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Ramication correspondence of finite flat group

schemes and canonical subgroups —a survey

By

Shin Hattori *

Abstract

Let p>2 be a rational prime, k be a perfect field of characteristic p and K be a finite

totally ramified extension of the fraction field of the Witt ring of k . Let \mathcal{G} and \mathcal{H} be finite

flat (commutative) group schemes killed by p over \mathcal{O}_{K} and k[[u]] , respectively. In this survey

article, we explain the coincidence of ramification subgroups of \mathcal{G} and \mathcal{H} in the sense of Abbes‐

Mokrane when they are associated to the same Kisin module. We also give a survey of its

application to an existence theorem of canonical subgroups of truncated Barsotti‐Tate groups

of higher dimension.

§1. Introduction: canonical subgroups

This article is a survey of the author�s result on a correspondence of ramification

subgroups of finite flat group schemes over complete discrete valuation rings of mixed

and equal characteristics ([19]) and its application to an existence theorem of canonical

subgroups of truncated Barsotti‐Tate groups ([20]).
Let p be a rational prime and N\geq 5 be an integer which is prime to p . Serre

([29]) defined p‐adic elliptic modular forms of level N as p‐adic limits of q‐expansions
of usual elliptic modular forms of level N

,
and Katz ([22]) introduced their modular

description as a function on the ordinary locus of the modular curve X(N) over \mathbb{Q}_{p}.
Namely, a p‐adic modular form f can be identified with a rule functorially associating
to any triplet (E,  $\omega$,  $\iota$) over a p‐adically complete ring B an element f(E,  $\omega$,  $\iota$) of B,
where the triplet consists of an elliptic curve E over B such that \overline{E}=E\times \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(B/pB)

Received March 29, 2011. Revised July 4, 2011.

2000 Mathematics Subject Classication(s): 11\mathrm{S}23

Key Words: ramication, finite flat group schemes, Breuil‐Kisin classication

Supported by Grant‐in‐Aid for Young Scientists B‐21740023.
*

Kyushu University, 744 Motooka, Nishi‐ku, Fukuoka 819‐0395, Japan.
\mathrm{e}‐mail: shin‐h@math.kyushu‐u. ac. jp

© 2012 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



4 Shin Hattori

is ordinary, a nowhere vanishing differential form  $\omega$ on  E and a level $\Gamma$_{1}(\mathrm{N}) ‐structure

 $\iota$:$\mu$_{N}\rightarrow E.
The space of p‐adic modular forms admits actions of Hecke operators T_{l}(l-N)

and U_{l}(l|N) for l\neq p as usual, and the U operator which affects the q‐expansions as

f(q)=\displaystyle \sum a_{n}q^{n}\mapsto Uf(q)=\sum a_{pn}q^{n}
The definition of the U operator is as follows. Let f be a p‐adic elliptic modular form

and (E,  $\omega$,  $\iota$) be a triplet as above. Since \overline{E} is ordinary, we have a unique subgroup
scheme H of E which lifts the Frobenius kernel \mathrm{K}\mathrm{e}\mathrm{r}(F_{\overline{E}}) by Hensel�s lemma. Consider

the projection  $\pi$ :  E\rightarrow E/H and its dual map $\pi$^{\vee} . Then using the Frobenius operator

( $\varphi$ f)(E,  $\omega$,  $\iota$)=f(E/H, ($\pi$^{\vee})^{*} $\omega$,  $\pi$( $\iota$)) ,

the U operator is defined to be U=p^{-1}\mathrm{t}\mathrm{r}_{ $\varphi$} . However, the eigenspaces of the U operator

on the whole space of p‐adic elliptic modular forms are all isomorphic to each other and

infinite dimensional ([17, Section II.3]).
To obtain a reasonable spectral theory of the U operator, we need to restrict U

to the subspace consisting of the p‐adic modular forms which are also defined on some

peripheral area outside the ordinary locus. The resulting class of p‐adic modular forms

is called overconvergent. Katz ([22]) showed that the U operator acts complete continu‐

ously on the space of overconvergent modular forms and thus has meaningful eigenspaces
via the theory of the Fredholm determinant.

The key point for studying the action of the U operator on the subspace of overcon‐

vergent modular forms is an existence theorem of canonical subgroups. When E does

not have ordinary reduction, we do not have any Frobenius lift in general. Nevertheless,
we do have a canonical Frobenius lift C when E has supersingular reduction but lies

sufficiently near to the ordinary locus in X_{1}(N) . This subgroup scheme C is called the

canonical subgroup of E
,
and we can analyze the Frobenius operator and the U operator

by controlling C ,
instead of H in the ordinary case.

This whole story suits better for the rigid‐analytic setting (see for example [9]).
We can realize the locus of elliptic curves �sufficient near to ordinary reduction� as an

admissible open of the associated rigid‐analytic space X_{1}(N)^{\mathrm{r}\mathrm{i}\mathrm{g}} and the overconvergent
modular forms can be identified with the sections of an invertible sheaf over this ad‐

missible open. Moreover, we can patch the canonical subgroup into a family. Namely,
there exists an admissible open subgroup of the p‐torsion of the universal elliptic curve

over this locus which gives the canonical subgroup on each fiber.

Katz attributed the existence theorem of canonical subgroups to Lubin ([22, The‐

orem 3.1]), and the proof is accomplished by a calculation of formal power series of

one variable for the formal completion of E . In fact, when B is a complete discrete
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valuation ring over \mathbb{Z}_{p} ,
an elliptic curve E over B has the canonical subgroup if and

only if the Newton polygon of the multiplication‐by‐p formula [p](X) of the formal com‐

pletion of E has a vertex at x=p . Thus the proof of Katz‐Lubin heavily relies on the

one‐dimensionality of elliptic curves, and a similar consideration for higher dimensional

abelian schemes was too hard to carry out, at that time.

This had been one of the obstacles to establish the theory of overconvergent Siegel
modular forms, until Abbes‐Mokrane ([1]) achieved a breakthrough. Let K be a com‐

plete discrete valuation field of residue characteristic p . They defined, for a finite flat

generically etale group scheme \mathcal{G} over \mathcal{O}_{K} ,
a filtration \{\mathcal{G}^{j}\}_{j\in \mathbb{Q}>0} by finite flat closed

subgroup schemes of \mathcal{G} using a ramification theory of Abbes‐Saito ([2], [3]), which is

called the upper ramification filtration of \mathcal{G} . The canonical subgroup of Katz‐Lubin of

an elliptic curve E over \mathcal{O}_{K} appears in the upper ramification filtration of the p‐torsion

subgroup scheme E[p] . Then they proved that, for an abelian scheme A of arbitrary
relative dimension over \mathcal{O}_{K} which is �sufficiently close to ordinary reduction�, a sub‐

group scheme which appears in the filtration of A[p] satisfies similar properties to the

canonical subgroup of Katz‐Lubin.

