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Abstract

We consider a 1 + 1 dimensional discrete bilinear equation,
1 . 2 1 2 . 2 ].
cosh(iaDm)[smh (§Dm) — 6“sinh (§Dn)]f -f=0, (1)

where « is a non-negative integer. Equation (1) is the discrete-time Toda equation
and the discrete-time Toda equation of BKP type for a = 0 and for oo = 1 respectively.
However it is not integrable for a = 2 .

Equation (1) can be transformed into a discrete nonlinear wave equatin for a = 0, 1, 2,
which can be mapped explicitly. It can be transformed into a ultradiscrete form for
a = 0,1 except for a = 2.

We show a convexity of 7— function of Eq. (1) for @ = 2 in the ultradiscrete limit.
Then we show that in the ultradiscrete limit, Eq.(1) for o = 2 is transformed into an
integrable equation by virtue of the convexity of the ultradiscrete 7-function.

1 Introduction

It is known that a system of differential equations is integrable if it has an enough number
of conserved quantities. Consider a second order differential equation. It is integrable if it
has a conserved quantity. However it is incorrect for the discrete case. Consider a coupled
first order discrete equations for example,[1]

Tpt1 = (x'?z +c y?z)c(l - xn)/ynv (2)
Ynt1 = (75 +cyn)on(l —z0)/yn,

¢ being a constant, which has a conserved quantity,

2 +cy?
=t (3)
nyn

H
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Nevertheless the equation is not integrable because that Eq.(2) is reduced, using the con-
served quantity, to

Tt = H cxp(1 — z,,), (4)

which is the well-known equation showing chaos.

The situation is worse when we go from discrete to ultradiscrete systems. Number of
independent conserved quantities of a utradiscrete system is less than that of a discrete
system. The independent conserved quantities in the discrete soliton equations such as

HY =Vi+ Vo4 -+ Wy, (5)
H® = VP + Vit 4 Vg, (6)

are reduced, in the ultradiscrete limit, to

h) = max(vy, g, ,UN), (7)
K = 2max(vy, vg, -+, UN), (8)

These conserved quantities are equivalent to each other.

Under the circumstances it is difficult, using the conserved quantities, to discuss the integra-
bility of discrete soliton equations. Instead of the conserved quantities we use muti-soliton
solution to discrete soliton equations. We use the following simple hyposesis.

Discrete and ultradiscrete soliton equations are integrable if they exhibits 3-soliton solu-
tions.

In Section 2 we shall review the method of finding 3-soliton solution to a discrete soliton
equation.

Since the discovery of the method of transforming discrete systems into ultradiscrete sys-
tems [2] in 1996, many ultradiscrete soliton equations have been studied [3]-[6]. However
these soliton equations are limited to the discrete KP equation, which is expressed by the
following bilinear form

[z1exp(D1) + zaexp(Ds) + z3exp(Ds)]f - f =0, 9)

where D; for j = 1,2,3 are the bilinear operators [7] and z; for j = 1,2,3 satisfies the
relation z; + 29 + 23 = 0 for soliton solutions.
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On the other hand we have the discrete BKP equation found by Miwa [9], which is expressed
by

(a+b)(a+c)b—c)r(l+1,m,n)T(l,m+1,n+1)
+b+c)(b+a)(c—a)yr(l,m+1,n)r(l+1,m,n+1)
+(c+a)(c+b)(a—=b)T(l,m,n+ 1)1l +1,m+1,n)
+a—=b)b—c)c—a)T(l+1,m+1,n+1)7(l,m,n) =0. (10)

Ultradiscretization of the discrete BKP equation is very difficult in its present form because
of negative terms in Eq.(10).
Equation (10) is expressed, using the bilinear operators, by

1 1 1
{z1 exp[§(Dl — Dy, — D) + 22 exp[§(—Dl + Dy, — D)) + 23 exp[§(—Dl — Dy, + D,,)]
1
+24 eXp[g(Dl + Dm + Dn)]}T(lv m, n) ’ T(la m, n) = O’ (11)
where

z21=(a+b)a+c)b—c), z=(0b+c)(b+a)(c—a),
z3=(c+a)c+b)(a—0b), z4=(a—b)(b—c)(c—a). (12)

We consider a generalized form of Eq.(11) which is expressed by
(21 exp(Dy) + z2 exp(D2) + zgexp(Ds3) + z4exp(Dy)]f - f =0 (13)

where D; for j = 1,2, 3,4 are linear combinations of the operators D;, D,, and D,, satisfying
the relation

D1+D2+D3+D4=0, (14)

and the coefficients z; for j = 1,2,3,4 are arbitrary constants. For soliton solutions they
satisfy the relation

21+Z2+Z3-|-Z4:0. (15)

We call Eq.(13) g-dBKP(generalized discrete BKP) equation. Recently the Backlund trans-
formation for g-dBKP equation was obtained [10] which is an strong indication of the in-
tegrability of g-dBKP equation.

