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§1. Introduction

An efficient computational framework for obtaining a rigorous combinatorial de‐

scription of the global dynamics over a large range of parameter values of multiparam‐
eter nonlinear systems was presented in [1]. Because the resulting information is easily

queryable and provides important information about the qualitative dynamics, we refer

to the output as a database for the dynamics. Such a procedure can only involve a fi‐

nite number of computations and thus the dynamics can only be represented down to a

fixed scale. However, the theory of dynamical systems indicates that nonlinear systems
can exhibit different structures at all scales in phase space and that bifurcations of the
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structures can occur on all scales in parameter space. A consequence of this is that

the descriptions presented in [1] are only indirectly related to fundamental notions in

dynamical systems such as structural stability. The goal of this paper is to address this

relationship in the simplest possible context, that of a saddle‐node bifurcation.

To provide an overview of the results presented here consider the archetypical ex‐

ample of a map which undergoes a saddle‐node bifurcation f:\mathbb{R}\times \mathbb{R}\rightarrow \mathbb{R} given by

(1.1) f(x,  $\lambda$)=x+x^{2}- $\lambda$.

The fixed points of this map are solutions to

 $\varphi$(x,  $\lambda$)=f(x,  $\lambda$)-x=0

and are given by x^{\pm}( $\lambda$)=\pm\sqrt{ $\lambda$} for  $\lambda$\geq 0 . We are only interested in the dynamics
associated with the saddle‐node bifurcation and hence we restrict our attention to  X\times

 $\Lambda$:=[-1, 1] \times[$\Lambda$_{-}, $\Lambda$_{+}] where -1<$\Lambda$_{-}<$\Lambda$_{+}<1.
Conley�s topological approach to dynamics [2, 6] provides the theoretical basis for

[1]. As such the global dynamics is described in terms of Conley‐Morse graphs which

codify the information associated with Morse decompositions of the maximal invariant

set S_{ $\lambda$}:= Inv (X, f_{ $\lambda$}) in X=[-1, 1] as a function of  $\lambda$\in $\Lambda$ . For this system we make

use of the following Conley‐Morse graphs (we follow the notation presented in [1]):

(1.2) CMG(A) =\emptyset

(1.3) \mathrm{C}\mathrm{M}\mathrm{G}(B)= p_{0}:0

(1.4) \mathrm{C}\mathrm{M}\mathrm{G}(C)= p_{1}:1\rightarrow\{1\} \rightarrow p_{0}:0\rightarrow\{1\}

To understand the information provided by these Conley‐Morse graphs we recall

that for a dynamical system generated by a map the Conley index of an isolated invariant

set K is given by the shift equivalence class of an induced map on homology (see [3]
for details). The full theory is not necessary for the purposes of this introduction. It

is sufficient to recall that if  K=\emptyset ,
then the index map is nilpotent, in which case we

say that the index is trivial. The converse is not true: a trivial index does not imply
that the associated invariant set is empty. In fact, the failure of the converse is the

driving force behind this paper. Furthermore, if  K is a hyperbolic fixed point with real

eigenvalues, n of which are greater than 1 and all the rest has modulus less than 1,
then the induced map on homology is nilpotent on dimensions different from n and is

shift equivalent to the identity map on \mathbb{Z} in dimension n . This is indicated by n\rightarrow\{1\}
where n is the dimension on which the nontrivial homology map acts and {1} are the

non‐zero eigenvalues of the homology map.
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Returning to the above mentioned Conley‐Morse graphs, \mathrm{C}\mathrm{M}\mathrm{G}(A) is a valid Conley‐
Morse graph at parameter values  $\lambda$ for which  S_{ $\lambda$}=\emptyset and hence there is no non‐empty
Morse set. If \mathrm{C}\mathrm{M}\mathrm{G}(B) is a valid Conley‐Morse graph, then there exists a Morse de‐

composition of S_{ $\lambda$} which consists of a single Morse set. This Morse set is indexed

by p_{0} and the induced index map is nilpotent, thus it has no nonzero eigenvalues.
If \mathrm{C}\mathrm{M}\mathrm{G}(C) is a valid Conley‐Morse graph, then there exists a Morse decomposition

\mathcal{M}=\{M(p_{0}), M(p_{1})|p_{1}>p_{0}\} of S_{ $\lambda$} . Furthermore, the index of the Morse set M(p)
is that of a hyperbolic fixed point with a one‐dimensional unstable manifold, while the

index of M(p) is that of an attracting hyperbolic fixed point.
Since the dynamics of the saddle‐node bifurcation is completely understood analyt‐

ically, we can assign the Conley Morse graphs to parameter values as follows: \mathrm{C}\mathrm{M}\mathrm{G}(A)
is valid for  $\lambda$\in[$\Lambda$_{-}, 0 ), CMG(B) is valid for  $\lambda$=0 ,

and CMG(C) is valid for  $\lambda$\in(0, $\Lambda$_{+} ].
The construction of the database can involve at most a finite number of computa‐

tions. This is done by discretizing both the phase space and the parameter space into

compact intervals. For the phase space X
,

this is denoted by

(1.5) \mathcal{X} :=\{G_{i}=[x_{j}, x_{j+1}]|j=0, . . . , J\}

where  x_{j+1}-x_{j}= $\delta$ . The discretization of the parameter space  $\Lambda$ is given by

(1.6) \mathcal{Q}:=\{Q_{i}=[$\lambda$_{i}, $\lambda$_{i+1}]|i=0, . . . , I\}

where $\lambda$_{i+1}-$\lambda$_{i}=v . The approximation of the nonlinear dynamical system is geometric
in nature. In particular, for each Q\in \mathcal{Q} a multivalued map \mathcal{F}_{Q}:\mathcal{X}\supset \mathcal{X} is defined by

(1.7) \mathcal{F}_{Q}(G):=\{G_{j}\in \mathcal{X}|f(G, Q)\cap G_{j}\neq\emptyset\}

and all the information expressed in the database is obtained via these maps. The grids
\mathcal{X} and \mathcal{Q} define the level of resolution on which the computations are being performed.
A simple consequence of this is that the Morse graphs used to describe the global

dynamics must be valid over the intervals of parameter space Q_{i}.
Recall that the database is presented in the form of a continuation graph. This is a

graph with the following properties. To each vertex V in the graph there is associated

a Conley‐Morse graph CMG(V) and a connected region in parameter space \mathcal{Q}(V)\subset \mathcal{Q}
such that for each Q\in \mathcal{Q}(V) , \mathrm{C}\mathrm{M}\mathrm{G}(V) is a valid Conley‐Morse graph for f_{ $\lambda$} for all

 $\lambda$\in Q . There is an edge between two vertices V and V' if there exist Q\in \mathcal{Q}(V) and

Q'\in \mathcal{Q}(V') such that  Q\cap Q'\neq\emptyset . In the context of our idealized example where we

have an analytic understanding of the dynamics the continuation graph can take the

form

(1.8)
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The associated Conley‐Morse graphs are given by (1.2), (1.3), and (1.4). If we assume

that $\lambda$_{i_{0}}<0<$\lambda$_{i_{0}+1} ,
then the associated parameter regions are \mathcal{Q}(A) :=\{Q_{i}|i<i_{0}\},

\mathcal{Q}(B) :=\{Q_{i_{0}}\} ,
and \mathcal{Q}(C) :=\{Q_{i}|i>i_{0}\}.