Since then several improvements of the result have been obtained, such as [4], [10],
[15], [16], [25], [28], [31] and most recently [12] and [32]. Let us summarize some of main

points of these improvements. First, the canonical subgroup theorem is generalized for

truncated Barsotti‐Tate groups ([21]) over \mathcal{O}_{K} instead of abelian schemes. In particular,
a higher analogue of the canonical subgroup theorem, namely the existence of a similar

canonical subgroup in A[p] instead of A[p] ,
is also known. Moreover, this improvement

means that we can construct the canonical subgroup for an abelian scheme A without

deep geometric techniques such as p‐adic vanishing cycles but just from the finite flat

group scheme A[p^{n}] . Second, the original condition on �sufficient closeness to ordinarity�
in Abbes‐Mokrane�s work is much relaxed.

One of the two main theorems of this survey article is also an improvement of the

canonical subgroup theorem along these two lines. To state the result, we fix some

notations. Let K/\mathbb{Q}_{p} be an extension of complete discrete valuation fields. For a finite

flat group scheme \mathcal{G} over \mathcal{O}_{K} and its module of invariant differentials $\omega$_{\mathcal{G}} over \mathcal{O}_{K},
write $\omega$_{\mathcal{G}}\simeq\oplus_{i}\mathcal{O}_{K}/(a) with some a_{i}\in \mathcal{O}_{K} and put \displaystyle \deg(\mathcal{G})=\sum_{i}v_{p}(a_{i}) ,

where v_{p} is the

normalized p‐adic valuation. Put \tilde{\mathcal{O}}_{K}=\mathcal{O}_{K}/p\mathcal{O}_{K} . For a truncated Barsotti‐Tate group

\mathcal{G} of level n
, height h and dimension d<h over \mathcal{O}_{K} ,

let us consider its Cartier dual \mathcal{G}^{\vee}
and the p‐torsion subgroup scheme \mathcal{G}^{\vee}[p] . Then the Lie algebra Lie (\mathcal{G}^{\vee}[p]\times Spec ( \tilde{\mathcal{O}}_{K}))
over \tilde{\mathcal{O}}_{K} is a free \tilde{\mathcal{O}}_{K} ‐module of rank h-d . We define the Hasse invariant \mathrm{H}\mathrm{a}() of \mathcal{G} to

be the truncated p‐adic valuation \mathrm{V}(\det(V_{\mathcal{G}^{\vee}[p]}))\in[0 ,
1 ] of the determinant of the action

of the Verschiebung V_{\mathcal{G}^{\vee}[p]} on this \tilde{\mathcal{O}}_{K} ‐module. This invariant measures the distance of

\mathcal{G} from ordinary reduction. In fact, \mathcal{G} is an extension of a finite etale group scheme by
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a finite flat group scheme of multiplicative type if and only if \mathrm{H}\mathrm{a}(\mathcal{G})=0 . Finally, we

put \mathcal{G}^{j+} to be the scheme‐theoretic closure in \mathcal{G} of the subgroup \displaystyle \bigcup_{j'>j}\mathcal{G}^{j'}(\mathcal{O}_{K^{-}}) . Then

our canonical subgroup theorem is as follows.

Theorem 1.1 ([20], Theorem 1.1). Let p>2 be a rational prime, K/\mathbb{Q}_{p} be an

extension of complete discrete valuation fields and e be the absolute ramication index of
K. Put m_{K}^{\geq i}=\{x\in K|ev_{p}(x)\geq i\} . Let \mathcal{G} be a truncated Barsotti‐Ta te group of level

n
, height h and dimension d over \mathcal{O}_{K} with 0<d<h and Hasse invariant w=\mathrm{H}\mathrm{a}(\mathcal{G}) .

If w<1/(2p^{n-1}) ,
then the upper ramication subgroup scheme C_{n}=\mathcal{G}^{j+} for

pew (p^{n}-1)/(p-1)^{2}\leq j<pe(1-w)/(p-1)

satises C_{n}(\mathcal{O}_{K^{-}})\simeq(\mathbb{Z}/p^{n}\mathbb{Z})^{d} . Moreover, the group scheme C_{n} has the fo llowing prop‐

erties:

(a) \deg(\mathcal{G}/C_{n})=w(p^{n}-1)/(p-1) .

(b) C_{n}\times \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{O}_{K}/m_{K}^{\geq e(1-p^{n-1}w)}) coincides with the kernel of the n‐th iterated Frobenius

homomorphism F^{n} of \mathcal{G}\times \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{O}_{K}/m_{K}^{\geq e(1-p^{n-1}w)}) .

(c) The scheme‐theoretic closure ofC_{n}(\mathcal{O}_{K^{-}})[p] in C_{n} coincides with the subgroup scheme

C_{i} of \mathcal{G}[p^{i}] for 1\leq i\leq n-1.

Since it is known that the upper ramification filtration can be patched into a family,
we have the following corollary.

Corollary 1.2 ([20], Corollary 1.2). Let K/\mathbb{Q}_{p} be an extension of complete dis‐

crete valuation fields and j be a positive rational number. Let X be an admissible formal
scheme over Spf() which is quasi‐compact and \mathfrak{G} be a truncated Barsotti‐Tate group

of level n over X of constant height h and dimension d with 0<d<h . We let G and X

denote the Raynaud generic fibers of the formal schemes X and \mathfrak{G} , respectively. For a

finite extension L/K and x\in X(L) ,
we put \mathfrak{G}_{x}=\mathfrak{G}\times x_{x} Spf where we let x also

denote the map \mathrm{S}\mathrm{p}\mathrm{f}(\mathcal{O}_{L})\rightarrow \mathrm{X} induced fr om x by taking the scheme‐theoretic closure

and the normalization. Let G^{j+} be the admissible open subgroup of G over X such that

for any x\in X(L) as above, the fiber G_{x}^{j+} coincides with the upper ramication subgroup

\mathfrak{G}_{x}^{je(L/K)+}(K^{-}) . For a non‐negative rational number r
,

let X(r) be the admissible open

of the rigid‐analytic space X dened by

X(r)(\overline{K})= { x\in X(\overline{K})| Ha(G) <r}.