We shall transform a special case of g-dBKP equation into an ultradiscrete form in Section
3.
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2 Perturbational method of solving bilinear equations

We note that the bilinear equation,
F(Dy,Dy)f-f=0, (16)

where F'(D,,, D,) is an even function of D,,, D,,, namely F(D,,, D,,) = F(—D,,,—D,,) and
F(0,0) = 0, has the following properties.

1. Equation (16) is invariant under the transformation,

f—= fe™,  mo=agm+bon + co, (17)

where aqg, by, cg are constants, which is the gauge invariance of the bilinear equation.
One of the main reasons why perturbational approach works is the gauge invariance
of the bilinear equation.

2. Equation (16) is invariant by changing the order of f and g,
F(Dp, Dn)f - 9= F(Dp, Dy)g - f (18)

N-soliton solution f to the bilinear equation is obtained by using the perturbational method.
We expand f in a power series of s

f=14sfi+sfo+sfa+--, (19)

where s is a bookkeeping parameter.

Substituting f into eq.(16) we have
F(Dpy D)1+ sfi+ 8 fa+ 8" fs+) (L+sfi+sfotsfa+--)
= F(Dp, Do)[L- 14 s(fi- 141 f1) +5°(fo- 14+ fi- i+ 1 f2)
+2(fs- 1+ fo- i+ fi-fat 1 f3)+ -]

=0. (20)
We have the following linear equations for fi, fo, f3--- at each order of s:
5 F(Dm,D Wfi-1+1-f1) =2F(0n,0,)f1 =0, (21)

F(Dm, Dp)(f2- 1+ fi- i+ 1 fo)

= 2F(3m, On)fo+ F(Dm, Dy) f1 - f1 =0, (22)
F(Dpy Dn)(fs -1+ fo- i+ fi-fat1-f3)

= 2F(8m, On)fs + 2F (D, D) fo - f1] = 0, (23)
F(Dm, Do)(fa- 1+ fs- fit for fot+ fr- s+ 1 fa)

= 2F(8m, On)f1+2F (D, D) fs+ fi + F(Dyy, Dy) f2 - f2 =0, (24)
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2.1 One-soliton solution to the discrete equation
One-soliton solution to Eq.(16) is obtained assuming the following form of f,
f=1+em 0 p(m,n) = wim + ki(n —na), (25)

where w; and k; are nonlinear frequency and wave number, respectively, n; being an

arbitrary parameter related to a position of a soliton.
We have

0 0

a_emon,n) o emmn) a_emm,n) _ oy emmm), (26)
m n

Accordingly Eq.(16) becomes

F(Dma Dn)[l + 6711(m,n)] . [1 + 6771(m,n)]
= F(Dyy, D,)[eM ™™ 1 41 - g mn)]
= 2F(wy, ky)e™ ™™ = 0. )

which gives the dispersion relation,

F(wl, ]{'1) = 0. (28)

2.2 2-soliton solution

Equation(21) at order s is a linear equation of f;:

so that the superposition formula of solutions holds. 2-soliton solution is given by assuming
f1 to be a sum of €™ and e™:

fi=em" +eP, (30)
m = wit + ki(n —n1), 72 = wat + ka(n — ny). (31)

Substituting fi into Eq.(29) we have
F(Dp,Dy)(e™-14¢€™-1) =0, (32)
which gives the dispersion relation,

F(w;, k;) =0, for j =1,2. (33)
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Equation(22) at order s? is a linear equation for fs:
F(Dp, Dy)(f2-1+ fi- fi+ 1 f2) =0. (34)
Substituting f; into Eq.(34) we find
F(Om, 0p) f2 + F(wy — wa, k1 — ky)e™ ™ = 0. (35)

We assume a special solution fo = e®2TM+2 to FEq.(35). The coefficient a;5 is determined
to be

F(w1 — wa, k1 — k2)

Y PP (36)

Equation (23) at order s% is a linear equation for fs:
F(Dp, Dy)(fs -1+ fo- fit+ fi-f24+ 1 f3)=0. (37)

