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Abstract

We review recent developments in the study of gluon scattering amplitudes of the four‐

dimensional maximally supersymmetric Yang‐Mills theory at strong coupling based on the

gauge/string duality and its underlying integrability. The scattering amplitudes are given
by the area of minimal surfaces in five‐dimensional anti‐de Sitter space with a null polygo‐
nal boundary. These minimal surfaces are described by integral equations of the form of the

thermodynamic Bethe ansatz equations. Generalizing the result regarding the six‐point ampli‐
tudes, we observe a general connection between the minimal surfaces and the homogenous sine‐

Gordon model, which is a class of two‐dimensional integrable models associated with certain

coset conformal field theories. We also demonstrate that the identification of the underlying
integrable models is useful for analyzing the amplitudes by explicitly deriving an expansion of

the six‐point amplitudes around a special kinematic point.

§1. Introduction

§1.1. Gauge/string duality and AdS/CFT correspondence

The gauge/string duality emerged as a consequence of a natural development of

the study of string solitons such as black holes ( \mathrm{p}‐branes) and \mathrm{D}‐branes, and has been

a central subject in string theory since mid‐nineties. The studies of the matrix models

for non‐perturbative strings and the quantum theory of black holes in string theory are

notable examples based on this duality. A basic picture of the duality is that at weak

coupling the string solitons are described by open strings/gauge theories in flat space,

whereas at strong coupling they are described by closed strings/gravity.
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In this talk, we focus on a particular form of the duality called the AdS/CFT
correspondence. This is the duality between the string theory on five‐dimensional anti‐

de Sitter space (AdS) times five‐dimensional sphere (S) and the four‐dimensional

SU(N) super Yang‐Mills (SYM) theory which has the maximal \mathcal{N}=4 supersymmetry.
The \mathcal{N}=4 SYM theory is known to be a conformal field theory (CFT), leading to the

name of the correspondence. More precisely, the duality states that the two theories

are two facets of one entity: for N_{c}\gg 1 ,
when the \mathrm{t} Hooft coupling  $\lambda$=g_{YM}^{2}N_{c} is

kept small, the theory is well described by \mathcal{N}=4 SYM, whereas the description by the

classical strings/gravity on AdS_{5}\times S^{5} is appropriate for  $\lambda$\gg 1 . On the string side,

 $\lambda$=4 $\pi$ g_{S}N_{c}=R^{4}/$\alpha$^{\prime 2} ,
where g_{S} is the string coupling, R is the radius of AdS_{5}\times S^{5}

and $\alpha$' is the inverse string tension. The duality has been studied intensively for large

N_{c} ,
but is expected to hold also for finite N_{c} . Schematically,

dual
String theory on AdS_{5}\times S^{5} 4\mathrm{d}\mathrm{i}\mathrm{m}. \mathcal{N}=4SU(N_{c}) SYM

\Leftrightarrow

 $\lambda$=R^{4}/$\alpha$^{\prime 2}\gg 1  $\lambda$=g_{YM}^{2}N_{c}\ll 1
strong/weak

This AdS/CFT correspondence has attracted much attention. First, the corre‐

spondence embodies interesting long‐standing theoretical ideas: the equivalence between

large N_{c} gauge theory and string theory, and the holography which states that quantum

gravity is described by lower dimensional non‐gravitational theory. Second, because of

the strong/weak nature, one can study the gauge theory at strong coupling by classical

strings/gravity. In fact, there are many works on the applications of the correspon‐

dence, for example, to low energy hadron physics (holographic QCD and AdS/QCD),
quark gluon plasma and quantum entanglement. In particular, the application to gluon

scattering amplitudes of \mathcal{N}=4 SYM is the subject of this talk.

§1.2. Integrability underlying AdS/CFT correspondence

Among the works on the AdS/CFT correspondence, the discovery of the underlying

integrability in the planar limit (N_{c}\gg 1) opened up new dimensions. Here, the inte‐

grability means on the string side that the string sigma model on AdS_{5}\times S^{5} classically
admits a flat current with a spectral parameter which generates infinitely many con‐

served charges. On the gauge side, it means that the dilatation operators representing
the anomalous dimension for lower loops are, in the planar limit, identified with Hamil‐

tonians of integrable quantum spin chains. This discovery of the integrability enabled

one to compare in detail the gauge and the string side beyond (nearly) supersymmetric
sectors which are protected from quantum corrections at strong coupling. Furthermore,

assuming that this integrability holds for arbitrary coupling, one can expect to
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\bullet solve the four‐dimensional SYM theory exactly including the spectrum,

\bullet solve the important string theory on  AdS_{5}\times S^{5} ,
in spite that solving string

theory on curved space‐time is generally very difficult,

\bullet prove (or disprove) the AdS/CFT correspondence,

\bullet deeply understand the AdS/CFT correspondence, and gain useful insights into

and, if necessary, firm theoretical grounds for applications.

As a state of the art of the study of the AdS/CFT correspondence based on the

integrability, there is now a proposal: the spectrum of the string theory on  AdS_{5}\times S^{5}
and the four‐dimensional \mathcal{N}=4SU(N_{c})SYM theory for large N_{c} and arbitrary coupling

 $\lambda$ is obtained by solving a certain set of equations. (For details, see the article by Prof.

Tateo [1].) This set of equations takes the form of the thermodynamic Bethe ansatz

(TBA) equations or the \mathrm{Y}‐system, which appear in the study of finite‐size effects of

(1+1) ‐dimensional integrable models. This proposal has been checked up to 4‐loop
order for a simple single‐trace operator called the Konishi operator. The spectrum of

this operator at 5‐loop order has also been computed by using the Lüscher formula.

Given this impressive progress in understanding the AdS/CFT correspondence,
one may also expect that the integrability must shed new light on applications of the

correspondence. It turned out that this is indeed the case: Based on their earlier work

[2] that gluon scattering amplitudes of \mathcal{N}=4 SYM at strong coupling for large N_{c}
are given by minimal surfaces in AdS_{5} , Alday and Maldacena initiated a program to

compute the amplitudes by using the integrability [3]. In this program, the minimal

surfaces in AdS_{5} are described by a set of integral/functional equations. Surprisingly,
these again take the form of the TBA equations/Y‐system [4, 5, 6]. However, the TBA

\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}/\mathrm{Y}‐system here are different from those for the spectral problem mentioned

above. Thus, the gluon scattering amplitudes at strong coupling/minimal surfaces in

AdS_{5} provide another example in which one finds unexpected connections between the

AdS/CFT correspondence and the TBA equations/Y‐systems. Schematically,

Gluon Scattering Amplitudes at Strong Coupling

\Uparrow ref. [2]
Minimal Surfaces in  AdS_{5}

\Uparrow refs. [3, 4, 5, 6]

Thermodynamic Bethe Ansatz Equations
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§1.3. Plan of talk

In this talk, we next give a brief summary on the scattering amplitudes of \mathcal{N}=4

SYM both at weak and strong coupling in section 2. We then review developments in

the study of the scattering amplitudes based on the AdS/CFT correspondence and its

underlying integrability in section 3. (See [3, 4, 5, 6, 7, 8] and references therein.) We

move on to a discussion on the integrable models and the CFTs associated with the TBA

\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}/\mathrm{Y}‐systems for the minimal surfaces in section 4. In particular, we observe

[6] that the TBA equations for the minimal surfaces in AdS_{3} and AdS_{4} , corresponding
to some kinematic configurations, coincide with those of the homogeneous sine‐Gordon

(HSG) model [9], which is a class of (1+1) ‐dimensional integrable models associated

with certain coset or generalized parafermion CFTs. This generalizes the connection [4]
between the minimal surfaces in AdS_{5} for the six‐point amplitudes and the \mathbb{Z}_{4} ‐symmetric

integrable model. Finally, we derive an expansion of the six‐point amplitudes near the

CFT limit corresponding to a special kinematic point [7] in section 5. This demonstrates

that the identification of the associated integrable models and CFTs is actually useful

for analyzing the amplitudes at strong coupling. We conclude with a summary and

discussion on future directions in section 6.