Suppose p>2 . Then the finite etale rigid‐analytic group G^{j+}|_{X(r)} over X(r) is etale

locally isomorphic to the constant group (\mathbb{Z}/p^{n}\mathbb{Z})^{d} forr=1/(2p) and j=(2p^{n-1}-
1)/(2p^{n-2}(p-1)) .
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In particular, using this corollary, we can generalize results of [1] to the case of

\mathrm{H}\mathrm{a}(A)<1/2.
The idea of the proof of Theorem 1.1 is as follows. By an elementary argument

as in [12] and [32], it suffices to treat the case of level one. Moreover, by a base

change, we may assume that the residue field k of K is perfect. Then, the key point
is that we can reduce ourselves to showing a similar statement to Theorem 1.1 for

the lower ramification filtration of a finite flat generically etale group scheme over a

complete discrete valuation ring of equal characteristic with residue field k . This equal
characteristic counterpart can be shown by an easy calculation in a spirit of the Elkik

approximation ([11, Section I]). The reduction to the equal characteristic case is a

consequence of a ramification correspondence theorem between finite flat group schemes

over complete discrete valuation rings of mixed and equal characteristics, which is the

other main theorem of this survey article (Theorem 3.2).

§2. Breuil‐Kisin classication

In this section, we recall classification theories of finite flat generically etale (com‐
mutative) group schemes over a complete discrete valuation ring with perfect residue

field k of characteristic p . The case of equal characteristic is classical: Let p be a ratio‐

nal prime and T be a scheme with p\mathcal{O}_{T}=0 . We let  $\phi$ denote the absolute Frobenius

morphism of  T . We define a  $\phi$‐module over  T to be a pair (; $\phi$_{\mathcal{M}}) of an \mathcal{O}_{T} ‐module

\mathcal{M} and a  $\phi$‐semilinear homomorphism  $\phi$_{\mathcal{M}} : \mathcal{M}\rightarrow \mathcal{M}. A  $\phi$‐module (\mathcal{M}, $\phi$_{\mathcal{M}}) is said to

be finite locally free if \mathcal{M} is a locally free \mathcal{O}_{T} ‐module of finite rank. Then we have the

following classification theorem for finite locally free group schemes over T.

Theorem 2.1 ([14], Théorème 7.4). Let T be a scheme with p\mathcal{O}_{T}=0 . For a

finite locally free group scheme \mathcal{H} over T
,

we regard the Lie algebra of the Cartier

dual Lie (\mathcal{H}^{\vee}) as a  $\phi$ ‐module over  T via the map Lie (\mathrm{V}_{\mathcal{H}}\mathrm{H}\vee) induced by the ve rschiebung

 V_{\mathcal{H}}\vee . Then we have an anti‐equivalence \mathcal{H} fr om the category of finite locally fr ee

 $\phi$ ‐modules over  T to the category of finite locally free group schemes over T killed by
their ve rschiebung. Its quasi‐inverse is given by the functor \mathcal{H}\mapsto \mathrm{L}\mathrm{i}\mathrm{e}(\mathcal{H}^{\vee}) , and these

anti‐equivalences are compatible with any base change.

Let us specialize to the case of T=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k[[u]]) . Put \mathfrak{S}_{1}=k[[u]] and we also let

 $\phi$ denote the absolute Frobenius endomorphism of this ring. Let (\mathfrak{M}, $\phi$_{\mathfrak{M}}) be a finite

(locally) free  $\phi$‐module over  k[[u]] . Namely, this is a pair of a free \mathfrak{S}_{1} ‐module of finite

rank with a  $\phi$‐semilinear map  $\phi$_{\mathfrak{M}} : \mathfrak{M}\rightarrow \mathfrak{M} . Put $\phi$^{*}\mathfrak{M}=\mathfrak{S}_{1}\otimes_{ $\phi$,\mathfrak{S}_{1}} M. We say (\mathfrak{M}, $\phi$_{\mathfrak{M}})
is a Kisin module of u‐height \leq r if the cokernel of the map 1\otimes$\phi$_{\mathfrak{M}} : $\phi$^{*}\mathfrak{M}\rightarrow \mathfrak{M} is killed

by u^{r}
, though it was introduced by Breuil ([5]). Then by Theorem 2.1 we also have

an anti‐equivalence \mathcal{H} from the category of Kisin modules of u‐height \leq r to the
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category of finite flat group schemes \mathcal{H} over k[[u]] killed by V_{\mathcal{H}} such that the  $\phi$‐module

Lie (\mathcal{H}^{\vee}) is of u‐height \leq r . For a Kisin module \mathfrak{M} of u‐height \leq r ,
we can explicitly

write defining equations of the associated group scheme \mathcal{H}(\mathfrak{M}) . Indeed, choose a basis

e_{1} ,
. .

:; e_{d} of the \mathfrak{S}_{1} ‐module \mathfrak{M} and define a matrix A=(a_{i,j}) by

$\phi$_{\mathfrak{M}} (el, . . .

, e_{d} ) =(e_{1}, \ldots, e_{d})A.

Then the group scheme \mathcal{H}(\mathrm{M}) is naturally isomorphic to the additive group scheme

defined by the equations

X_{i}^{p}-\displaystyle \sum_{j=1}^{d}a_{j,i}X_{j} (i=1, \ldots, d) .

Next we suppose that K is of mixed characteristic (0,p) with p>2 and perfect
residue field k . In this case, the classification theorem for finite flat group schemes is due

to Breuil ([5], [7], [8]) and Kisin ([23]). For simplicity, we concentrate on the classification

of finite flat group schemes killed by p . Let e be the absolute ramification index of K.

Let \overline{K} be an algebraic closure of K, K^{\hat{-}} be its completion and put G_{K}=\mathrm{G}\mathrm{a}1(\overline{K}/K) .

We let \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$} denote the category of Kisin modules of u‐height \leq e . Then we have

the following theorem.

Theorem 2.2 ([8], Theorem 3.3.2). Let p>2 and K as above. Then there

exists an anti‐equivalence \mathcal{G} fr om the category \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$} to the category of finite flat

group schemes over \mathcal{O}_{K} killed by p.

Remark. Breuil ([7]) proved a similar classification in terms of slightly different

linear algebraic data, which are now called Breuil modules, and he showed Theorem 2.2

in [8] by constructing an equivalence of categories between those of Breuil and Kisin

modules. Kisin ([23]) gave a much simpler proof independent of Breuil�s earlier clas‐

sification: he first proved directly a classification of Barsotti‐Tate groups over \mathcal{O}_{K} via

Breuil modules by an elementary argument using the deformation theory of Messing

([27]) and then derived the classification of finite flat group schemes by taking a reso‐

lution by Barsotti‐Tate groups, the idea which he attributed to Beilinson. These two

construction of the anti‐equivalence \mathcal{G} are naturally isomorphic to each other.