Equation(24) at order s is a linear equation for f;:
F(Dp, Dp)(fa -1+ fs- it for fo+ fi- s+ 1 fa) =0. (38)

We may choose f3 and f; to be zero because that the inhomogenious terms in Egs. (37) and
(38) vanish by virtue of the gauge invariance. Accordingly we find that 2-soliton solution
is given by

f=1+e"4e" 4 ea12+m+nz’
F(wj, kj) =0, for j =1,2,
F(wy — wa, ki — ko)
F(wy 4 wa, by + k)

a2 __
e —

2.3 3-soliton solution

We have the linear equation (21) at order s:
F(Dy,Dy)fi-1=0. (39)
3-soliton solution is given by assuming f; to be a sum of €, e™ and e:

fl =M + e + 6773, (40)
n; = w;m + kj(n —ny), for j =1,2,3. (41)

Substituting fi into Eq.(39) we have

F(Dy, Dy)(e™ +e™ +e™)-1=0, (42)
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which gives the dispersion relation,
F(w;, k;) =0, for j =1,2,3. (43)
Equation(22) at order s? is a linear equation for fs:

F(Dp, Do)(fo-1+ fi- fi+1- fo) =0. (44)
Substituting f; into Eq.(44) the inhomogeneous term becomes
F(Dm, Dn)(em 4+ e 4 6713) . (6771 + e 4 6713)
= 2¢"2F(D,,, D)™ ™ - 1+ 2”8 F(D,,, D,)e™ ™ - 1
+2e*B F(D,,, D,)e™ ™ - 1
= 2F((_4.)1 — Wao, kl — k2)€ﬂ1+7l2 + 2F((_4.)1 — W3, kl — k3)€n1+n3
-|-2F(OJ2 — Ws, k‘g — k3)6772+773‘ (45)
Substituting (45) into Eq.(44) we obtain

F(@m, 8n)f2 + F(wl — Wa, ]{'1 — k2)6"1+"2
+F(w1 — W3, kl — k3)6771+"73 + F((—Ug — W3, kQ — k3)e"72+713 =0. (46)

We assume f5 to be

f2 — eM2Ftm+n2 + 13+ 3 + e%23+m2tns (47)

Substituting this expression into Eq.(44) the phase-shifts a9, a13, ass are determined to be

F(wi — Cu]',k‘i — ]{7])
F(wi -|-wj',k‘¢ + k‘J)

Qi
elJ:_

, for 1 <i<j<3. (48)

Equation(23) at order s* is a linear equation for fs:

F(Dpn, Dy)(fs -1+ fo- i+ fi- f2+ 1 f3)=0. (49)

We calculate the inhomogeneous term in Eq.(49):

F(Dvan)(fQ ' fl + fl ) f2)
—_ 2F(Dm, Dn)(ea12+n1+n2 + ea13+771+7l3 + 60234-772-1—773) . (6771 + e’ + 6713)

= 2¢"2F(D,,, D,,)e" ™ . e™®
+2¢3F(Dyy,, D,,)e™ ™ . ™
+2e"2 F(D,,, D,)e” ™ . em
= 2eMHTRIWBLM2 B () + wy — ws, by + ko — k3)
+eBF(w) —wo + w3, k1 — ko + k3)
+e*B F(—wy + wo + ws, —ky + ko + k3) }. (50)
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We assume f3 to be

f3 = 123+ mAn2+ns (51)

Substituting these expressions into Eq.(49) we find that ai93 is determined by the relation:

M F(wy 4+ wo + ws, k1 + ko + k3)

+e"2F(wy + wy — w3, k1 + ko — k3)

+e F(wy — wy + ws, k1 — ko + k3)

+e"P F(—wy + wo + w3, —k1 + ko + k3) = 0. (52)

Here we make an important assumption that ais3 is equal to a sum of
a12, @13, 423,

193 = A19 -+ a3 -+ ass. (53)
Hence we have an identity A to be satisfied by the parameters wy, k1, ws, ks and ws, ks,
A((—‘-)17 Wa, Ws, kl; k27 k3) =
6a12+a13+a23F(w1 —+ woy + w3, kl + kg + ]{Zg)
-I-e“”F(wl + Wy — Ws, ]{71 + k‘g — k‘3) + 6“13F(w1 — W9 + W3, ]{71 — ]{72 + ]{73)
+e“23F(—w1 + wy + W3, —kl -+ kQ + kg) = 0, (54)
where

F(wi — Cu]', k‘, — ]{7])
F(wi -|-wj',k‘¢ + k‘j),

ea’ij = —

for 1<i<yj<3. (55)
The identity(54) is crucial for the bilinear equation to exhibit 3-soliton solution.