Of course, in applications our knowledge of the dynamics is derived from the mul‐

tivalued maps (1.7) which are defined in terms of the elements of \mathcal{X} and \mathcal{Q} . To be

more precise, recall [1, Section 3.1] that for each Q\in \mathcal{Q} the multivalued map \mathcal{F}_{Q} can

be viewed as a directed graph, the vertices are the elements of the grid \mathcal{X} and the

edges are determined by the images of \mathcal{F}_{Q} . The strongly connected path components

of this graph define the nodes of the Morse graph associated with Q . The ordering on

the Morse graph is determined by the acyclic quotient graph defined by collapsing each

connected path component to a node. Finally, the set of grid elements in each strongly
connected path component defines an isolating neighborhood for the respective Morse

set. The action of \mathcal{F}_{Q} on this isolating neighborhood is used to compute the Conley
index of the Morse set [1, Section 4.3].

Observe that for fixed f the Conley Morse graphs are completely determined by
the parameters  $\delta$ and  v used to define \mathcal{X} and \mathcal{Q} . Numerical artifacts of this procedure
occur at nodes for which the associated Morse set under f_{ $\lambda$},  $\lambda$\in Q ,

is the empty set.

As is indicated above, the Conley index of an empty Morse set is trivial. However,
our computations provide us with a Morse set with trivial Conley index, which is not

sufficient to conclude that the Morse set is empty. One possibility of handling a Morse set

with trivial index correctly is the Conley‐Morse graph reduction test, which is explained
in [1, Section 4.5].

As is indicated above, for each Q\in \mathcal{Q} the strongly connected path components

of \mathcal{F}_{Q} define the nodes of the Conley‐Morse graph. In the context of a saddle‐node

bifurcation the number of nodes in this graph can vary dramatically as a function of \mathcal{Q},

 $\delta$, v and the non‐linearity f . We use the following concept to simplify the Conley‐Morse

graphs.

Definition 1.1. Given Q\in \mathcal{Q} let \{\mathcal{M}_{Q}(p)|p\in \mathrm{P}\} denote the set of strongly
connected path components of \mathcal{F}_{Q} . We call \mathcal{M}_{Q}(p) and \mathcal{M}_{Q}(q) adjacent if

|\mathcal{M}_{Q}(p)|\cap|\mathcal{M}_{Q}(q)|\neq\emptyset.

By extending the adjacency transitively, we can define an equivalence relation on \{\mathcal{M}_{Q}(p)|p\in \mathrm{P}\},
which is also called the adjacency.

If p_{*}\subset \mathrm{P} indexes an adjacency class, an equivalence class of the adjacency equiva‐
lence relation, of \{\mathcal{M}_{Q}(p)|p\in \mathrm{P}\} ,

then

\displaystyle \overline{\mathcal{M}}_{Q}(p_{*}):=\bigcup_{p\in p_{*}}\mathcal{M}_{Q}(p) .

By construction |\mathcal{M}_{Q}^{-}(p_{*})|\subset X is a closed interval.
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In the next section, we shall prove that, in a saddle‐node neighborhood, the adja‐

cency classes of the Morse sets indeed form a coarser Morse decomposition. We call the

Morse decomposition and the corresponding Conley‐Morse graph adjacency reduced.

The following theorem indicates that, as far as the adjacency reduced Conley‐Morse

graphs are concerned, the computational procedure of [1] is capable of recovering the

continuation graph (1.8).

Theorem 1.2. Assume that  X\times $\Lambda$ is a saddle‐node neighborhood for f. For

sufficiently small  $\delta$, v>0 , (1.8) is the associated continuation graph of the adjacency
reduced Conley‐Morse graphs for f over X\times $\Lambda$.

The parameter region for which the adjacency reduced Conley‐Morse graph is CMG(B)
limits to the point at which the saddle‐node bifurcation occurs, as  $\delta$, v\rightarrow 0.

Furthermore, the geometric realization of the union of the adjacency reduced Morse

sets in  X\times $\Lambda$ converges to the saddle‐node bifurcation diagram as  $\delta$, v\rightarrow 0 ,
while  $\delta$/v

remains bounded from above and below by some positive constants.

§2. Notation and Statement of Results

This section provides precise statements that relate the continuation graph infor‐

mation to the invariant sets associated with a saddle‐node bifurcation. With this in

mind we assume that

f:\mathbb{R}\times \mathbb{R}\rightarrow \mathbb{R}

(x,  $\lambda$)\mapsto f(x,  $\lambda$)=f_{ $\lambda$}(x)

is C^{2} and satisfies the following two conditions:

SN1 f(0,0)=0 and f_{x}(0,0)=1 ;

SN2 f_{ $\lambda$}(0,0)<0 and f_{xx}(0,0)>0.

Note that a similar result as in the following holds in the case of f_{ $\lambda$}(0,0)>0 or

f_{xx}(0,0)<0 . Define

(2.1)  $\varphi$(x,  $\lambda$):=f(x,  $\lambda$)-x.

It is a classical result that SN1 and SN2 imply the existence of a saddle‐node bifurcation

[4, 7] at the point (0,0) and that the following conditions hold.

Lemma 2.1. Given SN1 and SN2 there exist compact intervals X\subset \mathbb{R} and

 $\Lambda$\subset \mathbb{R} such that the following conditions hold.
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(i) There exist positive constants a_{0}\leq|f_{ $\lambda$}(x,  $\lambda$)|\leq a_{1} and b_{0}\leq|f_{xx}(x,  $\lambda$)|\leq b_{1} for all

(x,  $\lambda$)\in X\times $\Lambda$.

(ii) There exists a unique C^{1} function  $\zeta$:X\rightarrow $\Lambda$ such that

 f(x,  $\zeta$(x))=x,  $\zeta$(0)=0.

Furthermore,  $\lambda$= $\zeta$(x) is parabola‐like in the sense that  $\zeta$(0)=0, $\zeta$'(0)=0 ,
and

$\zeta$''(0)>0.

(iii) For  $\varphi$ defined by (2.1) there exists a unique  C^{1} function  $\xi$: $\Lambda$\rightarrow X such that

(2.2) $\varphi$_{x}( $\xi$( $\lambda$),  $\lambda$)\equiv 0,  $\xi$(0)=0.

Furthermore, for  $\lambda$>0 ,
there exist unique C^{1} curves x^{\pm} such that x^{-}( $\lambda$)< $\xi$( $\lambda$)<

x^{+}( $\lambda$) and  $\zeta$(x^{\pm}( $\lambda$))= $\lambda$.

(iv) For all (x,  $\lambda$)\in X\times $\Lambda$,
f_{x}(x,  $\lambda$)>0.

Definition 2.2. Let X=[X_{-}, X_{+}]\subset \mathbb{R} and  $\Lambda$=[$\Lambda$_{-}, $\Lambda$_{+}]\subset \mathbb{R} be intervals

satisfying the conditions of Lemma 2.1. Note that this implies that X_{-}<0<X_{+}
and $\Lambda$_{-}<0< $\Lambda$+\cdot The region  X\times $\Lambda$ is a saddle‐node neighborhood if the following
additional constraints are satisfied.