From a Kisin module \mathfrak{M}\in \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$} ,
we can decode the action of G_{K} on the finite

module \mathcal{G}(\mathfrak{M})(\mathcal{O}_{K^{-}}) associated to the finite flat group scheme \mathcal{G}(\mathrm{M}) corresponding to \mathfrak{M}

as follows. Let us fix a uniformizer  $\pi$ of  K and a system of its p‐power roots \{$\pi$_{n}\}_{n\in \mathbb{Z}_{\geq 0}}
in \overline{K} such that  $\pi$_{0}= $\pi$ and  $\pi$_{n}=$\pi$_{n+1}^{p} . Put K_{n}=K() and K_{\infty}=\displaystyle \bigcup_{n\in \mathbb{Z}_{\geq 0}}K_{n} . We

define a ring R to be

R=\displaystyle \lim_{n}(\mathcal{O}_{K^{-}}/p\mathcal{O}_{K^{-}}\leftarrow\leftarrow \mathcal{O}_{K^{-}}/p\mathcal{O}_{K^{-}}\leftarrow \mathcal{O}_{K^{-}}/p\mathcal{O}_{K^{-}}\leftarrow\cdots) ,
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where the arrows are the p‐th power map, and also an element \underline{ $\pi$} of R to be \underline{ $\pi$}=

( $\pi$, $\pi$_{1}, $\pi$_{2}, . . The ring R is a complete valuation ring whose valuation v_{R} is given
as follows: for x=(x_{0}, x_{1}, \ldots)\in R ,

choose a lift \hat{x}_{n} of x_{n} in \mathcal{O}_{K^{-}} and put x^{(0)}=

\displaystyle \lim_{n\rightarrow\infty}\hat{x}_{n}^{p^{n}}\in \mathcal{O}_{K^{-\wedge}} . Then the valuation of the element x is defined as v_{R}(x)=v_{K}(x^{(0)}) .

The ring R admits a natural action of the Galois group G_{K} and an \mathfrak{S}_{1} ‐algebra
structure defined by u\mapsto\underline{ $\pi$} which is compatible with the action of G_{K_{\infty}}=\mathrm{G}\mathrm{a}1(\overline{K}/K_{\infty}) .

Moreover, the ring R is considered as a  $\phi$‐module over \mathfrak{S}_{1} via the absolute Frobenius

endomorphism  $\phi$ . For a Kisin module \mathfrak{M}\in \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$} ,
we put

T_{\mathfrak{S}}^{*}(\mathfrak{M})=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathfrak{S}_{1}, $\phi$}(\mathfrak{M}, R) ,

where the module on the right‐hand side consists of the \mathfrak{S}_{1} ‐linear homomorphisms

compatible with  $\phi$' \mathrm{s} . The Galois group G_{K_{\infty}} acts naturally on the module T_{\mathfrak{S}}^{*}(\mathfrak{M}) .

Then there is a natural isomorphism of G_{K_{\infty}} ‐modules $\epsilon$_{\mathfrak{M}} : \mathcal{G}(\mathfrak{M})\rightarrow T_{\mathfrak{S}}^{*}(\mathfrak{M})([8 ,
loc.

cit

The field Frac (R) can be identified with the completion of an algebraic closure of

the subfield \mathcal{X}=k((u)) . This identification induces the �field‐of‐norms� isomorphism
of Galois groups G_{K_{\infty}}\simeq G_{\mathcal{X}} which is compatible with the upper ramification subgroups
of both sides up to a shift by the Herbrand function of K_{\infty}/K ([6, Subsection 4.2], [33]).
On the other hand, we also have a natural isomorphism of G_{\mathcal{X}} ‐modules \mathcal{H}(\mathfrak{M})(R)\rightarrow
 T_{\mathfrak{S}}^{*}(\mathfrak{M}) , by which we identify both sides. Thus we have a natural isomorphism of G_{K_{\infty}}-
modules

$\epsilon$_{\mathfrak{M}}:\mathcal{G}(\mathfrak{M})(\mathcal{O}_{K^{-}})\rightarrow \mathcal{H}(\mathfrak{M})(R) .

We can show that the greatest upper ramification jumps of the Galois modules in the

classical sense ([30]) of both sides are no more than pe/(p-1) ,
where we follow the

normalization of the upper ramification subgroups in [13]. Since the greatest upper

ramification jump of the extension K_{1}/K is equal to 1+pe/(p-1) ,
we see by using

the isomorphism $\epsilon$_{\mathfrak{M}} that both sides of the isomorphism have exactly the same greatest

upper ramification jump.

§3. Ramication correspondence

In this section, we briefly recall the ramification theory of finite flat group schemes

([1]) and state the ramification correspondence theorem mentioned before. For a while,
let p be a rational prime which may be two and K be a complete discrete valuation

field with residue field of characteristic p which may be imperfect. We fix a uniformizer

 $\pi$ and a separable closure  K^{\mathrm{s}\mathrm{e}\mathrm{p}} of K
,

and put G_{K}=\mathrm{G}\mathrm{a}1(K^{\mathrm{s}\mathrm{e}\mathrm{p}}/K) . We let v_{K} denote

the valuation on K^{\mathrm{s}\mathrm{e}\mathrm{p}} with v_{K}( $\pi$)=1 and put m_{K^{\mathrm{s}\mathrm{e}\mathrm{p}}}^{\geq i}=\{x\in \mathcal{O}_{K^{\mathrm{s}\mathrm{e}\mathrm{p}}}|v_{K}(x)\geq i\} for

i\in \mathbb{Q}_{\geq 0}.
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Let B be a finite flat \mathcal{O}_{K} ‐algebra locally of complete intersection which is generically

etale, that is, B\otimes \mathrm{o}_{K}K is etale over K . Put F(B)=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{O}_{K}-\mathrm{a}\mathrm{l}\mathrm{g}}.(B, \mathcal{O}_{K^{\mathrm{s}\mathrm{e}\mathrm{p}}}) . This is a

finite G_{K}‐set, namely a finite set where the Galois group G_{K} acts continuously. Fix a

presentation

B\simeq \mathcal{O}_{K}[X_{1}, . . . , X_{r}]/(f_{1}, \ldots, f_{s})

and consider the K‐affinoid variety

X_{K}^{j}(B)=\{(x_{1}, \ldots, x_{r})\in \mathcal{O}_{K^{\mathrm{s}\mathrm{e}\mathrm{p}}}^{r}|v_{K}(f_{i}(x\mathrm{l}, . . . , x_{r}))\geq j (i=1, \ldots, s)\}
for j\in \mathbb{Q}_{>0} . The set of geometric connected components of X_{K}^{j}(B) turns out to be

independent of the choice of a presentation in an appropriate sense and is denoted by

F^{j}(B) . This set is also a finite G_{K} ‐set and, since the set F(B) is identified with the

set of zeros of the equations f_{1} ,
. :.

; f_{s} ,
we have a G_{K} ‐equivariant functorial surjection

F(B)\rightarrow F^{j}(B) .

Let \mathcal{G}=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(B) be a finite flat generically etale group scheme over \mathcal{O}_{K} . Then the

affine algebra B is locally of complete intersection ([7, Proposition 2.2.2]) and thus we

can apply the above formalism to \mathcal{G} . Put F(\mathcal{G})=F(B)=\mathcal{G}(\mathcal{O}_{K^{\mathrm{s}\mathrm{e}\mathrm{p}}}) and F^{j} () =F^{j}(B) .