§2. Gluon scattering amplitudes of \mathcal{N}=4 SYM

§2.1. Amplitudes at weak coupling and BDS conjecture

Let us begin with a brief summary of the gluon scattering amplitudes of 4‐dimensional

\mathcal{N}=4 SYM theory at weak coupling  $\lambda$=g_{YM}^{2}N_{c}\ll 1 . For a review regarding section

2, see for example [10]. This theory contains a gauge field A_{ $\mu$} ( $\mu$=0, 3) ,
six scalars

$\Phi$^{i} (i=1, 6) and four fermions $\psi$^{a}(a=1, 4) . All the fields take values in the

adjoint representation of SU(N_{c}) . This theory is obtained by dimensional reduction

from 10‐dimensional \mathcal{N}=1 SYM theory. The theory also has the superconformal sym‐

metry psu(2,2 | 4). The bosonic part su(2,2)\oplus su(4)\simeq so(2,4)\oplus so(6) represents the

4‐dimensional conformal symmetry and the \mathrm{R}‐symmetry. Note that SO(2,4) and SO(6)
are the isometries of AdS_{5} and S^{5} , respectively.

In the planar limit  N_{c}\rightarrow\infty with the \mathrm{t} Hooft coupling  $\lambda$ kept small, an interesting

conjecture is known that the maximally helicity violating (MHV) amplitude has a simple
iterative structure to all orders in perturbation. This is called the BDS (Bern‐Dixon‐
Smirnov) conjecture. To state the content of the conjecture, we first note that the

 n‐point amplitudes at L‐loop order are decomposed as follows:

 A_{n}^{(L)}=N^{(L)}\displaystyle \sum (color factor) \times \mathcal{A}_{n}^{(L)}+ ( \mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}‐trace part).
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The remainder \mathcal{A}_{n}^{(L)} after the color factor is factorized is called the color‐ordered am‐

plitudes. In the planar limit, the multi‐trace part is neglected. From the color‐ordered

amplitudes, the tree amplitudes are further factorized,

\mathcal{A}_{n}^{(L)}=\mathcal{A}_{n}^{\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{e}}\times \mathcal{M}_{n}^{(L)}.

The BDS conjecture states that the scalar part at L‐loop order \mathcal{M}_{n}^{(L)} is given by an

iteration of the 1‐loop result through the generating function,

\displaystyle \mathcal{M}_{n}=\exp[\sum_{k=1}^{\infty}a^{k}f^{(k)}( $\epsilon$)\mathcal{M}_{n}^{(1)}(k $\epsilon$)+C^{(k)}+\mathcal{O}( $\epsilon$)],
where a= $\lambda$(4 $\pi$ e^{-$\gamma$_{E}})^{ $\epsilon$}/8$\pi$^{2} with $\gamma$_{E} being Euler�s constant is the coupling constant

customarily used in loop calculations, and f^{(k)}( $\epsilon$) and C^{(k)} are certain constants inde‐

pendent of external momenta. Note that \mathcal{N}=4 SYM is a massless gauge theory and

thus one has to regularize the infrared divergences of the amplitudes by an infrared

cut‐off and dimensional regularization with  d=4-2 $\epsilon$ . The divergences are canceled

in infrared safe quantities, which are obtained by combining the scattering amplitudes.
This conjecture has been checked up to higher loops for 4‐ and 5‐point amplitudes.

Probably, it is illuminating to see a concrete example of the 4‐point amplitudes,

(2.1) \displaystyle \mathcal{M}_{4}=\mathcal{M}_{4}^{\mathrm{d}\mathrm{i}\mathrm{v}}\times\exp[\frac{1}{8}f( $\lambda$)(\ln\frac{s}{t})^{2}+ const. ] ,

where \mathcal{M}_{4}^{\mathrm{d}\mathrm{i}\mathrm{v}} is the divergent part and s, t are the Mandelstam variables. A remarkable

fact is that all the coupling dependence is encoded in the cusp anomalous dimension,

f( $\lambda$)=\displaystyle \frac{ $\lambda$}{2$\pi$^{2}}(1-\frac{ $\lambda$}{48}+\cdots) .

§2.2. Amplitudes at strong coupling from AdS/CFT correspondence

Now, let us move on to a discussion in the strong coupling region with  $\lambda$\gg 1.

Based on the AdS/CFT correspondence, Alday and Maldacena argued that the scalar

part of the amplitudes at strong coupling is obtained by evaluating the action of the

string sigma model on AdS_{5} for certain classical string solutions [2]. The saddle‐point
action gives the area of minimal surfaces, meaning that the amplitudes are given by the

area of the minimal surfaces in AdS_{5} :

\mathcal{M}_{n} \sim e^{-S} = e^{-\frac{\sqrt{ $\lambda$}}{2 $\pi$}} (Area)

The momentum dependence of the amplitudes come from the boundary condition of

the minimal surfaces. This is analyzed by making use of \mathrm{T}‐dual transformations, and
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Figure 1. Boundary of a minimal surface on the \mathrm{A}\mathrm{d}\mathrm{S} boundary. The axes in the figure

represent the Poincaré coordinates (x^{1}, x^{2}, x^{0}) .

it turns out that the surfaces have to end on a polygonal boundary on the boundary
of AdS_{5} . See fig. 1. There, each side of the polygon is null and corresponds to the

momentum of an external particle. The momentum conservation \displaystyle \sum_{i}p_{i}^{ $\mu$}=0 implies
that the boundary is closed. Thus, denoting the vertices of the polygon by x_{i}^{ $\mu$} (in terms

of the Poincaré coordinates defined below), one has

(2.2) \triangle_{i}x^{ $\mu$} :=x_{i}^{ $\mu$}-x_{i+1}^{ $\mu$}=p_{i}^{ $\mu$}.

The S^{5} part is expected to contribute to subleading terms of the amplitudes, but its

role is not so clear.

Again, it would be illuminating to see a concrete example of the 4‐cusp minimal

surfaces describing the 4‐point amplitudes. For this purpose, we first parametrize AdS_{5}
as a hypersurface in \mathbb{R}^{2,4} defined by

(2.3) \vec{Y}\cdot\vec{Y}:=-Y_{-1}^{2}-Y_{0}^{2}+Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}=-1.
The equations of motion for the string coordinates \vec{Y}(z,\overline{z}) are

(2.4) \partial\overline{\partial}\vec{Y}-(\partial\vec{Y}\cdot\overline{\partial}\vec{Y})\vec{Y}=0,

whereas the Virasoro constraints are

(2.5) (\partial\vec{Y})^{2}=(\overline{\partial}\vec{Y})^{2}=0.