(i) For each  $\lambda$\in $\Lambda$, X is an isolating neighborhood for f_{ $\lambda$}.

(ii) If  $\lambda$\in[$\Lambda$_{-}, 0) ,
then Inv (X, f_{ $\lambda$})=\emptyset.

(iii) If  $\lambda$=0 ,
then Inv (X, f_{ $\lambda$})=0.

(iv) If  $\lambda$\in(0, $\Lambda$_{+}] ,
then Inv (X, f_{ $\lambda$}) consists of x^{\pm}( $\lambda$) and heteroclinic orbits from x^{+}( $\lambda$)

to x^{-}( $\lambda$)

To obtain a continuation graph we need an understanding of the parameter values

associated with these Conley‐Morse graphs. Bounds on the local dynamics as a function

of the parameter values will be obtained via the following sets

(2.3) T_{0}^{\pm}( $\delta$, v) :=\{(x,  $\lambda$)\in X\times $\Lambda$|\pm $\varphi$(x,  $\lambda$)>0\}
(2.4) T^{+}( $\delta$, v):=\{(x,  $\lambda$)\in X\times $\Lambda$| $\varphi$(x,  $\lambda$+v)> $\delta$\}

(2.5) T^{-}( $\delta$, v) :=\{(x,  $\lambda$)\in X\times $\Lambda$| $\varphi$(x+ $\delta$,  $\lambda$)<- $\delta$\}.

The boundary of T_{0}^{\pm}( $\delta$, v) is given by the equation  $\varphi$(x,  $\lambda$)=0 ,
which is clearly parabola‐

like in the sense of Lemma 2.1 (ii) by the implicit function theorem. The same conclusion

holds for the boundary curves of T^{\pm}( $\delta$, v) .
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 $\varphi$=0

X

 $\Lambda$

Figure 1. The grid defined by \mathcal{X}\times \mathcal{Q} . Given Q\in \mathcal{Q} ,
the shaded set of squares \{G_{j}\times Q\}

represents the set of grid element \{G_{j}\} which lie in strongly connected path components

of \mathcal{F}_{Q} . Theorem 2.8 implies that there are precisely three types of parameter regions
in this figure. Theorem 2.9 implies that for each Q the collection of shaded squares is

empty, connected or consists of exactly two distinct components. It also guarantees that

these components can be used to define Conley‐Morse graphs. Together Theorems 2.11

and 2.12 imply that the shaded region converges to the curve of equilibria as  $\delta$ and  v

tend to 0.

Lemma 2.3. The boundary curves of T_{0}^{\pm}( $\delta$, v) and T^{\pm}( $\delta$, v) are all parabola‐like.

From now on we restrict our attention to the saddle‐node neighborhood. Define

the grids \mathcal{X}, \mathcal{Q} , and the multivalued maps \mathcal{F}_{Q} as in (1.5), (1.6) and (1.7), respectively.

Figure 1 is included to provide intuition for the results that are presented in this section.

To emphasize the combinatorial nature of the computations we define the following
sets of grid points:

(2.6) \mathcal{P}_{\mathcal{X}}( $\delta$, v) :=\{x_{j}|G=[x_{j}, x_{j}+ $\delta$]\in \mathcal{X}\},

(2.7) \mathcal{P}_{\mathcal{Q}}( $\delta$, v):=\{$\lambda$_{i}|Q=[$\lambda$_{i}, $\lambda$_{i}+v]\in \mathcal{Q}\},

(2.8) \mathcal{P}_{\mathcal{Z}}( $\delta$, v) :=\{(x_{j}, $\lambda$_{i})|x_{j}\in \mathcal{P}_{\mathcal{X}}, $\lambda$_{i}\in \mathcal{P}_{\mathcal{Q}}\}.

For G=[x_{j}, x_{j}+ $\delta$]\in \mathcal{X} and Q=[$\lambda$_{i}, $\lambda$_{i}+v]\in \mathcal{Q} ,
define p(G)=x_{j}, p(Q)=$\lambda$_{i} ,

and

p(Z)=(x_{j}, $\lambda$_{i}) where Z=G\times Q\in \mathcal{Z}=\mathcal{X}\times \mathcal{Q} . These are the grid points associated

with the grid elements in the phase space and parameter space. Also define the sets of
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grid points in the regions T_{0}^{\pm}( $\delta$, v) and T^{\pm}( $\delta$, v) as follows:

\mathcal{T}_{0}^{\pm}( $\delta$, v):=\mathcal{P}_{\mathcal{Z}}( $\delta$, v)\cap T_{0}^{\pm}( $\delta$, v) , \mathcal{T}^{\pm}( $\delta$, v):=\mathcal{P}_{\mathcal{Z}}( $\delta$, v)\cap T^{\pm}( $\delta$, v)

Lemma 2.4. In  X\times $\Lambda$ and for  Z\in \mathcal{Z} , if p(Z)\in \mathcal{T}^{+}( $\delta$, v) ,
then |Z|\subset T_{0}^{+}( $\delta$, v) .

Proof: Observe that (x,  $\lambda$)\in T^{+}( $\delta$, v) is equivalent to  $\varphi$(x,  $\lambda$+v)> $\delta$ ,
which means

 f(x,  $\lambda$+v)>x+ $\delta$ . Suppose [x, x+ $\delta$]\times\{ $\lambda$+v\} is not contained in T_{0}^{+}( $\delta$, v) ,
then

there is an x'\in[x, x+ $\delta$] satisfying  $\varphi$(x',  $\lambda$+v)\leq 0 ,
which means f(x',  $\lambda$+v)\leq x'

Hence there must be an x''\in[x, x+ $\delta$] with \displaystyle \frac{\partial f}{\partial x}(x'',  $\lambda$+v)\leq 0 ,
which contradicts to the

assumption. \blacksquare

Similarly we have:

Lemma 2.5. In  X\times $\Lambda$
,

and for  Z\in \mathcal{Z} , if p(Z)\in \mathcal{T}^{-}( $\delta$, v) ,
then |Z|\subset T_{0}^{-}( $\delta$, v) .

Corollary 2.6. In X\times $\Lambda$, T^{+}( $\delta$, v)\subset T_{0}^{+}( $\delta$, v) and T^{-}( $\delta$, v)\subset T_{0}^{-}( $\delta$, v) .

Now we are ready to define the sets of parameter grid elements corresponding to

different phases of the saddle‐node bifurcation.

Definition 2.7.

(2.9) \mathcal{A}:=\{Q\in \mathcal{Q}|\forall G\in \mathcal{X}, G\not\in \mathcal{F}_{Q}(G)\},

(2.10) C:=\{Q\in \mathcal{Q}|\exists G\in \mathcal{X}\mathrm{s}.\mathrm{t}. |G\times Q|\subset T_{0}^{-}( $\delta$, v), G\not\in \mathcal{F}_{Q}(G)\},
(2.11) B:=\mathcal{Q}\backslash (\mathcal{A}\cup C) .

Let |\displaystyle \mathcal{A}|=\bigcup_{Q\in \mathcal{A}}Q, |\displaystyle \mathcal{B}|=\bigcup_{Q\in B}Q, |C|=\displaystyle \bigcup_{Q\in C}Q are the corresponding regions in the

parameter space.