Then, by a functoriality, the set F^{j}(\mathcal{G}) is shown to have a structure of a G_{K} ‐module,

namely a module where the Galois group G_{K} acts continuously and compatibly with

the module structure. Moreover, the natural map \mathcal{G}(\mathcal{O}_{K^{\mathrm{s}\mathrm{e}\mathrm{p}}})=F(\mathcal{G})\rightarrow F^{j}(\mathcal{G}) turns out

to be a surjective homomorphism. Its kernel is denoted by \mathcal{G}^{j}(\mathcal{O}_{K^{\mathrm{s}\mathrm{e}\mathrm{p}}}) and called the

j‐th upper ramification subgroup of \mathcal{G} . We also put \displaystyle \mathcal{G}^{j+}(\mathcal{O}_{K^{\mathrm{s}\mathrm{e}\mathrm{p}}})=\bigcup_{j'>j}\mathcal{G}^{j'}(\mathcal{O}_{K^{\mathrm{s}\mathrm{e}\mathrm{p}}}) and

let \mathcal{G}^{j} and \mathcal{G}^{j+} denote their scheme‐theoretic closures in \mathcal{G}.

As in the classical ramification theory of local fields, we also have a �lower� vari‐

ant of the upper ramification filtration. Consider the reduction map \mathcal{G}(\mathcal{O}_{K^{\mathrm{s}\mathrm{e}\mathrm{p}}})\rightarrow
\mathcal{G}(\mathcal{O}_{K^{\mathrm{s}\mathrm{e}\mathrm{p}}}/m_{K^{\mathrm{s}\mathrm{e}\mathrm{p}}}^{\geq i}) for i\in \mathbb{Q}_{\geq 0} and let \mathcal{G}_{i}(\mathcal{O}_{K^{\mathrm{s}\mathrm{e}\mathrm{p}}}) denote its kernel, which is called the i‐th

lower ramification subgroup of \mathcal{G} . We define \mathcal{G}_{i+}(\mathcal{O}_{K^{\mathrm{s}\mathrm{e}\mathrm{p}}}) , \mathcal{G}_{i} and \mathcal{G}_{i+} similarly. These

two filtrations are compatible with base extensions: for an extension L/K of complete
discrete valuation fields with relative ramification index e(L/K) ,

we have natural iso‐

morphisms

\mathcal{G}^{j}\times \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{O}_{L})\rightarrow(\mathcal{G}\times \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{O}_{L}))^{je(L/K)},

\mathcal{G}_{i}\times \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{O}_{L})\rightarrow(\mathcal{G}\times \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{O}_{L}))_{ie(L/K)}.

Example 3.1. If the affine algebra of \mathcal{G} is generated by one element, we can

easily calculate the ramification filtrations ([18, Corollary 5]). For example, suppose

that K is of mixed characteristic (0,p) with absolute ramification index e and let E be

an elliptic curve over \mathcal{O}_{K} . Consider its formal completion Ê along the zero section with

formal parameter X and write the multiplication‐by‐p formula as

[p](X)=pX+\cdots+cX^{p}+\cdots
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Put  f=v(c) and define a subgroup scheme C of E[p] to be the scheme‐theoretic

closure of the subgroup \{x\in\^{E}[p](m_{K^{-}})|v_{K}(x)\geq(e-f)/(p-1)\} of E[p](\mathcal{O}_{K^{-}}) . Then,
for f<pe/(p+1) ,

we have

E[p]^{j}=\left\{\begin{array}{ll}
E[p] & (0<j\leq pf/(p-1))\\
C & (pf/(p-1)<j\leq(pe-f)/(p-1))\\
0 & ((pe-f)/(p-1)<j) ,
\end{array}\right.
E[p]_{i}=\left\{\begin{array}{ll}
E[p] & (0\leq i\leq f/(p^{2}-p))\\
C & (f/(p^{2}-p)<i\leq(e-f)/(p-1))\\
0 & ((e-f)/(p-1)<i) .
\end{array}\right.

On the other hand, for f\geq pe/(p+1) ,
we have

E[p]^{j}=\left\{\begin{array}{ll}
E[p] & (0<j\leq p^{2}e/(p^{2}-1))\\
0 & (p^{2}e/(p^{2}-1)<j) ,
\end{array}\right.
E[p]_{i}=\left\{\begin{array}{ll}
E[p] & (0\leq i\leq e/(p^{2}-1))\\
0 & (e/(p^{2}-1)<i) .
\end{array}\right.

The subgroup scheme C coincides with the canonical subgroup of E in the sense of

Katz‐Lubin.

Now we can state the other main theorem of this survey article, which establishes

a correspondence of ramification filtrations between finite flat group schemes over com‐

plete discrete valuation rings of mixed and equal characteristics.

Theorem 3.2 ([19], Theorem 1.1). Let p>2 be a rational prime and K be a

complete discrete valuation field of mixed characteristic (0,p) with perfe ct residue field
k and absolute ramication index e . Consider the category \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$} of Kisin modules

as before and let \mathfrak{M} be its object. Then the natural isomorphism $\epsilon$_{\mathfrak{M}} : \mathcal{G}(\mathfrak{M})(\mathcal{O}_{K^{-}})\rightarrow
\mathcal{H}(M)(R) induces isomorphisms of ramication subgroups

\mathcal{G}(\mathfrak{M})^{j}(\mathcal{O}_{K^{-}})\rightarrow \mathcal{H}(\mathfrak{M})^{j}(R) , \mathcal{G}(\mathfrak{M})_{i}(\mathcal{O}_{K^{-}})\rightarrow \mathcal{H}(\mathfrak{M})_{i}(R)

for any j\in \mathbb{Q}_{>0} and i\in \mathbb{Q}_{\geq 0}.

This can be seen as a generalization of the coincidence of the classical greatest

upper ramification jumps of both sides mentioned before.

§4. Sketch of the proofs

In this section, we give a brief sketch of the proofs of the main theorems. First we

show compatibilities of the Breuil‐Kisin classification with base extensions inside K_{\infty}/K
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and Cartier duality. For the compatibility with the base change, put Sí =k[[v]] and

let  $\phi$ also denote the absolute Frobenius endomorphism of the ring Sí. Fix a positive

integer  n and consider the category \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$}, of Kisin modules over Sí of v‐height \leq ep^{n}.