Here, z, \overline{z} are the world‐sheet coordinates and \partial=\partial_{z}, \overline{\partial}=\partial_{\overline{z}} . One can check that these

are the equations of the minimal surfaces.

A simple solution to (2.4) and (2.5) is

(2.6) \displaystyle \left(\begin{array}{ll}
Y^{-1}+Y^{4} & Y^{1}+Y^{0}\\
-Y^{1}Y^{0} & Y^{-1}-Y^{4}
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
e^{ $\tau$+ $\sigma$} & e^{ $\tau$- $\sigma$}\\
-e^{- $\tau$+ $\sigma$} & e^{- $\tau$- $\sigma$}
\end{array}\right),



\mathrm{G}\mathrm{A}\mathrm{U}\mathrm{G}\mathrm{E}/ String duality and thermodynamic Bethe ansatz equations 177

Figure 2. 4‐cusp minimal surface in AdS_{3} (left), world‐sheet z‐plane (middle), and

surface boundary in the (X, x^{-}) ‐plane (right).

with Y^{2}=Y^{3}=0 and  z= $\tau$+i $\sigma$ . To see what surface is described by this solution,
let us introduce the Poincaré coordinates defined by

 Y^{ $\mu$}=:\displaystyle \frac{x^{ $\mu$}}{r}, Y^{-1}+Y^{4}=:\frac{1}{r}, Y^{-1}-Y^{4}=\frac{r^{2}+x^{ $\mu$}x_{ $\mu$}}{r},
where  $\mu$=0 , 1, 2, 3. In this coordinate system, the boundary of AdS_{5} is located at

r=0 . Since the surface is embedded in the AdS_{3} subspace parametrized by r and

x^{\pm}:=x^{0}\pm x^{1}
,

the external momenta given by (2.2) are in \mathbb{R}^{1,1} and correspond to a

restricted kinematic configuration. Substituting the solution into these coordinates, one

can draw the picture of the surface as in the left figure in fig. 2. In the figure, AdS_{3}
is represented as a solid cylinder, where the radial direction is parametrized by r and

the boundary of the cylinder by x^{0} and x^{1} . The AdS boundary at infinity has been

mapped to the boundary of the solid cylinder. To have a closer look, let us go around

the world‐sheet z‐plane far from the origin (middle figure in fig. 2). We then find that

the region far from the origin in the first quadrant is mapped to a neighborhood of

the origin in the (X, x^{-}) ‐plane (right figure in fig. 2). Similarly, the regions far from

the origin in the second, third, and fourth quadrants are mapped to neighborhoods
of (X, x^{-})= (, 0) , (\infty, \infty) , (0, \infty) , respectively. Thus, as we cross the real or the

imaginary axis of the z‐plane, the boundary of the surface jumps from one cusp to

another and draws null lines. In this way, the solution describes a minimal surface with

a polygonal boundary consisting of four cusps and four null sides. The solution (2.6) is

thus the solution which we are looking for.

Minimal surfaces corresponding to more general kinematic configurations are ob‐
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tained by SO(2,4) transformations. According to the prescription by Alday and Mal‐

dacena, the area of those minimal surfaces then gives the 4‐point amplitudes at strong

coupling. Since the surfaces extend to infinity, their area diverges and hence has to

be regularized. Either by a dimensional regularization with  d=4-2 $\epsilon$ or by a cut‐off

regularization with  r>$\epsilon$' ,
one finds that

\displaystyle \mathcal{M}_{4}\sim \mathcal{M}_{4}^{\mathrm{d}\mathrm{i}\mathrm{v}}\times\exp[\frac{1}{8}f( $\lambda$)(\ln\frac{s}{t})^{2}+ const. ] ,

where  f( $\lambda$)=\sqrt{ $\lambda$}/ $\pi$ and \mathcal{M}_{4}^{\mathrm{d}\mathrm{i}\mathrm{v}} is the divergent term. Remarkably, this has the same

structure as the BDS formula (2.1) including the divergent term. Furthermore, the value

of f( $\lambda$) here precisely agrees with the cusp anomalous dimension at strong coupling
which has been computed in the spectral problem of the AdS/CFT correspondence.

§2.3. Insights from strong coupling computation

This agreement of the 4‐point amplitudes is very impressive. Moreover, the study
of the amplitudes at strong coupling provided very useful insights into the weak cou‐

pling side and led to deeper understanding. First, it is known that minimal surfaces

in AdS give expectation values at strong coupling of Wilson loops along the boundary
of the surfaces. Thus, the above discussion implies that, at strong coupling, the am‐

plitudes are the same as the expectation values of the null polygonal Wilson loops. \mathrm{A}

natural question here is whether this is also the case on the weak coupling side. It then

turned out that the answer is yes, as far as comparison is possible. This correspon‐

dence between the amplitudes and the null polygonal Wilson loops are now called the

Amplitude/Wilson loop duality.

Second, a detailed analysis on the strong coupling side for n‐point amplitudes
with  n\rightarrow\infty revealed that the BDS formula needs to be modified at strong coupling.

Subsequent studies confirmed that this is also the case on the weak coupling side for

 n\geq 6 . Now, the deviation from the BDS formula is called the remainder function. Given

the BDS formula, computing the amplitudes is equivalent to computing the remainder

function. The remainder function is thus a central quantity in this subject.

Third, the computation on the strong coupling side manifests the conformal symme‐

try in a sort of momentum space of the SYM theory, which is (a part of) the \mathrm{T}‐dualized

target space represented by x^{ $\mu$} . This facilitated again the studies on the weak cou‐

pling side. Together with earlier observations, the results support the existence of this

symmetry also at weak coupling, which is now called the dual conformal symmetry.
The dual conformal symmetry is natural on the strong coupling/string side, since it

corresponds to a \mathrm{T}‐dual symmetry or the Yangian symmetry of the string sigma model.

Moreover, once the existence of this symmetry is assumed, that leads to important

consequences: The Ward identity associated with this symmetry strongly constrains the



\mathrm{G}\mathrm{A}\mathrm{U}\mathrm{G}\mathrm{E}/ String duality and thermodynamic Bethe ansatz equations 179

form of the amplitudes and, for the n‐point amplitudes with n\leq 5 ,
the BDS formula

turns out to be unique. For n\geq 6 ,
the Ward identity allows, in addition to the BDS

form, functions of the cross‐ratios of the cusp coordinates x_{i}^{ $\mu$} ,
which are dual‐conformal

invariants and related to external momenta by (2.2). The remainder function is thus a

function of the cross‐ratios.

§3. Minimal surfaces in \mathrm{A}\mathrm{d}\mathrm{S} and integrability

In the following, we focus on the strong coupling/string side. Triggered by the com‐

putation of the 4‐point amplitudes in [3], there were many attempts at constructing the

minimal surfaces with more than 4 cusps. For example, cusp solutions are numerically
studied in [11], and a special 6‐cusp solution is constructed by systematically analyzing

finite‐gap solutions and their degenerate limits in [12]. However, it turned out that it is

very difficult to construct the minimal surfaces with the special null polygonal boundary.