Recall from Lemma 2.1 that we can assume

(H) a_{0}\leq|f_{ $\lambda$}(x,  $\lambda$)|\leq a_{1}, b_{0}\leq|f_{xx}(x,  $\lambda$)|\leq b_{1}

for any (x,  $\lambda$)\in X\times $\Lambda$.

Theorem 2.8. The regions |\mathcal{A}|, |B| and |C| are intervals. Furthermore,

|\mathcal{A}|=[$\Lambda$_{-}, $\Lambda$_{$\delta$_{l} $\nu$}^{a}], |\mathcal{B}|=[$\Lambda$_{$\delta$_{l} $\nu$}^{a}, $\Lambda$_{$\delta$_{l} $\nu$}^{c}], |C|=[$\Lambda$_{$\delta$_{l} $\nu$}^{c}, $\Lambda$_{+}],

where

$\Lambda$_{$\delta$_{l} $\nu$}^{a}=\displaystyle \max\{ $\lambda$+v\in \mathcal{P}_{\mathcal{Q}}|\forall x\in \mathcal{P}_{\mathcal{X}}, (x,  $\lambda$)\in T^{+}( $\delta$, v)\},
$\Lambda$_{$\delta$_{l} $\nu$}^{c}=\displaystyle \min\{ $\lambda$\in \mathcal{P}_{\mathcal{Q}}|\exists x\in \mathcal{P}_{\mathcal{X}}, (x,  $\lambda$)\in T^{-}( $\delta$, v)\}.
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We shall show that these sets correspond to the parameter intervals A, B, C in the

saddle‐node continuation graph. In order to prove this, we shall recall the notion of

adjacency introduced in Definition 1.1.

The next theorem shows that the structure of the Conley‐Morse graph is essentially
what we have expected.

Theorem 2.9. Let  X\times $\Lambda$ be a saddle‐node neighborhood with grids \mathcal{X}, \mathcal{Q} and

multivalued maps \mathcal{F}_{Q} as defined in (1.5), (1.6) and (1.7), respectively. For Q\in \mathcal{Q} , let

\overline{\mathrm{P}}_{Q} denote the set of adjacency classes of strongly connected path components. Then \overline{\mathrm{P}}_{Q}
is either the empty set, a singleton set {p0}, or contains exactly two elements \{p_{0}, p_{1}\}.
More precisely,

(i) If Q\in \mathcal{A} , then \overline{\mathrm{P}}_{Q}=\emptyset and \overline{\mathcal{M}}_{Q}=\emptyset.

(ii) If Q\in \mathcal{B} , then \overline{\mathrm{P}}_{Q}= {p0}, and \overline{\mathcal{M}}_{Q}(p_{0})=S_{Q} with Con()=0.

(iii) If Q\in C ,
then \overline{\mathrm{P}}_{Q}=\{p_{0}, p_{1}\} , and \overline{\mathcal{M}}_{Q}(p_{0})=\mathcal{A}_{Q}, \overline{\mathcal{M}}_{Q}(p_{1})=\mathcal{R}_{Q} ,

where \{A R\}
forms a combinatorial attractor‐repeller pair for \mathcal{F}_{Q}.

Define \overline{\mathrm{P}}(A)=\emptyset, \overline{\mathrm{P}}(B)= {p0}, \overline{\mathrm{P}}(C)=\{p_{0}, p_{1}\} . If \overline{\mathrm{P}}_{Q}=\overline{\mathrm{P}}(V) , where V=A,
B

,
or C ,

then there is a Conley‐Morse graph valid over Q of the form CMG(V) as

given by (1.2), (1.3), or (1.4). Furthermore, if \overline{\mathrm{P}}(V)\neq\emptyset , then the node  p_{*}, *=0 ,
1

corresponds to the Morse set defined by the isolating neighborhood |\mathcal{M}_{Q}^{-}(p_{*})|.
Definition 2.10. We refer to the Conley‐Morse graphs of Theorem 2.9 as ad‐

jacency reduced. An adjacency reduced continuation graph is a continuation graph in

which all the Conley‐Morse graphs are adjacency reduced.

Theorem 2.9 provides a description of possible Conley‐Morse graphs associated

with the saddle‐node bifurcations. The following Theorem implies that the adjacency
reduced continuation graph for the saddle‐node bifurcation takes the form of (1.8).

Theorems 2.8 and 2.9 guarantee that the shape of the shaded region in Figure 1 is

correct. To show that the database construction can be used to identify the location of

the bifurcation point we prove the following theorem from which it follows that

\displaystyle \lim_{$\delta$_{l} $\nu$\rightarrow 0}$\Lambda$_{$\delta$_{l} $\nu$}^{a}=0 and \displaystyle \lim_{$\delta$_{l} $\nu$\rightarrow 0}$\Lambda$_{$\delta$_{l} $\nu$}^{c}=0
under the assumption that while taking the limit the ratio of  $\delta$ and  v remains bounded.

Theorem 2.11. The boundary points $\Lambda$_{$\delta$_{l} $\nu$}^{a} and $\Lambda$_{$\delta$_{l} $\nu$}^{c} are estimated as follows:

(i)

-(\displaystyle \frac{ $\delta$}{a_{0}-K_{1}v}+\frac{v}{1-K_{2}v})\leq$\Lambda$_{$\delta$_{l} $\nu$}^{a}\leq 0
for some K_{1}, K_{2}>0.
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(ii)

$\Lambda$_{$\delta$_{l} $\nu$}^{c}\displaystyle \leq\frac{ $\delta$}{a_{0}}(1+\frac{b_{1} $\delta$}{8})
Finally, we shall give estimates of the sizes of each of the above reduced Morse sets.

Theorem 1.2 clearly follows from this and obove theorems.

Theorem 2.12. Let Q=[$\lambda$_{0}, $\lambda$_{0}+v]\in \mathcal{Q} , and choose  $\delta$>0 and v>0 suffi‐

ciently small and satisfy ing 1/L< $\delta$/v<L for some L>1.

(i) If $\lambda$_{0}+v\leq 2 $\delta$/a_{0} , especially, if Q\in \mathcal{B} , then

\ell(|S_{Q}|)\leq K_{3}\sqrt{ $\delta$}

for some K_{3}>0 ,
where \ell(I) stands for the length of an interval I.

(ii) If $\lambda$_{0}\geq 2 $\delta$/a_{0} , then, Q\in C and

\displaystyle \max\{\ell(|\mathcal{R}_{Q} \ell(|\mathcal{A}_{Q} \leq K_{4}\sqrt{ $\delta$}

for some K_{4}>0.

§3. Proof of Convergence of Adjacency Reduced Continuation Graphs

In this section, we shall give proofs of Theorems in §2. Let G=[x_{0}, x_{0}+ $\delta$]\in \mathcal{X}
and Q=[$\lambda$_{0}, $\lambda$_{0}+v]\in \mathcal{Q} be grid elements in the phase space and the parameter space,

respectively.

Proof of Theorem 2.8:

(i) Clearly, |\mathcal{A}|\subset[$\Lambda$_{-}, 0 ), since otherwise there must be a fixed point and hence

there must exist some G and Q with \mathcal{F}(G, Q)\cap G\neq\emptyset ,
which is a contradiction.