2.4 N-soliton solution
In general, N-soliton solution to Eq.(16) is expressed by
N
F=2 epDopmi+ Y aypi] (56)
1=0,1 i=1 1<i<j<N

where 37, o, means the summation over all possible combinations of p; = 0,1, uy =
0,1,---,uny = 0,1, provided that F(D,,.D,) satisfies the condition

Z exp [ Z %(1 + O'iO'j)a,ij] F‘I(Z1 g;Ws, Zl O'zkl) = O, (57)

o=*1 1<i<j<N
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where > ,_,; means the summation over all possible combinations of 0y = *+1, 0y =
+1,--+,0n5 = +£1.1  We have obtained the condition (54) using the fact that F(D,,, D,,) is
an even fuction of D,, and D,,. Accordingly the total number of terms in (54) is one half
of that in (57).

3 Extended discrete Toda equation

We consider a 1 4 1 dimensional discrete bilinear equation,
1 . 9,1 9 . 19,1
cosh(iaDm)[smh (§Dm) — 6 sinh (§Dn)]f -f=0, (58)

where m and n are the discrete time and space respectively and « is a non-negative integer
and ¢ is a non-negative parameter less than unity which is related to a time-interval.

Equation (58) is the discrete-time Toda equation of type I for a = 0, which is a member
of the discrete KP equation. And it is the discrete-time Toda equation of BKP type for
a =1 [8], which is a member of Eq.(13), as we show in the next subsection.

We shall show in Subsection 3.4 that Eq.(58) for & = 2 does not satisfy the integrability
condition stated in Subsection 2.3. Accordingly it is not integrable for a = 2.

Hereafter we call Eq. (58) “E-Toda equation” (Extended Toda equation).
We show that E-Toda equation can be transformed into an ordinary wave equation.

3.1 Transformation of E-Toda equation into the ordinary form

We write E-Toda equation as

4cosh(a%Dm)[Sinh2(%Dm) — 5 sinh2(%Dn)]f f
= 2cosh(oz%Dm)[cosh(Dm) — 6%cosh(D,) — 1+ 6°|f - f
= {coshl (0 +2)Dy] + coshl3 (o — 2D,

1 1
—52[cosh(§aDm +D,)+ cosh(§aDm —D,)]

L “The Direct Method in Soliton Theory”, Cambridge Univ.Press(2004), p. 55 under Eq.(1.250),
“01=0,1, 00 =0,1,---, 05 = 0,1.” should be read “o; = £1, 09 = +1,---,0ny = £17.
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~2(1 — ) cosh(zaD)}f - f =0

which is equal to

{epl(ga+ DDyl + espl(ga —~ DD, - f

= {5 exp[%aDm + D,] + &* exp[%aDm — D,] +2(1 — 6% exp[%aDm]}f -f. (59)

Accordingly E-Toda equation is expressed without using the bilinear operators as

m+3 La41

I s
— G fIREC IR ) o1 — 6 R (60)

We note that Eq.(59) for o = 1 is reduced to

expl(3/2) Dl -
= (8% X0 Dy + Dol + 0% exply Dy — D]+ (1= 2% expls Dyl -, (61)

a— 1+f7'rln—|— sa— lf:ln—%a—l—l

which is a g-dBKP equation.

In order to transform Eq.(60) into a discrete soliton equation of ordinary form, we divide

Eq.(60) by f$+%af7?_%a and shift m by fa, namely m — m + sa. Then we have

fm+a+1fm—1 fm—l—a—lfm—l—l m—I—a m t ) m+a n}|-1 )
farefir fare f’"”f’" f e “fir
Let us introduce dependent variables, v, v, wt, and = by
m+a+1 fm—1 m—+a—1 fm+1
um:fn fn , Um:fn fn , (63)
n fm—l—afm n fm+afm
ﬁta e 1 S 1
w:ln ;m—i—a}'lm ’ x? fm—l—a}‘l:z ’ (64)

Then Eq.(62) is simply expressed by

u™ + ot = 8wl + ) + 2(1 - §%). (65)
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3.2 Relations among dependent variables