Then, Alday and Maldacena initiated a program of general construction based on

integrability [3]. They reduced the analysis of the minimal surfaces to that of the Hitchin

system and used related results in the study of the wall‐crossing phenomena of \mathcal{N}=2

SYM. Roughly speaking, they showed how to patch the 4‐cusp solution (2.6) to form

the general n‐cusp solution. What is interesting is that the explicit form of the solution

still is not available, but it is possible to compute the amplitudes. In this way, they

analyzed the 8‐point amplitudes corresponding to the 8‐cusp solution in AdS_{3}.

Subsequently, the 6‐cusp solution in AdS_{5} was discussed in [4] and, together with an

argument on general cusp solutions, the 10‐ and 12‐cusp solution in AdS_{3} were discussed

in [6]. The general construction of the n‐cusp solution in AdS_{5} was then given in [5].
Below, we would like to explain this general construction. For simplicity, we focus on

the case of AdS_{3}.

§3.1. General null polygonal solutions in AdS_{3}

The first step in this construction is to reduce the analysis of the classical solution

of the AdS sigma model to that of the Hitchin system. This step is called the Pohlmeyer
reduction. Mathematically, this is equivalent to considering the evolution of a moving
frame. Concretely, one first takes a basis in \mathbb{R}^{2,2}\supset AdS_{3}, q=(\vec{Y}, \partial\vec{Y},\overline{\partial}\vec{Y},\vec{N})^{t} ,

where

N_{a} :=\displaystyle \frac{1}{2}e^{ $\alpha$}$\epsilon$_{abcd}Y^{b}\partial Y^{c}\overline{\partial}Y^{d} and e^{2 $\alpha$}:=\displaystyle \frac{1}{2}\partial\vec{Y}\cdot\overline{\partial}\vec{Y}. Y_{a}(a=-1,0,1,2) are the embedding
coordinates which parametrize AdS_{3} similarly to (2.3). Since q spans a frame at each

point of \mathbb{R}^{2,2}
,
derivatives of q are again expressed by linear combinations of the elements

of q itself. It is then possible to write the original equations of motion (2.4) and the

Virasoro constraints (2.5) in the form of an evolution equation (d+U)q=q ,
where d

stands for the world‐sheet derivative and U is a certain matrix.
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Furthermore, decomposing SO(2,2) vectors by products of su(2) spinors through

so(4) \cong su(2)\oplus su(2) and introducing a complex parameter  $\zeta$ (spectral parameter), the

evolution equation is rewritten as

(3.1)  0=[d+B( $\zeta$)] $\psi$,
where  $\psi$ is a spinor related to  q,

B_{z}( $\zeta$)=(_{-\frac {}{}e^{- $\alpha$}p-\frac{}{}\partial $\alpha$}\displaystyle \frac{1}{ $\zeta$ 12}\partial $\alpha$-\frac{1}{21 $\zeta$}e^{ $\alpha$}) , B_{Z}( $\zeta$)=\left(\begin{array}{ll}
-\frac{1}{2}\partial $\alpha$ & - $\zeta$ e^{- $\alpha$}\mathrm{p}\\
- $\zeta$ e^{ $\alpha$} & \frac{1}{2}\overline{\partial} $\alpha$
\end{array}\right),
and p:=-2\partial^{2}\vec{Y}\cdot\vec{N} . It turns out that p is holomorphic in z . We further decompose
the connection B( $\zeta$) according to the grading with respect to  $\zeta$,

B_{z}( $\zeta$)=:A_{z}+\displaystyle \frac{1}{ $\zeta$}$\Phi$_{z}, B_{\overline{z}}( $\zeta$)=:A_{z}+ $\zeta \Phi$_{\overline{z}}.
The evolution equation of q or (3.1) implies that the original non‐linear equations of

the string sigma model have been linearized.

The compatibility condition of (3.1), 0=[\partial+B_{z}, \overline{\partial}+B_{\overline{z}}] ,
is expressed as

(3.2) D_{\overline{z}}$\Phi$_{z}=D_{z}$\Phi$_{\overline{z}}=0, F_{z\overline{z}}+[$\Phi$_{z}, $\Phi$_{Z}]=0,

with D $\Phi$=d $\Phi$+[A,  $\Phi$] . This is nothing but the su(2) Hitchin system, which is obtained

by dimensional reduction of the 4‐dimensional self‐dual (instanton) equations. In the

AdS_{5} case, one similarly finds the su(4) Hitchin system. Tracing back the argument, \mathrm{a}

solution to the Hitchin system gives a proper solution to (3.1), and it then gives q and

a solution to the original string equations \vec{Y} . The formula to reconstruct \vec{Y} is

Y_{a}\mathrm{a}:=\left(\begin{array}{ll}
Y^{-1}+Y^{2} & Y^{1}+Y^{0}\\
-Y^{1}Y^{0} & Y^{-1}-Y^{2}
\end{array}\right)= $\Psi$( $\zeta$=1)M $\Psi$( $\zeta$=i) ,

where  $\Psi$( $\zeta$)=($\psi$_{1}, $\psi$_{2}) with $\psi$_{1,2}( $\zeta$) being properly normalized independent solutions of

(3.1), and M is a certain matrix.

Now, we are ready to discuss general cusp solutions. We recall that the number of

the cusps is even in AdS_{3} . For our purpose, we first make changes of variables for the

world‐sheet coordinates by dw=\sqrt{p(z)}dz and for the potential  $\alpha$ by \displaystyle \hat{ $\alpha$}= $\alpha$-\frac{1}{4}\ln p\overline{p}.
In term of \hat{ $\alpha$}

,
the compatibility condition of (3.1), or (3.2), reduces to the \sinh‐Gordon

equation \partial_{w}\partial_{\overline{w}}\hat{ $\alpha$}-2\sinh\hat{ $\alpha$}=0 . Here, we note that the linear problem with \hat{ $\alpha$}=0

gives the 4‐cusp solution (2.6) (with Y^{4}\rightarrow Y^{2} ) in the w‐plane. Thus, if we take p(z)
to be a polynomial of degree n-2

, i.e.,  p(z)=z^{n-2}+\cdots ,
and find a solution where

\hat{ $\alpha$}\rightarrow 0 as |w|\rightarrow\infty ,
that is the  2n‐cusp solution in the original z‐plane. The reason is

as follows: First, since w\sim z^{n/2} for large |z| ,
if we go around the z‐plane once far from
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Figure 3. Rotation far from the origin in the z‐ and w‐planes.

the origin, we go around the w‐plane n/2 times (fig. 3). The solution with \hat{ $\alpha$}\rightarrow 0 as

|w|\rightarrow\infty produces one cusp in each quadrant, as explained below (2.6), and thus, from

the point of view of the  z‐plane, the solution has 4\times n/2=2n cusps. In a canonical

form, the polynomial p(z) has 2(n-3) real parameters, which agrees with the number

of independent cross‐ratios in the 2n‐point scattering for the kinematic configurations

corresponding to AdS_{3}.

§3.2. Cross‐ratios and area

The above argument does not say anything about the explicit form of the solution,
and it is in fact impossible to obtain it. Remarkably, it is however possible to extract

physical information without the explicit form of the solution. Let us see how this is

possible.