It follows from  f(x,  $\lambda$)>x for any (x,  $\lambda$)\in T_{0}^{+}( $\delta$, v) that Q=[$\lambda$_{0}, $\lambda$_{0}+v]\in \mathcal{A} is

equivalent to

minf (x_{0}, Q)>x_{0}+ $\delta$ for \forall G=[x_{0}, x_{0}+ $\delta$]\in \mathcal{X}.

Note that minf (x_{0}, Q)=f(x_{0}, $\lambda$_{0}+v) since \displaystyle \frac{\partial f}{\partial $\lambda$}<0 on  X\times $\Lambda$
,

and therefore,  Q\in \mathcal{A} is

equivalent to  $\varphi$(x_{0}, $\lambda$_{0}+v)> $\delta$ for all  x_{0}\in \mathcal{P}_{\mathcal{X}} ,
which is equivalent to (x_{0}, $\lambda$_{0})\in T^{+}( $\delta$, v)

for all x_{0}\in \mathcal{P}_{\mathcal{X}} . By the definition of the parameter value $\Lambda$_{$\delta$_{l} $\nu$}^{a} ,
we obtain the conclusion.

(ii) Clearly |C|\subset[0, $\Lambda$_{+}] ,
since T_{0}^{-}( $\delta$, v)\subset X\times[0, $\Lambda$_{+}] . The condition Q=[$\lambda$_{0}, $\lambda$_{0}+

v]\in C is equivalent to the existence of G=[x_{0}, x_{0}+ $\delta$]\in \mathcal{X} satisfying that |G\times Q|\subset
 T_{0}^{-}( $\delta$, v) and that maxf (x_{0}+ $\delta$, Q)=f(x_{0}+ $\delta,\ \lambda$_{0})<x_{0} ,

which is then equivalent to the

existence of G\in \mathcal{X} with |G\times Q|\subset T_{0}^{-}( $\delta$, v) and (x_{0}, $\lambda$_{0})\in T^{-}( $\delta$, v) .
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By Lemma 2.5, the latter condition (x_{0}, $\lambda$_{0})\in T^{-}( $\delta$, v) implies G\times\{$\lambda$_{0}\}\subset T_{0}^{-}( $\delta$, v) .

Moreover, (x_{0}, $\lambda$_{0})\in T^{-}( $\delta$, v) implies (x_{0},  $\lambda$)\in T^{-}( $\delta$, v) for all  $\lambda$>$\lambda$_{0} ,
since \displaystyle \frac{\partial f}{\partial $\lambda$}<0,

which then implies |G\times Q|\subset T_{0}^{-}( $\delta$, v) . Therefore, Q\in C is equivalent to the existence

of G\in \mathcal{X} with |G\times Q|\subset T_{0}^{-}( $\delta$, v) .

(iii) is obvious from (i) and (ii), and the definition of B. \blacksquare

Proof of Theorem 2.11:

(i) We need to study the extremal value of the projection of the boundary of

 T^{+}( $\delta$, v) to the  $\lambda$‐axis, and thus consider the equations

\left\{\begin{array}{l}
 $\varphi$(x,  $\lambda$+v)- $\delta$=0\\
$\varphi$_{x}(x,  $\lambda$)=0.
\end{array}\right.
These are the equations of (x,  $\lambda$,  $\delta$, v) which can be solved for (x,  $\lambda$) around the origin

by the implicit function theorem to obtain

(x,  $\lambda$)=(X( $\delta$, v),  $\Lambda$( $\delta$, v)) with (X(0),  $\Lambda$(0))=(0,0) .

Observe that  $\Lambda$( $\delta$, v)\leq$\Lambda$_{$\delta$_{l} $\nu$}^{a} ,
since Q=[$\lambda$_{0}, $\lambda$_{0}+v]\subset[$\Lambda$_{-},  $\Lambda$( $\delta$, v)] implies |G\times Q|\subset

 T^{+}( $\delta$, v) for any G=[x_{0}, x_{0}+ $\delta$]\in \mathcal{X} ,
which then implies (x_{0}, $\lambda$_{0})\in T^{+}( $\delta$, v) for any

x_{0}\in \mathcal{P}_{\mathcal{X}} ,
and hence Q\in \mathcal{A} . Note that the interval [$\Lambda$_{-},  $\Lambda$( $\delta$, v)] is not necessarily equal

to |\mathcal{A}|.
Now recall x= $\xi$( $\lambda$) is given in Lemma 2.1 (iii). By the the implicit function

theorem, the derivative $\xi$'( $\lambda$) can be computed as

$\xi$'( $\lambda$)=-\displaystyle \frac{$\varphi$_{x $\lambda$}( $\xi$( $\lambda$), $\lambda$)}{$\varphi$_{xx}( $\xi$( $\lambda$), $\lambda$)},
and hence $\xi$'( $\lambda$) is bounded over the parameter space  $\Lambda$ . By the definition of the function

 $\lambda$= $\Lambda$( $\delta$, v) given above,  $\lambda$= $\Lambda$( $\delta$, v) is a function which is implicitly given by solving
the equation  $\varphi$( $\xi$( $\lambda$),  $\lambda$+v)- $\delta$=0 . Therefore, again by the implicit function theorem,
we can compute

\displaystyle \frac{\partial $\Lambda$}{\partial $\delta$}( $\delta$, v)=\frac{1}{$\varphi$_{x}( $\xi$( $\lambda$), $\lambda$+v)\cdot$\xi$'( $\lambda$)+$\varphi$_{ $\lambda$}( $\xi$( $\lambda$), $\lambda$+v)}.
Using $\varphi$_{x}( $\xi$( $\lambda$),  $\lambda$+v)=$\varphi$_{x}( $\xi$( $\lambda$),  $\lambda$)+$\varphi$_{xx}( $\xi$( $\lambda$),\overline{ $\lambda$})v for some \overline{ $\lambda$} together with $\varphi$_{x}( $\xi$( $\lambda$),  $\lambda$)=
0 and $\varphi$_{xx}(x,  $\lambda$)\neq 0 for (x,  $\lambda$)\in X\times $\Lambda$ ,

we have

|\displaystyle \frac{\partial $\Lambda$}{\partial $\delta$}( $\delta$, v)|\leq\frac{1}{a_{0}-K_{1}v},
where K_{1}=\displaystyle \max_{X\times $\Lambda$}|$\varphi$_{xx}(x,  $\lambda$)|\cdot\max_{ $\Lambda$}|$\xi$'( $\lambda$)|.
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Similarly we obtain

|\displaystyle \frac{\partial $\Lambda$}{\partial v}( $\delta$, v)|\leq\frac{1}{1-K_{2}v}
for some K_{2}>0 . Therefore, we obtain

$\Lambda$_{$\delta$_{l} $\nu$}^{a}\displaystyle \geq $\Lambda$( $\delta$, v)= $\Lambda$(0)+\frac{\partial $\Lambda$}{\partial $\delta$}(*) $\delta$+\frac{\partial $\Lambda$}{\partial v}(*)v\geq-(\frac{ $\delta$}{a_{0}-K_{1}v}+\frac{v}{1-K_{2}v})
(ii) Consider the equation for the boundary of T^{-}( $\delta$, v) given by  $\varphi$(x+ $\delta$,  $\lambda$)+ $\delta$=0.