Using the k‐algebra homomorphism Sí \rightarrow R defined by v\mapsto\underline{ $\pi$}^{1/p^{n}} ,
we define a similar

functor T_{\mathfrak{S}}^{*} , to T_{\mathfrak{S}}^{*} . The homomorphism of k‐algebras Sl \rightarrow Sí defined by  u\mapsto v^{p^{n}}

induces a natural functor : \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$}\rightarrow \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$}, by

\mathfrak{M}\mapsto \mathfrak{M}'=\mathfrak{S}_{1}'\otimes_{\mathfrak{S}_{1}}\mathfrak{M}_{1}, $\phi$_{\mathfrak{M}'}= $\phi$\otimes$\phi$_{\mathfrak{M}}.

Then we have a natural isomorphism of G_{K_{\infty}} ‐modules T_{\mathfrak{S}}^{*}(\mathfrak{M})\rightarrow T_{\mathfrak{S}}^{*}, (\mathfrak{M}') . On the

other hand, by Theorem 2.2 the category \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$}, classifies finite flat group schemes

over \mathcal{O}_{K_{n}} killed by p ,
and we let \mathcal{G} denote the anti‐equivalences of the theorem over

\mathcal{O}_{K_{n}} . Then we can show the following proposition.

Proposition 4.1 ([19], Proposition 4.3). Let \mathfrak{M} be an object of the category \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$}
and \mathfrak{M}' be the associated object of the category \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$}, . Then there exists a natural

isomorphism

\mathcal{G}'(\mathfrak{M}')\rightarrow \mathcal{G}(\mathfrak{M})\times \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}()

of finite flat group schemes over \mathcal{O}_{K_{n}} which makes the following diagram commutative:

\mathcal{G}(\mathfrak{M})(\mathcal{O}_{K^{-}})|_{G_{K_{\infty}}}\rightarrow\sim \mathcal{G}'(\mathfrak{M}')(\mathcal{O}_{K^{-}})|_{G_{K_{\infty}}}

$\epsilon$_{\mathfrak{M}\downarrow 0} $\epsilon$_{\mathfrak{M}'\downarrow 0}
T_{\mathfrak{S}}^{*}(\mathfrak{M})\rightarrow T_{\mathfrak{S}}^{*}\sim, (\mathfrak{M}') .

Remark. The author does not know if a similar base change compatibility of the

Breuil‐Kisin classification holds for wildly ramified extensions in general. Thus it seems

difficult to prove Theorem 3.2 by killing the Galois action, taking scheme‐theoretic

closures on both sides of the isomorphism $\epsilon$_{\mathfrak{M}} and reducing to the case of rank one.

Instead, by using the restricted compatibility as in Theorem 4.1, we reduce ourselves to

comparing the defining equations of both sides, as we explain below.

For the compatibility with Cartier duality, we recall a duality of the category

\mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$} ([26, Section 3 Let W=W(k) be the Witt ring and E(u) be the Eisen‐

stein polynomial over W of the uniformizer  $\pi$ of  K . Put c_{0}=p^{-1}E(0) . We also fix

a system of p‐power roots of unity \{$\zeta$_{p^{n}}\}_{n\in \mathbb{Z}_{\geq 0}} in \overline{K} with $\zeta$_{p}\neq 1 and $\zeta$_{p^{n}}=$\zeta$_{p^{n+1}}^{p}.
Then we have an element \overline{\mathrm{t}} of the ring R associated to the system on which the Galois

group G_{K_{\infty}} acts via the modulo p cyclotomic character ([26, loc. cit . Let \mathfrak{M} be an

object of the category \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$} and put \mathfrak{M}^{\vee}=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathfrak{S}_{1}}(\mathfrak{M}, \mathfrak{S}_{1}) . Consider the natural

pairing \langle, \rangle_{\mathfrak{M}} : \mathfrak{M}\times \mathfrak{M}^{\vee}\rightarrow \mathfrak{S}_{1} . Then we can give \mathfrak{M}^{\vee} a natural structure of an object
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of \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$} satisfying \langle$\phi$_{\mathfrak{M}}(m) , $\phi$_{\mathfrak{M}}\vee(m^{\vee})\rangle_{\mathfrak{M}}=c_{0}^{-1}u^{e} $\phi$(\langle m, m^{\vee}\rangle_{\mathfrak{M}}) for any m\in \mathfrak{M} and

m^{\vee}\in \mathfrak{M}^{\vee} ([26, Proposition 3.1.7]). This induces a natural perfect pairing of G_{K_{\infty}}-
modules T_{\mathfrak{S}}^{*}(\mathfrak{M})\times T_{\mathfrak{S}}^{*}(\mathfrak{M}^{\vee})\rightarrow(\mathbb{Z}/p\mathbb{Z})\overline{\mathrm{t}} , which is also denoted by \langle ; \rangle_{\mathfrak{M}} . Then we can

also show the following compatibility with Cartier duality.

Proposition 4.2 ([19], Proposition 4.4). Let \mathfrak{M} be an object of the category \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$}
and \mathfrak{M}^{\vee} be its dual object. Then there exists a natural isomorphism \mathcal{G}(\mathfrak{M})^{\vee}\rightarrow \mathcal{G}(\mathfrak{M}^{\vee})
of finite flat group schemes over \mathcal{O}_{K} such that the induced map

$\delta$_{\mathfrak{M}}:\mathcal{G}(\mathfrak{M})^{\vee}(\mathcal{O}_{K^{-}})\rightarrow \mathcal{G}(\mathfrak{M}^{\vee \mathfrak{M}^{\vee}})(\mathcal{O}_{K^{-}})^{ $\epsilon$}\rightarrow T_{\mathfrak{S}}^{*}(\mathfrak{M}^{\vee})

fits into the commutative diagram of G_{K_{\infty}} ‐modules

\mathcal{G}(\mathfrak{M})(\mathcal{O}_{K^{-}})\times \mathcal{G}(\mathfrak{M})^{\vee}(\mathcal{O}_{K^{-}})\rightarrow \mathbb{Z}/p(1)

$\epsilon$_{\mathfrak{M}\downarrow 0} $\delta$_{\mathfrak{M}}\downarrow 0 \downarrow 0
T_{\mathfrak{S}}^{*}(\mathfrak{M})\times T_{\mathfrak{S}}^{*}(\mathfrak{M}^{\vee})\rightarrow^{\langle,,\rangle_{\mathfrak{M}}}(\mathbb{Z}/p\mathbb{Z})\overline{\mathrm{t}},

where the top arrow is the Cartier pairing of \mathcal{G}(\mathrm{M}) and the right vertical arrow is the

isomorphism dened by $\zeta$_{p}\mapsto\overline{\mathrm{t}}.

We also need the following duality result for upper and lower ramification sub‐

groups. For \mathcal{G} , this is due to Tian and Fargues ([31, Theorem 1.6], [12, Proposition 6]),
while the case of \mathcal{H}(\mathrm{M}) is [19, Theorem 3.3].

Proposition 4.3. Let K be a complete discrete valuation field of mixed char‐

acteristic (0,p) with residue field k and absolute ramication index e . Put l(j)=
e/(p-1)-j/p.