In order to find relations among dependent variables u, v, w, x,we introduce shift operators
p and ¢ which operate on an arbitrary function, A" of m and n as follows

phy = bt P hy = g, (66)
for arbitrary constants, a and f.
We have
L — f:ln-i-a-i-lf:ln—l m f;ln—l—a—lf:ln—kl
- I — I
" ey " Jare
m—+a £rm fm—i—a m
m o __ n+l Jn—1 xm _ n—1 Jn+1
s SR T
B KAy A S R

The relations among the variables w)*, v, w,", ' depend on the values of a

1. E-Toda equation (o = 0):
We have v' = uy', )

m = w," and the logarithm of u and w are expressed by the
shift operators as

logu= (p+p~' —2)log f, (67)
logw = (q+q~" —2)log f, (68)
which give the relation
(p+p —2)logw = (g4~ —2) logu. (69)
Accordingly we find
wa+1w7T_l — u?—l—lu;n—l ) (70)
(wi)? (urp)?

2. E-Toda equation (a = 1):
We have v = 1 and the logarithm of u, w and x are expressed by the shift operators

as
logu= (p*+p ' —p—1)log f, (71)
logw = (pg+ ¢ ' —p—1)log f, (72)
logz = (pg ' +q—p—1)log f, (73)

which give the relation

(P’ +p "t —p—1logw=(pg+q " —p—1)logu (74)
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and
W +p ' —p—1logzr=(pg' +¢—p—1)logu. (75)
Accordingly we find
wy ! _ u?zl—l——i_llu?—l and a2 _ UZTUZ’H (76)
wtwp up wp up g
3. E-Toda equation (a = 2):
The logarithm of u, v, w and z are expressed by the shift operators as
logu=(p*+p~ ' —p" =Dlogf=(p—1)*(p+1+p Hlogf,  (77)
logv = (2p—p* —1)log f = —(p — 1)’ log f, (78)
logw = (p°q+q~" —p° = 1)log f, (79)
logz = (p*q +q—p* = 1)log f, (80)
which give the relations
(p+1+pHlogv=—logu, (81)
W’ +p7 =p* =D logw = (p’¢+ ¢ ' —p* — 1) logu, (82)
P +p ' =p = Dlogz = (p’¢ " +¢—p° —1)logu. (83)
Accordingly we find
oLyl 1 wi B wp ! _ up gy eyt _ up (84)
oo up’wp i T up g

3.3 Explicit mapping of E-Toda equation

Using the relations among the dependent variables we find the explicit mapping of E-Toda
equation in the following forms,

1. E-Toda equation (a = 0):

u™ = 5w + (1 -6, (85)
w1 _ uﬁluﬁ_l’ (86)
(wi)? (ui)?

which give the explicit mapping of w”,

wzz—f—l — U:Ln—l—lug—l (w;n)f’ (87)
(up)? wp~

where " is given by Eq.(85).
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E-Toda equation (o = 1):

u™ = & (w™ 4 ™) + 1 — 267,

w?T+1le_2 _ U%UZT
wmwm-t N umym—1
)
wmwm=1  ymym—1 7

which give the explicit mapping of w]* and )",

m m—1, m, m—1
wm+1 _ U’n—i—lun—l wn wn
n o umym—1 wm—2 )
n “n n
m m—1 _m, .m—1
xm—l—l _ un—lun-i-l Ty Ty

n Y

umym—t o gm=2
where " is given by Eq.(88).

E-Toda equation (o = 2):

u = —v" + (w4 ) + 2(1 — 6%),

n

1
,Um—l—l,Umvm—l -
n n n uzl’
wp ot
R
ot up
xmgm=2 N umum—?

which give the explicit mapping of v)"*, w)* and z]”,

m+1 _ 1
Un T ymayymaym—1"
umum o

m m—2 , m,, m—2
,wm—l—l _ U’n—l—lun—l W, Wy,
n o umum—Q wm—3 )
n “n n

m m—2 _m, m—2
m+1 un—lun—l—l xn xn

n

T

Y

my,m—2 m—3
Uy Uy T

where " is given by Eq.(93).