Similarly to Lemma 2.1 (iii), there exist functions x_{ $\delta$}^{\pm}( $\lambda$) which give the two solutions

of  $\varphi$(x_{ $\delta$}^{\pm}( $\lambda$)+ $\delta$,  $\lambda$)+ $\delta$=0 with x_{ $\delta$}^{+}( $\lambda$)>x_{ $\delta$}^{-}( $\lambda$) for any  $\lambda$\in|C| . Now define $\Lambda$^{2}( $\delta$) to be

the minimum of  $\lambda$ for which  x_{ $\delta$}^{+}( $\lambda$)-x_{ $\delta$}^{-}( $\lambda$)\geq $\delta$.
It holds that $\Lambda$^{2}( $\delta$)>$\Lambda$_{$\delta$_{l} $\nu$}^{c} ,

since Q=[$\lambda$_{0}, $\lambda$_{0}+v]\subset[$\Lambda$^{2}( $\delta$), $\Lambda$_{+}] implies the existence

of G=[x_{0}, x_{0}+ $\delta$]\in \mathcal{X} with (x_{0}, $\lambda$_{0})\in T^{-}( $\delta$, v) ,
hence Q\in C . Thus we need to give

estimates of x_{ $\delta$}^{+}( $\lambda$)-x_{ $\delta$}^{-}( $\lambda$) and $\Lambda$^{2}( $\delta$) .

From the definition of x_{ $\delta$}^{\pm}( $\lambda$) ,
we have

- $\delta$= $\varphi$(x_{ $\delta$}^{\pm}( $\lambda$)+ $\delta$,  $\lambda$)
= $\varphi$( $\xi$( $\lambda$),  $\lambda$)+$\varphi$_{x}( $\xi$( $\lambda$),  $\lambda$) (x_{ $\delta$}^{\pm}( $\lambda$)+ $\delta$- $\xi$( $\lambda$))

+\displaystyle \frac{1}{2}$\varphi$_{xx}(*) (x_{ $\delta$}^{\pm}( $\lambda$)+ $\delta$- $\xi$( $\lambda$))^{2}
=\{$\varphi$_{c}( $\xi$( $\lambda$),  $\lambda$)\cdot$\xi$'( $\lambda$)+$\varphi$_{ $\lambda$}(*)\cdot $\lambda$\}

+\displaystyle \frac{1}{2}$\varphi$_{xx}(*) (x_{ $\delta$}^{\pm}( $\lambda$)+ $\delta$- $\xi$( $\lambda$))^{2}
=$\varphi$_{ $\lambda$}(*) $\lambda$+\displaystyle \frac{1}{2}$\varphi$_{xx}(*) (x_{ $\delta$}^{\pm}( $\lambda$)+ $\delta$- $\xi$( $\lambda$))^{2}

It follows from above that

\displaystyle \frac{2(a_{0} $\lambda$- $\delta$)}{b_{1}}\leq(x_{ $\delta$}^{\pm}( $\lambda$)+ $\delta$- $\xi$( $\lambda$))^{2}=\frac{-$\varphi$_{ $\lambda$}(*) $\lambda$- $\delta$}{\frac{1}{2}$\varphi$_{xx}(*)}\leq\frac{2(a_{1} $\lambda$+ $\delta$)}{b_{0}},
which shows

\sqrt{\frac{2(a_{0} $\lambda$- $\delta$)}{b_{1}}}\leq x_{ $\delta$}^{+}( $\lambda$)+ $\delta$- $\xi$( $\lambda$)\leq\sqrt{\frac{2(a_{1} $\lambda$+ $\delta$)}{b_{0}}}
and

\sqrt{\frac{2(a_{0} $\lambda$- $\delta$)}{b_{1}}}\leq-\{x_{ $\delta$}^{-}( $\lambda$)+ $\delta$- $\xi$( $\lambda$)\}\leq\sqrt{\frac{2(a_{1} $\lambda$+ $\delta$)}{b_{0}}}.
Adding these inequalities termwise, we obtain

2\sqrt{\frac{2(a_{0} $\lambda$- $\delta$)}{b_{1}}}\leq x_{ $\delta$}^{+}( $\lambda$)-x_{ $\delta$}^{-}( $\lambda$)\leq 2\sqrt{\frac{2(a_{1} $\lambda$+ $\delta$)}{b_{0}}},
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and thus asufficient condition for  $\lambda$\geq$\Lambda$^{2}( $\delta$) is  2\sqrt{\frac{2(a_{0} $\lambda$- $\delta$)}{b_{1}}}\geq $\delta$ ,
which is equivalent

to  $\lambda$\displaystyle \geq\frac{ $\delta$}{a_{0}}(1+\frac{b_{1} $\delta$}{8}) . Therefore, we have shown that $\Lambda$_{$\delta$_{l} $\nu$}^{c}\displaystyle \leq$\Lambda$^{2}( $\delta$)\leq\frac{ $\delta$}{a_{0}}(1+\frac{b_{1} $\delta$}{8}) . \blacksquare

Proof of Theorem 2.9:

(i) is trivial from the definition of \mathcal{A}.

(ii) Define, for Q\in \mathcal{B}, S_{Q}=\{G\in \mathcal{X}|G\in \mathcal{F}_{Q}(G)\} . From the definition of \mathcal{B},

clearly  S_{Q}\neq\emptyset . We claim the set |S| which is defined by \displaystyle \bigcup_{G\in S_{Q}}|G| is an interval.

Suppose |S_{Q}| is not connected, there must exist a G_{0}=[x_{0}, x_{0}+ $\delta$]\in \mathcal{X} such that |G_{0}|
is contained in the hull of |S_{Q}| but G_{0}\not\in S_{Q}.

There are two possibilities: either f(G_{0}, Q)<\displaystyle \min G_{0} or f(G_{0}, Q)>\displaystyle \max G_{0} . In the

former case, for any  $\lambda$\in Q ,
it must be f(x_{0}+ $\delta$)<x_{0} ,

or equivalently,  $\varphi$(x_{0}+ $\delta$,  $\lambda$)<- $\delta$,
hence (x_{0},  $\lambda$)\in T^{-}( $\delta$, v) for all  $\lambda$\in Q ,

which means $\lambda$_{0}\geq$\Lambda$_{$\delta$_{l} $\nu$}^{c} ,
which is a contradiction

to Q\in \mathcal{B}.
In the latter case, we similarly have (x_{0},  $\lambda$-v)\in T^{+}( $\delta$, v) for all  $\lambda$\in Q . Since

T^{+}( $\delta$, v) has at most two connected components, either (x_{0}, Q-v)\subset T^{+}( $\delta$, v) for any

x>x_{0} or (x_{0}, Q-v)\subset T^{+}( $\delta$, v) for any x<x_{0} must hold. This shows that, if G_{0}\not\in S_{Q},
then either G\not\in S_{Q} for any G>G_{0} or G\not\in S_{Q} for any G<G_{0} must hold. Therefore

|S_{Q}| has to be an interval.