1. Let \mathcal{G} be a finite flat group scheme over \mathcal{O}_{K} killed by p . Then we have the equality

\mathcal{G}^{j}(\mathcal{O}_{K^{-}})^{\perp}=(\mathcal{G}^{\vee})_{l(j)+}(\mathcal{O}_{K^{-}}) forj \leq pe/(p-1) ,
where \perp means the orthogonal

subgroup with respect to the Cartier pairing.

2. Assume that the residue field  k is perfe ct and let \mathfrak{M} be an object of the cate‐

gory \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$} . Then we have the equality \mathcal{H}(\mathfrak{M})^{j}(R)^{\perp}=(\mathcal{H}(\mathfrak{M}^{\vee}))_{l(j)+}(R) for

j\leq pe/(p-1) ,
 where\perp means the orthogonal subgroup with respect to the pairing

\langle, \rangle_{\mathfrak{M}}.

To prove Theorem 3.2, it is enough by Proposition 4.2 and Proposition 4.3 to show

the assertion on lower ramification filtrations. By Proposition 4.1, we may replace K

with K_{1} and assume that the entries of a representing matrix of $\phi$_{\mathfrak{M}} for some basis

are contained in the subring k[[u]] of \mathfrak{S}_{1} . In this case, we can write down defining
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equations of the group scheme \mathcal{G}(\mathrm{M}) explicitly in terms of \mathfrak{M} , by using [7, Proposition

3.1.2]. Let us consider the isomorphism of k‐algebras k[[u]]/(u^{e})\rightarrow\tilde{\mathcal{O}}_{K}=\mathcal{O}_{K}/p\mathcal{O}_{K}
sending u to  $\pi$

, by which we identify both sides. Then we can check that the defining

equations of the group schemes \mathcal{G}(\mathrm{M}) and \mathcal{H}(\mathrm{M}) over \tilde{\mathcal{O}}_{K}\simeq k[[u]]/(u) coincide with

each other and this coincidence preserves zero sections. In other words, we can construct

an isomorphism of schemes

$\eta$_{\mathfrak{M}} : \mathcal{G}(\mathfrak{M})\times Spec ( \tilde{\mathcal{O}}_{K})\rightarrow \mathcal{H}(\mathfrak{M})\times \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k[[u]]/(\mathrm{U}))

which preserves zero sections. Though this is is not compatible with group structures

in general, we can show that this induces the commutative diagram of sets

\mathcal{G}(\mathfrak{M})(\mathcal{O}_{K^{-}})\rightarrow\sim \mathcal{H}(\mathfrak{M})(R)$\epsilon$_{\mathfrak{M}}

\downarrow \downarrow
\mathcal{G}(\mathfrak{M})(\mathcal{O}_{K^{-}}/m^{\geq i}K^{-})\vec{$\eta$_{\mathfrak{M}}}\mathcal{H}(\mathfrak{M})(R/m_{R}^{\geq i})

for any i\leq e ,
where we put m_{R}^{\geq i}=\{x\in R|v_{R}(x)\geq i\} . In the diagram, the arrows are

homomorphism of groups except the bottom one, which is at least a bijection compatible
with zero elements. Moreover, the i‐th lower ramification subgroups on both sides of

$\epsilon$_{\mathfrak{M}} are the inverse images of the zero elements by the vertical arrows. Hence the

isomorphism $\epsilon$_{\mathfrak{M}} is compatible with the i‐th lower ramification filtrations for i\leq e.

Since we can easily show that the i‐th lower ramification subgroups of both sides vanish

for i>e/(p-1) ,
we can conclude the proof of Theorem 3.2.

Example 4.4. Put \mathfrak{M}=\mathfrak{S}_{1}\mathrm{e} for a basis \mathrm{e} with $\phi$_{\mathfrak{M}}(\mathrm{e})=c_{0}^{-1}u^{e}\mathrm{e} . Then we

have \mathcal{G}(\mathfrak{M})=$\mu$_{p}=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{O}_{K}[X]/(X^{p}-1)) ( [5 , Exemple 2.2.3]). On the other hand, the

additive group scheme \mathcal{H}(\mathrm{M}) is isomorphic to \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k[[u]][Y]/(Y^{p}-c_{0}^{-1}u^{e}Y)) . Reducing
modulo p and modulo u^{e} respectively, we have an isomorphism of schemes over \tilde{\mathcal{O}}_{K}\simeq
 k[[u]]/(u)

\tilde{\mathcal{O}}_{K}[X]/(X^{p}-1)\rightarrow(k[[u]]/(u^{e}))[Y]/(Y^{p})
defined by X\mapsto 1+Y . This isomorphism is compatible with zero sections, but not with

group structures. Nevertheless, the j‐th upper (resp. i‐th lower) ramification subgroups
of \mathcal{G}(\mathrm{M}) and \mathcal{H}(\mathrm{M}) are zero if and only if j>pe/(p-1) ( resp. i>e/(p-1)) .

As for Theorem 1.1, we may assume n=1
,

as mentioned before. By Proposition

4.3, it suffices to show the following.

Proposition 4.5 ([19], Theorem 3.2). Let p>2 and K be as in Theorem 1.1.

Let \mathcal{G} be a truncated Barsotti‐Tate group of level one, height h and dimension d over

\mathcal{O}_{K} with d<h and Hasse invariant w=\mathrm{H}\mathrm{a}(\mathcal{G}) .
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1. If w<(p-1)/p ,
then the lower ramication subgroup scheme \mathcal{D}=\mathcal{G}_{e(11)} is

of order p^{d} . The group scheme \mathcal{D} has the following properties:

(a) \deg(\mathcal{G}/\mathcal{D})=w.

(b) The reduction modulo m_{K}^{\geq e(1-w)} of the closed subgroup scheme (\mathcal{G}/\mathcal{D})^{\vee} of \mathcal{G}^{\vee}
coincides with the kernel of the Frobenius homomorphism of the reduction \mathcal{G}^{\vee}\times

\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{O}_{K}/m_{K}^{\geq e(1-w)}) .

(c) \mathcal{D}\times \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{O}_{K}/m_{K}^{\geq e(1-w)}) also coincides with the kernel of the Frobenius ho‐

momorphism of \mathcal{G}\times \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{O}_{K}/m_{K}^{\geq e(1-w)}) .

2. If w<1/2 ,
then \mathcal{D} coincides with the lower ramication subgroup scheme \mathcal{G}_{b} for

ew/(p-1)<b\leq e(1-w)/(p-1) .