13

(97)
(98)

(99)
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3.4 Integrability of E-Toda equation

Following the procedure stated in Section 2 we obtain 3-soliton solution to E-Toda equation,
1 . 9,1 9 . 19,1
cosh(EaDm)[smh (§Dm) — ¢6“sinh (§Dn)]f -f=0,
which is expressed explicitly by

fa=1+ 8{6"1 L 4 6?73} + 32{ea12+n1+772 4 et 4 ea23+772+n3}
1 sBemztmnatns (100)

where 1; = w;m + k;(n — n;), for i = 1,2,3. The dispersion relation and the phase shifts
are given by

[sinh(%wi)]Q - 52[sinh(%k:i)]2 =0, (101)
F(w; —wj, ki — k)

F(w; +wj, ki + k)

_ cosh[ga(w; — wj)] {[sinh(5 (wi —w;))]* — &*[sinh(5 (ki — &;))]?
cosh[$a(w; + w;)] {[sinh((w; + w;))]? — 62[sinh(3 (k; '

ea’ij = —

We have checked the integrability condition,

A((—‘-)17 Wz, ws, kl; k27 k3) =
6a12+a13+a23F(w1 + wo + w3, k1 + ko + ]{73)
-|-€a12F(CU1 + Wy — ws, ]{71 + k‘g — ]{'3) + 6a13F(CU1 — wy + W3, ]{71 — ]{72 + ]{73)
+eP F(—wy + wy + w3, —k1 + ko + k3) =0, (103)

using REDUCE (free software) and found that
1. E-Toda equation (for a = 0, 1) are integrable.

2. E-Toda equation (for v = 2) is not integable.

4 Transition of E-Toda equation from discrete to ul-
tradiscrete

Numerical simulation of collisions of solitons in a non-integrable system shows that solitons

generate ripples after colliding with each other. On the other hand in an ultradiscrete
system we may choose all input values to be intergers so that all output values are integers.
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Hence no ripple is generated. We have found that E-toda equation for « = 2 is not
integable. Accordingly it is of strong interest to see collisions of solitons in an ultradiscrete
E-Toda equation for a = 2.

The explicit mapping forms of E-Toda equation for o = 2 indicate that ultradiscretization
is difficult in its present form because of the negative term —uv)* in Eq.(93).

We shall investigate transition of u* of Eq.(93) from discrete to ultradiscrete. For the
purpose we introduce intermediate dependent variables U, V,"*, W™ and X",

uy,' = exp(Uy'/e), vy’ = exp(V,"/e),
wy' = exp(Wy'/e),  ay' = exp(X; /e),
and an intermediate soliton solution f,,
N
fe= 2" exp[D_milife+ D> Aypais/e (104)
p=0,1 i=1 1<i<j<N
using an ultradiscrete paramete ¢, where
& =wm+kj(n—mn;), for j=1,2,--- N. (105)
Aij:eaij. for i,j:1,2,"',N. (106)

The intermediate solution is obtained simply by replacing the nonlinear frequencies and
wave numbers w; and k; in f by w;/e and k;/e, respectively, for j = 1,2,...,N. Then
E-Toda equation (« = 2) becomes the following intermediate equations

Vit = U = v = v (107)
Wt =ur, + U2 —=Ur UM+ W+ W2 — W, (108)
X =ur 4+ Ul =Ur —UP 2+ X+ X2 — X8, (109)

U = elog{—exp(V,""/¢)
+exp[(W," = 2) /e + exp[(X," = 2) /] +2(1 —exp(=2/€))}.  (110)

Equations (107)-(110) describe E-Toda equation for ¢ = 1 and the ultradiscrete E-Toda
equation in the limit, ¢ = 0.

We have mapped Eqgs.(107)-(110) changing ¢ from 1 to 0.1 and observed no change of U]".
It implies that the negative term — exp(V""/¢) in Eq.(110) plays no role in determining U
in the ultradiscrete limit, ¢ = 0.

We notice the following fact. The dispersion relation between new w; and k; is obtained by
Eq.(28),
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We have E-Toda equation,

{expl(50 + 1)Dy] + expl(za — D]} f -/

= {52 exp[%aDm + D]+ 52 exp[%osz — D, +2(1— 5?) exp[%osz]}f - f,

whose dispersion relation is given by

cosh[(%oz + Dw/e] + cosh[(%a —Dw/e] =

522 cosh[%aw/e] cosh[k/e] 4+ 2(1 — §%) cosh[%ozw/e].

Obviouly we have for o > 1,

cosh[(%a —Dw/e] < cosh[%aw/e] < cosh[(%a + Dw/€],

which suggests the inequalities,

cosh[(%a —1)Dp/elf - f < cosh[%aDm/e]f f < cosh[(%oz +1)D,,/€lf - f,

in UD (ultradiscrete) limit.
Let UD limit € — 0 of f. be 7(m,n),

lg%elog fe=T1(m,n).