First, we consider the cross‐ratios of the cusp coordinates x_{i}^{ $\mu$} related to external

momenta. As we go around the z‐plane, we pass through regions in the w‐plane with

{\rm Re}(w/ $\zeta$+\overline{w} $\zeta$)>0 and {\rm Re}(w/ $\zeta$+\overline{w} $\zeta$)<0 alternatively (Stokes sectors). In each region,
the linear problem has a diverging and a decaying solution as |w|\rightarrow\infty . Let us call

them the big and the small solution and denote them by  b_{i} and s_{i} , respectively. The

subscript i labels the region. Explicitly, one has b_{i}, s_{i}\sim(e^{w/ $\zeta$+\overline{w} $\zeta$}, 0)^{t}, (0, e^{-(w/ $\zeta$+\overline{w} $\zeta$)})^{t}
for large |w| ,

and the solution of the linear problem is given by

 $\psi$( $\zeta$;z)\sim b_{i}( $\zeta$;z)+s_{i}( $\zeta$;z) .

It turns out that the cross‐ratios are expressed by these small solutions as

(3.3) \displaystyle \frac{x_{ij}^{\pm}x_{kl}^{\pm}}{x_{ik}^{\pm}x_{jl}^{\pm}}=\frac{(s_{i}\wedge s_{j})(s_{k}\wedge s_{l})}{(s_{i}\wedge s_{k})(s_{j}\wedge s_{l})}( $\zeta$)=:$\chi$_{ijkl}( $\zeta$) ,
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where x_{ij}^{\pm} :=x_{i}^{\pm}-x_{j}^{\pm}, s_{i}\wedge s_{j} :=\det(s_{i}, s_{j}) ,
and  $\zeta$=1\mathrm{f}\mathrm{o}\mathrm{r}+ and  $\zeta$=i for−. Note that

s_{i}\wedge s_{j} are independent of z . This formula relates the geometrical data of the minimal

surfaces carried by  $\psi$ to the physical cross‐ratios.

The problem is now how to compute the right‐hand side of (3.3). A streamlined

solution to this problem is given in [5]. There, one first defines the T‐ and \mathrm{Y}‐functions

by

T_{2k+1}=(s_{-k-1}\wedge s_{k+1}) , T_{2k}=(s_{-k-1}\wedge s_{k})^{+},
Y_{S}=T_{s-}{}_{1}T_{s+1},

where the superscripts \pm stand for the shift of the argument,  f^{\pm}( $\zeta$) :=f(e^{\pm i $\pi$/2} $\zeta$) .

Essentially, Y_{s} are the cross‐ratios. For example, Y_{2k}=-$\chi$_{-k,k,-k-1,k+1} . By definition,
the products s_{i}\wedge s_{j} satisfy the algebraic identity among determinants,

(s_{i}\wedge s_{j})(s_{k}\wedge s_{l})=(s_{i}\wedge s_{k})(s_{j}\wedge s_{l})+(s_{i}\wedge s_{l})(s_{k}\wedge s_{j}) .

This gives the functional equations among T_{s} (s=1, n-3) ,

(3.4) T_{S}^{+}T_{S}^{-}=T_{s+1}T_{s-1}+1,

or in terms of Y_{s},

(3.5) Y_{S}^{+}Y_{S}^{-}=(1+Y_{s-1})(1+Y_{s+1}) .

These take the well known form of the functional equations which are called the T‐

system/Hirota equations and the \mathrm{Y}‐system, respectively. For a review on T‐ and Y‐

systems, see for example [13].
Up to here, (3.4) or (3.5) is just algebraic identities. The physical input then comes

from the asymptotic behaviors of the \mathrm{Y}‐functions. A WKB analysis of the linear system

(3.1) shows, for example, that

\displaystyle \log Y_{2k}\sim\frac{Z_{2k}}{ $\zeta$}+\log$\mu$_{2k} ( $\zeta$\rightarrow 0) .

Here, Z_{S} are period integrals Z_{S}=\displaystyle \oint_{$\gamma$_{\mathrm{s}}}\sqrt{p}dz ,
and \log$\mu$_{S} are certain constants, which

we call the chemical potentials. In our case of AdS_{3} ,
we have $\mu$_{S}=0 . By using such

asymptotic behaviors and assuming certain analyticity of \log Y_{s} ,
one can convert the

\mathrm{Y}‐system into the following integral equations:

(3.6) \log Y_{s}( $\theta$)=-m_{S}R\cosh $\theta$+K*\log(1+Y_{s-1})(1+Y_{s+1}) ,

where we have introduced  $\theta$:=\log $\zeta$, m_{s}R:=2Z_{S}, K( $\theta$) :=1/\cosh $\theta$, \mathrm{a}\mathrm{n}\mathrm{d}* stands for

the convolution, i.e., f*g=\displaystyle \int\frac{d$\theta$'}{2 $\pi$}f( $\theta-\theta$')g($\theta$') . For simplicity, we have displayed the

equations when all Z_{S} are real. The cross‐ratios are obtained by solving these equations
and setting the spectral parameter to particular values  $\zeta$=1, \pm i.
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The set of equations (3.6) are of the form of the thermodynamic Bethe ansatz

equations, which are used to analyze finite‐size effects of (1+1) dimensional integrable

systems with factorizable scattering. In this context, the TBA equations are obtained

by minimizing the free energy, m_{S} are the masses of particles,  $\theta$ is the rapidity,  R

is the inverse temperature, and \log Y_{S} give pseudo energies. It is surprising that the

geometrical problem of the minimal surfaces results in the equations of the type of the

TBA equations.
The solution to the integral equations (3.6) also gives the area of the minimal

surfaces and hence the gluon scattering amplitudes at strong coupling. To see this, we

first recall that the area is divergent and needs to be regularized. Here, we adopt the

following regularization,

A(area) =4\displaystyle \int d^{2}ze^{2 $\alpha$}\rightarrow 4\int d^{2}z(e^{2 $\alpha$}-\sqrt{p\overline{p}})+4\int_{r\geq $\epsilon$}d^{2}z\sqrt{p\overline{p}}
=: Afin +A_{w-\mathrm{v}\mathrm{o}\mathrm{l}}.

With the help of the analysis of the Hitchin system for \mathcal{N}=2 SYM, one can find

that the first finite term of the regularized area, Afin, is nothing but the free energy F

associated with the TBA equations (3.6) (up to a sign and a constant):

Afin =\displaystyle \sum_{S}\int\frac{d $\theta$}{2 $\pi$}m_{S}R\cosh $\theta$\cdot\log(1+Y_{s}) + (const.)

(3.7) =-F+(const. ) .

On the other hand, the second term, A_{w-\mathrm{v}\mathrm{o}\mathrm{l}} , essentially gives the BDS form,

A_{w-\mathrm{v}\mathrm{o}\mathrm{l}}\sim A_{\mathrm{d}\mathrm{i}\mathrm{v}}+A_{\mathrm{B}\mathrm{D}\mathrm{S}}+\cdots,

where A_{\mathrm{d}\mathrm{i}\mathrm{v}} is the divergent part and A_{\mathrm{B}\mathrm{D}\mathrm{S}} is the finite part of the BDS formula. There‐

fore, the most intricate part of the remainder function \mathcal{R} is given by the free energy:

(3.8) \mathcal{R}=-(A-A_{\mathrm{d}\mathrm{i}\mathrm{v}}-A_{\mathrm{B}\mathrm{D}\mathrm{S}})=F+\cdots

The ellipses stand for some other terms.