Clearly |S_{Q}| is an isolating neighborhood with trivial Conley index, and S_{Q} is

an adjacency class of \mathcal{M}_{Q} . Since any G\not\in S_{Q} is not recurrent, we conclude that

\overline{\mathcal{M}}_{Q}=\{S_{Q}\}.
(iii) For a Q=[$\lambda$_{0}, $\lambda$_{0}+v]\in C ,

define S_{Q} as above. We claim that S_{Q} can be

decomposed into disjoint sets \mathcal{R}_{Q} and \mathcal{A}_{Q} such that both |\mathcal{R}_{Q}| and |\mathcal{A}_{Q}| are disjoint
intervals. To show this, it follows from Q\in C that there exists a G_{*}\in \mathcal{X} for which

|G_{*}\times Q|\subset T_{0}^{-}( $\delta$, v) and G_{*}\not\in \mathcal{F}_{Q}(G_{*}) . Define

\mathcal{R}_{Q}=\{G\in S_{Q}|G>G_{*}\} \mathcal{A}_{Q}=\{G\in S_{Q}|G<G_{*}\},

then clearly S_{Q}=\mathcal{R}_{Q}\cup \mathcal{A}_{Q}.
Suppose |\mathcal{R}_{Q}| is not an interval, then there must exist a G_{0}=[x_{0}, x_{0}+ $\delta$]\in \mathcal{X}

such that |G_{0}| is contained in the hull of |\mathcal{R}_{Q}| but  f(G_{0}\times Q)\cap \mathrm{i}\mathrm{n}\mathrm{t}G_{0}=\emptyset . There

are two possibilities in this case: either  f(G_{0}\displaystyle \times Q)>\max G_{0} or f(G_{0}\displaystyle \times Q)<\min G_{0},
which are equivalent, respectively, to either  f(x_{0}, Q)>x_{0}+ $\delta$ or  f(x_{0}, Q)<x_{0} . In the

former case, we have (x_{0}, $\lambda$_{0})\in T^{+}( $\delta$, v) and x_{0}>x_{ $\delta$}^{+}($\lambda$_{0}) ,
and hence, for any G>G_{0},

G\times Q\subset T^{+}( $\delta$, v) ,
which is a contradiction, since it would mean there is no G\in \mathcal{R}_{Q}

with G>G_{0} . In the latter case, we have (x_{0}, $\lambda$_{0})\in T^{-}( $\delta$, v) ,
hence G\times Q\subset T^{-}( $\delta$, v)

for any G with G_{*}<G<G_{0} ,
which is again a contradiction. Therefore |\mathcal{R}_{Q}| must be

an interval. Similarly for |\mathcal{A}_{Q}| . It is also clear from the definition that |\mathcal{R}_{Q}|\cap|\mathcal{A}_{Q}|=\emptyset,
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and that the sets \mathcal{R}_{Q} and \mathcal{A}_{Q} are adjacency reduced Morse sets which form an attractor‐

repeller pair. Thus we have shown that \overline{\mathcal{M}}_{Q}=\{\mathcal{R}_{Q}, \mathcal{A}_{Q}\} . This completes the proof.
\blacksquare

Proof of Theorem 2.12:

(i) Observe first that, if  Q=[$\lambda$_{0}, $\lambda$_{0}+v]\in \mathcal{B} , then, from Theorem 2.11 (ii), we

have $\lambda$_{0}+v\displaystyle \leq\frac{1}{a_{0}}(1+\frac{b_{1} $\delta$}{8})\leq\frac{2 $\delta$}{a_{0}}.
From the proof of Theorem 2.9 (ii), we have shown, for Q=[$\lambda$_{0}, $\lambda$_{0}+v]\in \mathcal{Q} ,

that

|S_{Q}|\subset[\tilde{x}_{$\delta$_{l} $\nu$}^{-}($\lambda$_{0}), \tilde{x}_{$\delta$_{l} $\nu$}^{+}($\lambda$_{0})+ $\delta$]
where x=\tilde{x}_{$\delta$_{l} $\nu$}^{\pm}( $\lambda$) are defined as two solutions of the equation for the boundary of

T^{+}( $\delta$, v) , namely  $\varphi$(x,  $\lambda$+v)= $\delta$.
Similarly to the proof of Theorem 2.11 (ii), we have

\tilde{x}_{$\delta$_{l} $\nu$}^{+}($\lambda$_{0})-\tilde{x}_{$\delta$_{l} $\nu$}^{-}($\lambda$_{0})\leq 2\sqrt{\frac{2\{a_{1}($\lambda$_{0}+v)+ $\delta$\}}{b_{0}}},
and thus

\ell(|S_{Q}|)\leq(\tilde{x}_{$\delta$_{l} $\nu$}^{+}($\lambda$_{0})+ $\delta$)-\tilde{x}_{$\delta$_{l} $\nu$}^{-}($\lambda$_{0})\leq 2\sqrt{\frac{2\{a_{1}($\lambda$_{0}+v)+ $\delta$\}}{b_{0}}}+ $\delta$.
Since we assume $\lambda$_{0}+v\leq 2 $\delta$/a_{0}=O(\sqrt{ $\delta$}) ,

we therefore obtain the conclusion for

sufficiently small  $\delta$>0.

(ii) In the proof of Theorem 2.11 (ii), we have shown

x_{ $\delta$}^{+}( $\lambda$)- $\xi$( $\lambda$)\geq\sqrt{\frac{2(a_{0} $\lambda$- $\delta$)}{b_{1}}}- $\delta$.
Note that, from the assumption $\lambda$_{0}\geq 2 $\delta$/a_{0} ,

this implies x_{ $\delta$}^{+}( $\lambda$)- $\xi$( $\lambda$)\geq\sqrt{2 $\delta$}/b_{1} for

sufficiently small  $\delta$>0 . Note also that the assumption $\lambda$_{0}\geq 2 $\delta$/a_{0} implies Q\in C.

Recall, from the proof of Theorem 2.9 (iii), that

|\mathcal{R}_{Q}|\subset[x^{+} $\delta$($\lambda$_{0}), \tilde{x}_{$\delta$_{l} $\nu$}^{+}($\lambda$_{0})+ $\delta$], |\mathcal{A}_{Q}|\subset[\tilde{x}_{$\delta$_{l} $\nu$}^{-}($\lambda$_{0}), x_{ $\delta$}^{-}($\lambda$_{0})+ $\delta$].

We shall obtain the upper estimate of U=\tilde{x}_{$\delta$_{l} $\nu$}^{+}( $\lambda$)-x^{+} $\delta$( $\lambda$) for  $\lambda$\geq 2 $\delta$/a_{0}.
By definition,  $\varphi$(\tilde{x}_{$\delta$_{l} $\nu$}^{+}( $\lambda$),  $\lambda$+v)= $\delta$ ,

and hence

 $\delta$= $\varphi$(\tilde{x}_{$\delta$_{l} $\nu$}^{+}( $\lambda$),  $\lambda$+v)

= $\varphi$(x_{ $\delta$}^{+}( $\lambda$),  $\lambda$+v)+$\varphi$_{x}(x_{ $\delta$}^{+}( $\lambda$),  $\lambda$+v)\displaystyle \cdot U+\frac{1}{2}$\varphi$_{xx}(*)\cdot U^{2}
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Let F=\displaystyle \frac{1}{2}$\varphi$_{xx}(*) , E=$\varphi$_{x}(x_{ $\delta$}^{+}( $\lambda$),  $\lambda$+v) ,
and  D= $\varphi$(x_{ $\delta$}^{+}( $\lambda$),  $\lambda$+v)- $\delta$ in the above,

then we obtain a quadratic equation  FU^{2}+EU+D=0 for U ,
or equivalently,

U=\displaystyle \frac{-E+\sqrt{E^{2}-4FD}}{2F}=\frac{-4FD}{2F(E+\sqrt{E^{2}-4FD}}=-\frac{2D}{E+\sqrt{E^{2}-4FD}}.
We give estimates of D, E, F . Firstly, by assumption, 0<b_{0}/2\leq F\leq b_{1}/2 over X\times $\Lambda$.