Then 7(m,n) is expressed by

T(m,n) =max(0,&,&, -, N, A + & + &, Ais+ & + &3,
Avaan+Evaa+E€n, A F S +F 6+ -+ EN).

We shall prove in Appendix A that 7(m,n) is a convex function of m for fixed n.

5 E-Toda equation for a =2 in UD limit

Let

T(m,n) = li_r%elog fe and & =exp(—1/e).

(112)

(113)

(114)

(115)

(116)

(117)



INTEGRABILITY OF SOLITON EQUATIONS: FROM DISCRETE TO ULTRADISCRETE 17

Then E-Toda equation in the bilinear form, Eq.(60) is expressed, in UD limit, by
1
max( 7(m + 5 +1,n)+7(m— 50~ 1,n),

1 1

T(m+§a—1,n)+7(m—§a+1,n)
1 1

= max( T(m+§0z,n+1)-|-7'(m—§a,n—1)—2,

1 1
T(m+—04,n—1)+7'(m—504,71—#1)—2,

2
1 1
T(m + §0z,n) +7(m — §a,n) ). (118)
Let
Up(m,n) = li_r%elogu’,?, Vo(m,n) = li_r%elogvzz, (119)
Wo(m,n) = li_r}x&elog w,  Xo(m,n) = li_rg%elog . (120)

Then E-Toda equation for a = 2, Eqs.(93),(97),(98) and (99) is expressed,in UD limit, by

max( Up(m,n), Vo(m,n) ) = max( Wy(m,n) — 2, Xo(m,n) —2, 0), (121)
Vo(m + 1,n) = =Uy(m,n) — Vo(m,n) — Vo(m — 1,n), (122)

Wo(m +1,n) = Uy(m,n+ 1) + Us(m — 2,n — 1) — Uy(m,n) — Uy(m — 2,n)
+Wo(m,n) + Wo(m — 2,n) — Wy(m — 3,n), (123)

Xo(m+ 1,n) = Uy(m,n — 1) + Up(m — 2,n + 1) — Up(m,n) — Up(m — 2,n)
+Xo(m,n) + Xo(m —2,n) — Xo(m — 3,n), (124)

where

Up(m,n) =1(m+3,n)+7(m—1,n) —7(m+2,n) — 7(m,n), (125)
Vo(m,n) =7(m+1,n)+17(m+1,n) —7(m+2,n) — 7(m,n), (126)
Wo(m,n) =1(m+2,n+1)+7(m,n—1) —7(m+2,n) — 7(m,n), (127)
Xo(m,n)=1(m+2,n—1)+7(mn+1)—7(m+2,n) —1(m,n (128)

We remark that Eq.(121) does not determine Uy(m,n) uniquely if Uy(m,n) < Vo(m,n).
Therefore it is not a proper form of the ultradiscretized E-Toda equation. In the following
we shall prove that Uy(m,n) > Vy(m,n) using the convexity of 7(m,n) function.

We obtain using Eqs.(125) and (126)

Up(m—1,n) = Vo(m —1,n) =7(m+2,n)+7(m —2,n) — 27(m, n). (129)
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The inequality shown in Appendix A gives, for a = 2,
T(m+2,n)+7(m —2,n) > 27(m,n). (130)
Hence we find that
Up(m,n) > Vo(m,n). (131)

Accordingly Eq.(118) is reduced to

1 1

T(m+§a+1,n)+7(m—§a—1,n)
1 1

= max( T(m+§0z,n+1)-|-7'(m—§a,n—1)—2,

1 1
T(m+—04,n—1)+7'(m—504,71—#1)—2,

2
1 1
T(m + §0z,n) +7(m — §a,n) ). (132)
And Eq.(121) is transformed into
Up(m,n) = max( Wy(m,n) — 2, Xo(m,n) — 2,0 ), (133)

which determine Uy(m, n) uniquely. Equations.(133),(123) and (124) give the ultradiscrete
form of E-Toda equation for o = 2.