Summarizing, the procedure of computing the strong‐coupling amplitudes is as

follows:

(1) Solve the integral equations (3.6) and obtain the \mathrm{Y}‐functions Y_{S}( $\theta$) .

(2) The area A of the minimal surfaces or the amplitude \mathcal{M} is given by the free energy

F associated with the TBA equations and some other terms.

(3) The cross‐ratios (3.3) are obtained by evaluating Y_{S}( $\theta$) at particular values of the

argument  $\zeta$=e^{ $\theta$}=1, \pm i.
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(4) Expressing the amplitudes by the resultant cross‐ratios gives the amplitudes as

functions of external momenta.

§3.3. Minimal surfaces in AdS_{5}

A similar but more elaborated discussion shows that the minimal surfaces in AdS_{5}
which have \hat{n}‐cusps are described by the following \mathrm{Y}‐system:

\displaystyle \frac{Y_{2,m}^{-}Y_{2,m}^{+}}{Y_{1,m}Y_{3,m}}=\frac{(1+Y_{2,m+1})(1+Y_{2,m-1})}{(1+Y_{1,m})(1+Y_{3,m})},
(3.9) \displaystyle \frac{Y_{3,m}^{-}Y_{1,m}^{+}}{Y_{2,m}}=\frac{(1+Y_{3,m+1})(1+Y_{1,m-1})}{1+Y_{2,m}},

\displaystyle \frac{Y_{1,m}^{-}Y_{3,m}^{+}}{Y_{2,m}}=\frac{(1+Y_{1,m+1})(1+Y_{3,m-1})}{1+Y_{2,m}},
where m=1, \hat{n}-5 ,

and f^{\pm}( $\zeta$)=f(e^{\pm i $\pi$/4} $\zeta$) in this case. This \mathrm{Y}‐system is non‐

standard in that Y_{1,m} and Y_{3,m} couple to each other on the left‐hand side. A similar

\mathrm{Y}‐system also appears in the study of the spectral problem of the \mathrm{A}\mathrm{d}\mathrm{S}_{4}/\mathrm{C}\mathrm{F}\mathrm{T}_{3} corre‐

spondence.

§4. Underlying integrable models and CFTs

We saw that the minimal surfaces in \mathrm{A}\mathrm{d}\mathrm{S} spaces are described by the integral

equations of the form of the TBA equations (or the associated \mathrm{Y}‐systems). A natural

question here is: Are these �TBA‐like� equations really the TBA equations of any

integrable models? In the case of the 6‐cusp solution in AdS_{5} ,
it has been shown

that the integral equations are indeed the TBA equations of the \mathbb{Z}_{4} ‐symmetric (or A_{3^{-}}

) integrable model, which is obtained by a massive deformation of the \mathbb{Z}_{4} ‐parafermion
CFT [4]. In the following, we would like to show that the answer to the above question
is yes for the general cusp solutions in AdS_{3} and AdS_{4}[6].

Let us first consider the AdS_{3} case. To investigate the underlying integrable models,
we recall that, if \mathrm{a}(1+1) ‐dimensional integrable model is obtained from a CFT by a

relevant perturbation, the free energy described by the TBA equations gives the central

charge c of the CFT in the \mathrm{C}\mathrm{F}\mathrm{T}/\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}‐temperature limit R\rightarrow 0 :

F\displaystyle \rightarrow-\frac{ $\pi$}{6}c.
On the other hand, in the same limit, the period integrals Z_{S} are vanishing and the

minimal surfaces reduce to the regular polygonal surfaces whose boundary forms a

regular polygon in a subspace of the \mathrm{A}\mathrm{d}\mathrm{S} boundary after a projection. This class of the
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solutions in AdS_{3} are described by the Painlevé III equation. For the 2n‐cusp solution,
the finite part of the regularized area in this limit has been obtained as [3]

Afin \displaystyle \rightarrow\frac{ $\pi$}{4n}(3n^{2}-8n+4) .

To find the free energy, one has to fix the difference between Afin and F in (3.7). This

is done by considering another limit where the zeros of the polynomial p(z) become far

apart from each other. Since the solution is expected to be a superposition of the (n2)
6‐cusp solutions in this limit, it follows that F\sim 0 and Afin \displaystyle \sim(n-2)\times\frac{7}{12} $\pi$ . Thus,

-F= Afin − \displaystyle \frac{7}{12}(n-2) $\pi$\rightarrow\frac{ $\pi$}{6n}(n-2)(n-3) .

A candidate of the CFT in the \mathrm{U}\mathrm{V}/\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}‐temperature limit then has to have central

charge c=(n-2)(n-3)/n . One can indeed find such a CFT: The coset or the generalized

parafermion CFT associated with

(4.1) \displaystyle \frac{\hat{su}(K)_{k}}{[\hat{u}(1)]^{K-1}}\simeq\frac{[\hat{su}(k)_{1}]^{K}}{\hat{su}(k)_{K}}
has the central charge c=(k-1)K(K-1)/(k+K) . Thus, the coset CFT with K=

n-2, k=2 has the correct central charge. In addition, the second representation in

(4.1) shows that this is an su(2) coset, and matches the symmetry of the su(2) Hitchin

system. Moreover, the degrees of freedom of this coset is n-3 ,
which also matches

the number of independent cross‐ratios 2 (n-3) . We remark that the left and the right
sector are described by the same integral equations in the AdS_{3} case.

These arguments suggest that the above coset CFT is the right candidate. Pro‐

ceeding to a consideration away from the CFT point, we note that a massive defor‐

mation of this CFT by the adjoint operators is integrable, and gives the homogeneous
sine‐Gordon model [9]. The model has a factorizable diagonal \mathrm{S}‐matrix. In the case

of the coset \hat{su}(n-2)_{2}/[\hat{u}(1)]^{n-3} ,
the elements of the \mathrm{S}‐matrix for particles a and b

(a, b=1, n-3) are given up to constant factors by

S_{ab}( $\theta$)\displaystyle \sim[\tanh\frac{1}{2}( $\theta$+$\sigma$_{ab}-i\frac{ $\pi$}{2})]^{I_{ab}},
where  $\theta$ is the difference of the rapidities of the particles,  I_{ab} is the incidence matrix of

su(n-2) ,
and $\sigma$_{ab} are certain parameters. By the standard procedure, one can then

derive the TBA equations of this HSG model, to find that they coincide with the integral

equations for the minimal surfaces in AdS_{3} . This answers the question at the beginning
of this section affirmatively. Precisely speaking, the reality of the parameters $\sigma$_{ab} are

different and the physical interpretation should be considered further. Keeping this in

mind, we have found that the 2n‐cusp solution in AdS_{3} is described by the HSG model

associated with the coset sû(n—2)/[û(l)]n‐3. Schematically,
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HSG model from
2n‐cusp minimal surfaces

in AdS_{3}
\Leftarrow

\displaystyle \frac{\hat{su}(n-2)_{2}}{[\hat{u}(1)]^{n-3}}\simeq\frac{[\hat{su}(2)_{1}]^{n-2}}{\hat{su}(2)_{n-2}}
In the case of AdS_{5} ,

we already know that the 6‐cusp solution is described by the

\mathbb{Z}_{4} ‐symmetric integrable model, which corresponds to the coset (4.1) with K=2 and

