the cluster algebra ([IIKNS10, Kelc]) plays a
crucial role for the dilogarithm identity [Naka, [IIKKNa, IIKKNb]. In [Nakb], Nakanishi
found that the dilogarithm identity is hold for any quiver with “periodicity”.

In this note, we provide an analogue of Nakanishi’s dilogarithm identity for quantum
dilogarithms which generalizes the quantum pentagon identity. This is a consequence
of Kontsevich-Soibelman’s conjecture on the motivic Donaldson-Thomas theory ([KSb])
combined with the argument in [Nag].

During writing this note, the author was informed that B. Keller proved the identity
[Kelb]. G. Kuroki independently found the same identity too [Kur]. After submitting
this note, Nakanishi and Kashaev showed how Nakanishi’s identity is induced from the
quantum one by applying the saddle point method [NK].
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§2. Statement

§2.1. Periodicities in cluster algebras

Let @ be a finite quiver without loops and 2-cycles with vertex set I = {1,...,n}.
We put

Q(i,j) = f{arrows from ¢ to j},  Q(i,4) = Q(2,4) — Q(j, %)
Since we assume @ has no 2-cycles, Q(i, j) determines the quiver Q. For a vertex k € I,

the mutation p@Q of Q at k is the quiver ™V, where Q"°V is a finite quiver without
loops and 2-cycles and with the same vertex set as (), which is obtained as follows:

1. reverse all arrows incident with &, and

2. for all vertices ¢ # j distinct from k, modify the number of arrows between ¢ and j

as follows:
Qnew(i ]) _ Q(Zaj) (Q(Zv k) ’ Q(kaj) < 0)7
’ Qi) + QG k)| - Q(k, 5)  (Q(i k) - Q(k, j) > 0).
For a sequence of vertices k = (kq,..., k) € I', we put

Qi := i, (- - - (p2(p2Q)) -+ ).

Throughout this paper, we use similar notations.

Given a sequence of vertices k = (ky,...,k) € I' we have a unique sequence
e(1),...,e(l) of signs which satisfied the following ([Nag, Theorem 3.4]).

Let Z! be a lattice with basis (e;);e;. For a vertex k € I we define isomorphisms
¢k,:|:: ZI l} ZI by

e; + Q(k, i)ek 1 #£ k,

Pr,+(€i) = e ik
Do (e5) = e; +Q(i, k)ex Z 7k,
—ep i =k.
We put
Pk 1= Prye() © O Pry (1)t LT T
and

e(L) = (Pry_1,e(L-1) 0" O Py () (ers)
for 1 < L <. Then we have
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Definition 2.1. Let v € & be a permutation. A sequence of vertices k =
(k1,...,k;) € I' is called a v-period of Q if @i (e;) = Cus -

Remark.  The vector ¢x(e;) is nothing but *g-vector in the sense of [FZ07]. The
condition is equivalent to the criterion of the periodicity using c-vectors, which is given
in [Nakb, Theorem 2.6]. (See [NZ].)

§2.2. Quantum dilogarithm identity

Let x¢ be the skew symmetric bilinear form on Z given by xo(e;, ;) = Q;;'. We
define the quantum torus QT associated to () by

where the product is given by

YvlYv' = qX(v’VI)yv+v"
We also define the completion @Q of QT by
VE(Z»0)! vE&(Z>o)!

Conjecture.  Let k = (ky,...,k;) € I' be a v-period of Q. In @Q we have the
following equation:

E(yewen) ™ B(Ye-1yeq-1)) 0 -+ E(Ye(1yeny) ) = 1.
§ 3. Sketch of the “proof”

§3.1. Derived equivalences

A potential w of a quiver () is a linear combination? of cyclic paths in the quiver
Q. Given a pair (Q,w) of a quiver and its potential, we have the triangulated category
Dg > and the core of its t-structure Ag o, *.

For a vertex k, the mutation puxw of the potential w is defined and we have the
following derived equivalences ([KY, Kela]):

(I)k,+7 (I)k,—3 DQ,w — D/Jkayﬂk"-U'

IThis is nothing but the Euler pairing of the Grothendieck group of D@.w (see the next section).
2To be precise, we have to consider an infinite linear combination in general.

3the derived category of dg modules with finite dimensional cohomologies over Ginzburg’s dg algebra
4the category of finite dimensional modules over Jacobi algebra



QUANTUM DILOGARITHM IDENTITIES 169

The isomorphisms induced by these equivalences on the Grothendieck groups are noth-
ing but ¢y + and ¢y . Given a sequence k = (k1, ..., k;) of vertices, we define

Qi = Dy ety © 0 Py (1) P@uw — Dpuneupscw-

and put
Tk := Ag.w N (I)El(Aqu»ukw[l])‘

Theorem 3.1 (a special case of [Nag, Theorem 4.2]).  Assume thatk is a v-period
of Q. Then Ag. = P (Au,Quww)- In particular, Ty = 0.

§3.2. Motivic invariants

Each ¢(i)e(i) corresponds to a spherical object s(%) in Ag . We define the moduli
stack
MD; := {S(i)®n | n e Zzo},

which we regard as an element in the motivic Hall algebra. We call it motivic dilogarithm
in this note. By the definition of the product in the motivic Hall algebra,

MDY .. MDY

coincides with the moduli stack of objects in 7.

Kontsevich and Soibelman proposed motivic invariants of the moduli spaces which
would induce a homomorphism from the motivic Hall algebra to the quantum torus
such that the image of a motivic dilogarithm is a quantum dilogarithm.

Sending the equation above by this homomorphism, we get a description of the
product of the quantum dilogarithms in terms of motivic invariants of the moduli stack
of objects in T.

In a periodic case, the product is trivial since 7Ty is trivial.
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