5.1 Mapping of E-Toda UD equation for a = 2
We have found that the following 3-soliton solution solves Eq.(132).

7(m,n) = max(0, &, &, &3, Az + &1 + &, Ars + &+ &3,
A+ &+ &, An+ Ais+ Ao + 6+ 6+ &), (134)
& = wim — ki(n —ny), (135)
ki = ¢(lwil +2), ¢ ==x1, fori=1,2,3, (136)
(137)

A;j = —2¢¢; — (34 €¢;) min(w;,w;), fori,j=1,2,3. 137

In Fig.1 the solid lines express the theoretical values of Uy(m,n) as a function of a
continuous variable, n. While the dots indicate the numerical mapping of U(m,n) by
Eqgs.(133), (122), (123) and (124) for integer n. The parameters used are o = 2,w; =
2 (e =1),ws =3 (g =1),and wg =5 (e3 = 1), and ny = ny = nzg = 0. All dots
are on the solid lines. In Fig.2 the solid lines express the theoretical values of Uy(m,n)
as a function of a continuous variable, n. While the dots indicate the numerical mapping
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Figure 1: Collisions of 3-solitons of E-Toda equation in UD limit for a = 2
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Figure 3: A convex function f(x)

of U(m,n) by Eqgs.(133), (122), (123) and (124) for integer n. The parameters used are
a=2,w; =2(c;=1),ws =3 (g =—1), and ws =5 (3 = 1), and ny = ny =nzg = 0. All

dots are on the solid lines.

In conclusion, we have found that E-Toda discrete equation for o = 2 is not integrable but

it is integrable in UD limit.

A Convexity of 7— function

We shall prove the following convexity of 7— function,

1 1
T(m+§a—1,n)+7'(m—§a+1,n)

<7(m-+ 5% n)+ 7(m — 2% n)

1 1
ST(m—i-—oz—l—l,n)—l—T(m—504—1,71), for a > 1.

2

A.1 Introduction to a convex function

A convex function f(z) is defined by

1 1
¢ |>0, fora<b<ec.

a b
fla) f@) f(o)

(138)

(139)

(140)
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Equation (140) is transformed into

fla) = f(b) _ f(b) — f(o)
a—b —  b—c

For a convex function f(x), we have the following inequality
fe+a)+ flz—a) < f(z+8)+ f(x—5). for0<a<p.
Proof. From the definition (141) we obtain, for 0 < a < 3,
fl@) = fe+a) _ flz+a)— flz+P)
T — (r+ Q) (x+a)—(x+p) "’
floa—a) = f(x) _ f2) - fl@e+0a)
(x —a)—=x r—(v+a

fla=B) = fle—a) _ fla—a) = fx)

r—pFf—(z—a) — (z—a)—=x

VAN

IN

)

Hence we have

fo— )~ fa—a) _ fla+a) = fz+H)
—B—(—a) - a—0 ’

which is equal to

fle+a)+ flx—a) < flz+B) + flz - B).

A.2 Symbol of lists

In order to generate a list we introduce a symbol >>{---}. For example,we define

n
Z{az} = {ala g, ag, - . . van}v
i=1

n
Z{O’iai} = {0'1(11, 0209, . .. ,anan},

i=1

Z {0'1(1/1, 0202, . .. 70nan} = {ala —01,02, —A2,...,0n, _a’n}'
o=%1

Accordingly we have

max( 3 3 {oai}) - maxéﬂaim'

o==%11i=1

21
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(142)

(143)
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A.3 Fundamental theorem in Max-plus algebra

Consider a couple of lists A and B,

A={ay,a9, -, a,}, (145)
B: {bl,bg,"',bn}. (146)

Then we have
max(A) <max(B) ifa; <b; fori=1,2,--- n. (147)

Proof.
Let a,,=max(A). Then a,, < b, < max(B).

Hence
max(A) < max(B). Q.E.D.
A.4 Convexity of T—function

We have the 7— function, Eq.(116), which is a function of m for fixed n. We express it as

7(m,n) = max(}_{si(m,n)}),

=1

where s;(m,n) = Q;m + b; + ¢; and €, b;, ¢; are constant. We shall prove the convexity of
the 7— function, for a < b,

T(m+a,n) +7(m —a,n) < 17(m+bn)+7(m—bn).
Noting that s;(m + a,n) = s;(m,n) + a ; and s;(m — a,n) = s;(m,n) — a €;, we have

T(m+a,n) +7(m —a,n)

= max()_{si(m,n) +a Q}) + max(d_{s;(m,n) —a Q}),

=1 j=1
N N

=max()_ > {si(m,n)+ s;(m,n) +a | — Ql}).
=1 j=1

Similarly we have

T(m 4+ b,n) +7(m — b, n)
N N

=max()_ > {si(m,n) + s;(m,n) +b|Q — Q[}).

i=1 j=1
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Hence we find by virtue of the theorem that

T(m+a,n)+7(m—a,n) <7(m+bn)+7(m—>bmn), ifa<b.
(148)
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