k=4 . Taking into account, again, the symmetry and the degrees of freedom, one

may guess that the \hat{n}‐cusp solution in AdS_{5} is described by the HSG model associated

with the coset (4.1) with K=\hat{n}-4 and k=4 . It turns out, however, that the

TBA \mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}/\mathrm{Y}‐system of this HSG model are of the standard form and do not agree

with (3.9). Instead, they do agree with those for the \hat{n}‐cusp solution in AdS_{4} ,
which

are obtained from the AdS_{5} case by setting the chemical potentials to zero and hence

identifying Y_{1,m} and Y_{3,m} in (3.9) [5]. The reduction from AdS_{5} to AdS_{4} maintains the

su(4) symmetry of the Hitchin system, and the identification among the \mathrm{Y}‐functions

ensures the matching between the degrees of freedom of the coset and the number of

independent cross‐ratios 2(\hat{n}-5) . In addition, the coset CFT has the central charge

c=3(\hat{n}-4)(\hat{n}-5)/\hat{n} ,
which also agrees with the result for the regular polygon solution

in AdS_{4}[5] . Schematically,

HSG model from
\hat{n}‐cusp minimal surfaces

in AdS_{4}
\Leftarrow

\displaystyle \frac{\hat{su}(\hat{n}-4)_{4}}{[\hat{u}(1)]^{\hat{n}-5}}\simeq\frac{[\hat{su}(4)_{1}]^{\hat{n}-4}}{\hat{su}(4)_{\hat{n}-4}}
The reduction from AdS_{5} to AdS_{4} seems to suggest a possibility that their Y‐

systems are related by certain deformations of the underlying CFT/integrable model by
the chemical potentials. We see a simple example of such a deformation in the case of

the 6‐point amplitudes. The identification of the underlying CFT and integrable model

in the AdS_{5} case is an interesting issue to be discussed further. As a side remark, we

note that the \mathbb{Z}_{4} ‐symmetric integrable model for the 6‐cusp solution is a special case of

the HSG model.

§5. Six‐point amplitudes from Z_{4}‐symmetric integrable model

We saw that the HSG model associated with certain cosets describes the minimal

surfaces in \mathrm{A}\mathrm{d}\mathrm{S} spaces and hence the scattering amplitudes at strong coupling. This

implies an unexpected connection between a four‐dimensional SYM theory and (1+1)-
dimensional integrable models. Such an identification is not only interesting but also

useful in analyzing the amplitudes. We would like to demonstrate this in the case of

the 6‐point amplitudes corresponding to the 6‐cusp solution in AdS_{5} by deriving their

expansion near the CFT limit [7].
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As mentioned before, the 6‐cusp minimal surfaces in AdS_{5} are described by the TBA

equations associated with the \mathbb{Z}_{4} ‐symmetric integrable model. The model is obtained

by an integrable deformation of the \mathbb{Z}_{4} ‐parafermion CFT by the first energy operator

 $\epsilon$(x) with dimension D_{ $\epsilon$}=\overline{D}_{ $\epsilon$}=1/3 . Its action is given by

S=S_{PF}+g\displaystyle \int d^{2}x $\epsilon$(x) ,

where S_{PF} is the action of the \mathbb{Z}_{4} ‐parafermion CFT, which has the central charge c=1.

The model contains three particles with mass m_{a}=m, \sqrt{2}m and m
, respectively. The

third particle is the anti‐particle of the first. The coupling constant g is related to the

mass as g=b_{g}m^{4/3} with b_{g} being a certain numerical constant. The \mathrm{Y}‐system of this

model is

(5.1) Y_{1}^{+}Y_{1}^{-}=1+Y_{2}, Y_{2}^{+}Y_{2}^{-}=(1+ $\mu$ Y_{1})(1+$\mu$^{-1}Y_{1}) , Y_{1}=Y_{3},

where f^{\pm}( $\theta$)=f( $\theta$\displaystyle \pm\frac{ $\pi$}{4}i) and \log $\mu$ is the chemical potential. As in the  AdS_{3} case, this

can be converted to the TBA equations. In the following, we discuss the amplitudes
around the CFT limit where all the independent cross‐ratios are equal in a certain basis.

First, let us consider the free energy associated with the TBA equations. In general,
the free energy of a model on a circle of length L\gg 1 with temperature 1/R gives the

ground state energy E(R) of the model on a circle of length R . This relation is found by

evaluating the torus partition function in two different channels. Near the CFT/high‐
temperature limit mR:=2|Z|\ll 1 ,

the CFT perturbation gives an expansion of the

free energy. In our case, it reads

(5.2) F=E_{0}+\displaystyle \frac{1}{4}(mR)^{2}-R^{2}\sum_{n=1}^{\infty}\frac{(-g)^{n}}{n!}(\frac{2 $\pi$}{R})^{2(D_{ $\epsilon$}-1)n+2}
\displaystyle \times\int\langle V(\infty) $\epsilon$(z_{n},\overline{z}_{n})\cdots $\epsilon$(z_{1},\overline{z}_{1})V(0)\rangle_{\mathrm{C}\mathrm{F}\mathrm{T}}\prod_{i=2}^{n}(z_{i}\overline{z}_{i})^{D_{ $\epsilon$}-1}dz_{2}^{2}\cdots dz_{n}^{2},

where E_{0} is the CFT ground state energy - $\pi$/6 and V is the vacuum operator. The

correlators are connected ones of the CFT on a complex plane, and we have set z_{1}=1.

|Z| is the absolute value of a period integral Z=:|Z|e^{i $\varphi$} similar to Z_{S} in the AdS_{3} case.

When the chemical potential vanishes, i.e.,  $\mu$=:e^{i $\phi$}=1 ,
the vacuum operator is the

identity, V=1 . On the other hand,  $\mu$\neq 1 corresponds to a twisted boundary condition

of the \mathbb{Z}_{4} ‐parafermion CFT. The vacuum operator in this case becomes non‐trivial. To

be explicit, we bosonize the parafermion theory by a free boson  $\Phi$ . The energy and the

vacuum operator are then given by

 $\epsilon$=a_{+}e^{i\sqrt{\frac{2}{3}} $\Phi$}+a_{-}e^{-i\sqrt{\frac{2}{3}} $\Phi$}, V=e^{-i\sqrt{\frac{1}{6}}\frac{ $\phi$}{ $\pi$} $\Phi$},
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Figure 4. Plot of A_{\mathrm{f}\mathrm{r}\mathrm{e}\mathrm{e}}:=-F as a function of  $\phi$ for |Z|=0.1 and  $\varphi$=- $\pi$/48 from

numerical results (+ ) and the high‐temperature expansion (5.3) (dashed line).

where  a\pm are certain cocycle factors. Substituting these into the expansion (5.2), one

obtains

(5.3)  F=E_{0}+|Z|^{2}-C_{\frac{8}{3}} $\gamma$(\displaystyle \frac{1}{3}+\frac{ $\phi$}{3 $\pi$}) $\gamma$(\frac{1}{3}-\frac{ $\phi$}{3 $\pi$})|Z|^{\frac{8}{3}}+\mathcal{O}(|Z|^{\frac{16}{3}}) ,

where E_{0}=-\displaystyle \frac{ $\pi$}{6}(1-\frac{2$\phi$^{2}}{$\pi$^{2}}) ,  $\gamma$(z)= $\Gamma$(x)/ $\Gamma$(1-x) ,
and C_{\frac{8}{3}}=\displaystyle \frac{ $\pi$}{2} [\displaystyle \frac{1}{\sqrt{ $\pi$}} $\gamma$(\frac{3}{4})]^{\frac{8}{3}} $\gamma$(\frac{1}{6}) $\gamma$(\frac{1}{3})\approx