Secondly,

E=$\varphi$_{x}(x_{ $\delta$}^{+}( $\lambda$),  $\lambda$+v)=$\varphi$_{x}(x_{ $\delta$}^{+}( $\lambda$),  $\lambda$)+$\varphi$_{x $\lambda$}(*)v
=$\varphi$_{x}( $\xi$( $\lambda$),  $\lambda$)+$\varphi$_{xx}(*)\cdot\{x_{ $\delta$}^{+}( $\lambda$)- $\xi$( $\lambda$)\}+$\varphi$_{x $\lambda$}(*)v

\geq$\varphi$_{xx}(*)\sqrt{\frac{2 $\delta$}{b_{1}}}+$\varphi$_{x $\lambda$}(*)v
Since we choose  $\delta$, v>0 sufficiently small and satisfying 1/L< $\delta$/v<L for some L>1,
it is clear that E\geq K_{5}\sqrt{ $\delta$} for some K_{5}>0 . Finally,

 D= $\varphi$(x_{ $\delta$}^{+}( $\lambda$),  $\lambda$+v)- $\delta$= $\varphi$(x_{ $\delta$}^{+}( $\lambda$),  $\lambda$)+$\varphi$_{ $\lambda$}(*)v- $\delta$
= $\varphi$(x_{ $\delta$}^{+}( $\lambda$)+ $\delta$,  $\lambda$)+$\varphi$_{x}(*) $\delta$+$\varphi$_{ $\lambda$}(*)v- $\delta$
=- $\delta$+$\varphi$_{x}(*) $\delta$+$\varphi$_{ $\lambda$}(*)v- $\delta$=-2 $\delta$+$\varphi$_{x}(*) $\delta$+$\varphi$_{ $\lambda$}(*)v,

and hence  D\geq-K_{6} $\delta$ for some  K_{6}>0 . Putting all together, we thus obtain  U\leq

-D/E=O(\sqrt{ $\delta$}) for sufficiently small  $\delta$>0 . Therefore we obtain \ell(|\mathcal{R}_{Q}|)\leq U+ $\delta$<
K_{4}\sqrt{ $\delta$} for some K_{4}>0.

An estimate for \ell(|\mathcal{A}_{Q}|) can be obtained similarly. Thus we have completed the

proof. \blacksquare

§4. Comments on Saddle‐Node Bifurcations

in Higher Dimensional Systems

On a qualitative level the results in the previous sections remain valid for higher
dimensional maps. As is indicated below this follows from the fact that the essential

dynamics associated with a non‐degenerate saddle‐node bifurcation of maps can be

reduced to one space dimension with one parameter([7]). However, to obtain precise

estimates, as in the previous sections, requires extra information. For example, one

would need to obtain bounds on the effect of the change of coordinates on the grid
elements that arise from the nonlinear change of variables used to bring the original

system into a �normal form.� Since such a calculation is fairly technical, but the

number of additional grid elements is only changed by a linear factor as compared
to the one‐dimensional case, we forego the attempt to provide precise estimates in the

general case.
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Consider a one‐parameter family of smooth maps F(u,  $\mu$) with u\in \mathbb{R}^{n},  $\mu$\in \mathbb{R} that

undergoes a saddle‐node bifurcation at (u_{0}, $\mu$_{0}) , namely u_{0} is a fixed point of F $\mu$_{0} )
whose first derivative D_{u}F(u_{0}, $\mu$_{0}) has the unity as its simple eigenvalue with modulus

one, and all the other eigenvalues are of modulus different from one. Without loss of

generality, one may assume u_{0}=0, $\mu$_{0}=0 ,
and that D_{u}F(0,0) takes of the form

D_{u}F(0,0)=\left(\begin{array}{l}
O1\\
OA_{0}
\end{array}\right),
where A_{0} is an (n-1) ‐dimensional hyperbolic linear map. From the center manifold

theory and the partial linearization theorem (Takens [8]), there is a smooth change of

coordinates which brings the map into a normal form

(4.1) u=\left(\begin{array}{l}
x\\
y
\end{array}\right)\mapsto\left(\begin{array}{l}
 $\mu$)f(x\\
A( $\mu$)y
\end{array}\right)
where the smooth function f(x,  $\mu$) satisfies

(x\in \mathbb{R}, y\in \mathbb{R}^{n-1}) ,

(4.2) f(0,0)=0, f_{x}(0,0)=1,

while A( $\mu$) is a hyperbolic linear map with A(0)=A_{0} that depends smoothly on  $\mu$.

Moreover the non‐degeneracy conditions of the saddle‐node bifurcation can be formu‐

lated as

(4.3) f_{ $\mu$}(0,0)=a\neq 0, f_{xx}(0,0)=b\neq 0

In the case of multi‐dimensional parameter  $\lambda$\in \mathbb{R}^{k} ,
there is a smooth co‐dimension

one hypersurface as the bifurcation set for the saddle‐node bifurcation and, for any curve

transverse to the bifurcation hypersurface in \mathbb{R}^{k}
, exactly the same bifurcation takes place

for the maps. Locally the bifurcation hypersurface is expressed as a graph of a function

$\mu$_{1}= $\Sigma$(\tilde{ $\mu$}) where  $\lambda$ is decomposed into  $\mu$_{1}\in \mathbb{R} and \tilde{ $\mu$}\in \mathbb{R}^{k-1} , say  $\lambda$=($\mu$_{1},\tilde{ $\mu$}) ,
and

thus, for a fixed \tilde{ $\mu$}, $\mu$_{1} can be considered as the bifurcation parameter as discussed in the

above. We therefore obtain essentially the same conclusion as in Theorems 1.2, as well

as the estimates given in Theorems 2.8, 2.9, 2.11, 2.12, even for the multi‐parameter

family.

References

[1] Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. OKA, and P. Pilarczyk, A

database schema for the analysis of global dynamics of multiparameter systems, SIAM

Journal of Applied Dynamical Systems 8 (2009), 757789.



GRAPH‐based topological approximation 0F sADDLE‐node bifurcation 1N maps 241

[2] C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference

Series in Mathematics Vol. 38, American Mathematical Society, Providence, R.I., 1978.

[3] J. Franks and D. Richeson, Shift equivalence and the Conley index, Transaction of

American Mathematical Society 352 (2000), 33053322.

[4] J. Hale and H. Kocak, Dynamics and Bifurcations, Springer‐Verlag, New York, 1991.

[5] T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational Homology, Springer‐
Verlag, New York, 2004.

[6] K. Mischaikow and M. Mrozek, Conley index, in Handbook of Dynamical Systems,
Vol. 2, pp. 393460. North‐Holland, Amsterdam, 2002.

[7] C. Robinson, Dynamical Systems, Second Edition, CRC Press, Boca Raton, 1999.

[8] F. Takens, Partially hyperbolic fixed points, Topology 10 (1971), 133147.