0.18461. We have also used the explicit value of  b_{g} . This is in good agreement with

numerical computations (fig. 4).
Besides the free energy, one can also find an expansion of the \mathrm{Y}‐functions. From

the periodicity and the analyticity, the \mathrm{Y}‐functions are expanded as

Y_{a}( $\theta$)=\displaystyle \sum_{n=0}^{\infty}Y_{a}^{(n)}\cosh(\frac{4}{3}n( $\theta$-i $\varphi$)) ,

where Y_{a}^{(n)}\sim(mR)^{4n/3} as mR\rightarrow 0 . Substituting the expansion into the \mathrm{Y}‐system (5.1)
gives equations to constrain the coefficients Y_{a}^{(n)} . Further using the relation between

the \mathrm{Y}‐functions and the cross‐ratios, U_{k}=1+Y_{2} (\displaystyle \frac{2k+1}{4} $\pi$ i)(k=1,2,3) ,
one finds the

first‐order expansion around equal U_{k} :

U_{k}=4\displaystyle \cos^{2}(\frac{ $\phi$}{3})+y^{(1)}( $\phi$)\cos(\frac{4 $\varphi$-(2k+1) $\pi$}{3})\times|Z|^{\frac{4}{3}}+\mathcal{O}(|Z|^{\frac{8}{3}}) ,

where y^{(1)} is a function of the chemical potential  $\phi$ . Numerically, this is evaluated as

 y^{(1)}( $\phi$)\approx 5.47669-0.484171$\phi$^{2}+0.0119471$\phi$^{4}+\cdots . The above relations are inverted
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to express the data of the minimal surfaces (|Z|,  $\varphi$,  $\phi$) as functions of the cross‐ratios,

(5.4)

\displaystyle \cos^{2}\frac{ $\phi$}{3}=\frac{1}{12}\sum_{k}U_{k}, \displaystyle \tan\frac{4}{3} $\varphi$=\frac{\sqrt{3}(U_{2}-U_{3})}{2U_{1}-U_{2}-U_{3}}, |Z|^{\frac{4}{3}}=\displaystyle \frac{-2U_{1}+U_{2}+U_{3}}{3y^{(1)}( $\phi$)\cos\frac{4}{3} $\varphi$}.
From these, geometrical meaning of (|Z|,  $\varphi$,  $\phi$) in the parameter space (U_{1}, U_{2}, U_{3}) is

found.

Collecting all the results in addition to (5.3), the full expression of the remainder

function defined in (3.8) is found to be

(5.5)

\displaystyle \mathcal{R}=-[\frac{ $\pi$}{6}(1-\frac{2$\phi$^{2}}{$\pi$^{2}})+\frac{3}{4}\mathrm{L}\mathrm{i}_{2}(1-4$\beta$^{2})]
-[C_{\frac{8}{3}} $\gamma$(\displaystyle \frac{1}{3}+\frac{ $\phi$}{3 $\pi$}) $\gamma$(\frac{1}{3}-\frac{ $\phi$}{3 $\pi$})-\frac{3(4$\beta$^{2}-1+\log(4$\beta$^{2}))}{64$\beta$^{2}(4$\beta$^{2}-1)^{2}}y^{(1)}( $\phi$)^{2}]|Z|^{\frac{8}{3}}+\mathcal{O}(|Z|^{4}) ,

where \mathrm{L}\mathrm{i}_{2} is the dilogarithm and  $\beta$:=\cos( $\phi$/3) . By (5.4), this is further expressed in

terms of the cross‐ratios U_{k} ,
which can be directly compared with perturbative compu‐

tations.

In addition to the above expansion around the CFT limit with |Z|\ll 1 ,
it is

straightforward to carry out the opposite expansion around the low‐temperature/infrared
limit with |Z|\gg 1 ,

which corresponds to collinear limits in the SYM theory. In fig. 5,
we show the remainder function obtained by the first order expansions for |Z|\ll 1 and

|Z|\gg 1 . These are again in good agreement with numerical computations. We find

that the simple first order expansions well describe the remainder function for all the

scale |Z|.

§6. Summary

The discovery of the integrability opened up new dimensions in the study of the

gauge/ string duality or the AdS/CFT correspondence. That has led to a proposal that

the full spectrum of \mathcal{N}=4 SYM and the string theory on AdS_{5}\times S^{5} in the planar
limit is obtained by solving certain TBA equations/Y‐system [1]. Besides this very

interesting theoretical development, the integrability has also been applied to the study
of the gluon scattering amplitudes: By the AdS/CFT correspondence, the amplitudes at

strong coupling are given by the area of the minimal surfaces in AdS_{5} with a polygonal

boundary which consists of null edges corresponding to external momenta [2]. These

minimal surfaces are again described by certain, but different, TBA \mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}/\mathrm{Y}‐system
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Figure 5. Plot of the remainder function \mathcal{R} as a function of |Z| for  $\phi$=0 and  $\varphi$=- $\pi$/48
from the UV expansion (5.5) (dashed line), the first order IR expansion (dotted line)
and numerical results (+ ) .

[3, 4, 5, 6]. The study on the strong coupling side also provided useful insights and

facilitated the development on the weak coupling side.

Generalizing the connection between the 6‐point amplitudes and the \mathbb{Z}_{4} ‐symmetric

integrable model [4], we observed that the TBA \mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}/\mathrm{Y}‐systems for the minimal

surfaces in AdS_{3} and AdS_{4} coincide with those of the HSG model associated with certain

coset or generalized parafermion CFTs [6]. Such a connection between the scattering

amplitudes of the four‐dimensional SYM theory and the (1+1) ‐dimensional integrable
model is not only interesting but also useful for actual computation of the amplitudes.
We demonstrated this in the case of the 6‐point amplitudes by deriving an expansion
near the limit of equal cross‐ratios from the \mathbb{Z}_{4} ‐symmetric integrable model [7].

There may be many future directions. First, although we arrived at the TBA

equations / \mathrm{Y}‐systems in analyzing the amplitudes, the intrinsic reason is not clear. The

situation resembles that of the ODE/IM correspondence [14]. Second, the integrable
model underlying the AdS_{5} case is not yet identified, except for the 6‐point case. It

would be interesting to clarify whether it is just some deformation of the AdS_{4} case by
the chemical potentials as in the 6‐point case, or corresponds to some new integrable
model. Third, it seems that we do not have a formalism to obtain the completely analytic
form of the expansion of the \mathrm{Y}‐functions near the CFT limit. This is important to

derive an analytic form of the remainder function, though in some restricted parameter

space. Given the recent development on the analytic form of the perturbative remainder

function, this is certainly an interesting issue. Finally, recalling the development on the

spectral problem where the expansions both from the weak and strong coupling side
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finally reached the proposal of the full spectrum, it would be very interesting if one

could include the corrections to the strong coupling result. (See the last figure.) On the

day before this talk was given, an interesting paper [8] appeared which discusses this

issue.
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