To prove the proposition, we may assume that the residue field k is perfect. Let

\mathfrak{M} be the object of the category \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$} corresponding to \mathcal{G} via the anti‐equivalence

\mathcal{G} . We identify the k‐algebras \tilde{\mathcal{O}}_{K} and k[[u]]/(u) as before. Then we can read off

the Hasse invariant from the Kisin module \mathfrak{M} , as follows. Put \mathfrak{M}_{1}=\mathfrak{M}\otimes\tilde{\mathcal{O}}_{K} . This can

be considered as a finite (locally) free  $\phi$‐module over \tilde{\mathcal{O}}_{K} . Consider the natural exact

sequences of \tilde{\mathcal{O}}_{K} ‐modules

0\rightarrow(1\otimes$\phi$_{\mathfrak{M}_{1}})($\phi$^{*}\mathfrak{M}_{1})\rightarrow \mathfrak{M}_{1}\rightarrow \mathfrak{M}_{1}/(1\otimes$\phi$_{\mathfrak{M}_{1}})($\phi$^{*}\mathfrak{M}_{1})\rightarrow 0.

Since \mathcal{G} is a truncated Barsotti‐Tate group of level one, we can show from the construc‐

tion of the functor \mathcal{G} that we have natural isomorphisms of \tilde{\mathcal{O}}_{K} ‐modules

$\omega$_{\mathcal{G}\times\tilde{\mathcal{O}}_{K}}\simeq \mathrm{K}\mathrm{e}\mathrm{r}(1\otimes$\phi$_{\mathfrak{M}_{1}}:$\phi$^{*}\mathfrak{M}_{1}\rightarrow \mathfrak{M}_{1}) ,

Lie (\mathcal{G}^{\vee}\times\tilde{\mathcal{O}}_{K})\simeq(1\otimes$\phi$_{\mathfrak{M}_{1}})($\phi$^{*}\mathfrak{M}_{1})

and thus the first term of the exact sequence above is a free \tilde{\mathcal{O}}_{K} ‐module of rank h-d.

Moreover we can show that this term is stable under $\phi$_{\mathfrak{M}_{1}} and the exact sequence of

\tilde{\mathcal{O}}_{K} ‐modules above splits. Then the Hasse invariant \mathrm{H}\mathrm{a}() is equal to the truncated

p‐adic valuation of the determinant of the $\phi$_{\mathfrak{M}_{1}} ‐action on the module of the first term

of the exact sequence.

We choose a basis el. ::; e_{h} of \mathfrak{M} such that e_{1} ,
. . .

; e_{h-d} (resp. e_{h-d+1\cdot\cdot:;}e_{h} ) is

a lift of a basis of the \tilde{\mathcal{O}}_{K} ‐module of the first (resp. third) term of the exact sequence

above. Then we have

$\phi$_{\mathfrak{M}}(e_{1}, \ldots, e_{h})= (el, . . .

, e_{h} ) \left(\begin{array}{ll}
P_{1} & P_{2}\\
u^{e}P_{3} & u^{e}P_{4}
\end{array}\right)
for some matrices P_{i} with entries in k[[u]] ,

where P_{4} is a dd‐matrix. Set A\in M(k[[u]])
to be the matrix on the right‐hand side and put A\mathfrak{M}_{1}=\mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}_{\mathcal{O}_{K}^{-}} ((e_{1}, . ::, e_{d})A) . Then
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the exact sequence above is equal to the exact sequence

0\rightarrow A\mathfrak{M}_{1}\rightarrow \mathfrak{M}_{1}\rightarrow \mathfrak{M}_{1}/A\mathfrak{M}_{1}\rightarrow 0

of  $\phi$‐modules over \tilde{\mathcal{O}}_{K} ,
where we have the equality v_{p}(\det($\phi$_{A\mathfrak{M}_{1}}))=w . Let v_{u} be

the u‐adic valuation on k[[u]] with v_{u}(u)=1 . Since w<1 ,
we also have the equality

v_{u}(\det(P_{1}))=ew and thus we can define the object L of the category \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$} by

L=\oplus_{i=1}^{h-d}\mathfrak{S}_{1}e_{i} and

$\phi$_{\mathcal{L}}(e_{1}, \ldots, e_{h-d})=(e_{1}, \ldots, e_{h-d})P_{1}.

Now, using Theorem 3.2, we switch to \mathcal{H}(\mathrm{M}) for calculating the lower ramification

filtrations. Then the proofs of the following two lemmas are straightforward.

Lemma 4.6 ([20], Lemma 3.3). Let l be a positive integer, U be an element of

M(k[[u]]) and w' be a rational number such that v_{u}(\det(U))=ew' . Let T be the scheme

over k[[u]] dened by the system of equations

(X_{1}^{p}, \ldots, X_{l}^{p})=(X\mathrm{l}, . . . , X_{l})U.

Suppose that we have the inequality w'<(p-1)/p . Then the natural map

T(R)\rightarrow{\rm Im}(T(R/m_{R}^{\geq e})\rightarrow T(R/m_{R}^{\geq b}))

is a bijection for ew'/(p-1)<b\leq e(1-w') .

Lemma 4.7 ([20], Lemma 3.4). There exists a unique injection  $\iota$ :  L\rightarrow \mathfrak{M} of
the category \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$} such that the \mathfrak{S}_{1} ‐submodule L is a direct summand of \mathfrak{M} and the

reduction modulo u^{e(1-w)} of the injection  $\iota$ coincides with the inclusion

 A\mathfrak{M}_{1}\otimes(k[[u]]/(u^{e(1-w)}))\rightarrow \mathfrak{M}_{1}\otimes(k[[u]]/(u^{e(1-w)}

Let b be a rational number with ew/(p-1)<b\leq e(1-w) . Then the map

 $\iota$\otimes(R/m_{R}^{\geq b}) also coincides with the inclusion A\mathfrak{M}_{1}\otimes(R/m_{R}^{\geq b})\rightarrow \mathfrak{M}_{1}\otimes(R/m_{R}^{\geq b}) .

Hence we have a commutative diagram

\mathcal{H}(\mathfrak{M})(R)\rightarrow \mathcal{H}(L)(R)

))(\mathrm{R}=\mathrm{m} ))(\mathrm{R}=\mathrm{m}

))(\mathrm{R}=\mathrm{m}
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whose upper right vertical arrow is an injection by Lemma 4.6. Put \mathfrak{N}=\mathfrak{M}/L . This

is an object of the category \mathrm{M}\mathrm{o}\mathrm{d}_{/\mathfrak{S}_{1}}^{1, $\phi$} which is free of rank d over \mathfrak{S}_{1} . Then the group

\mathcal{H}(N)(R) is of order p^{d} and we have the equality

\mathcal{H}(\mathfrak{N})(R)=\mathrm{K}\mathrm{e}\mathrm{r}(\mathcal{H}(\mathfrak{M})(R)\rightarrow \mathcal{H}(A\mathfrak{M}_{1})(R/m_{R}^{\geq b})) .

Then, by an elementary calculation of the valuations of roots of the defining equations
of \mathcal{H}(\mathfrak{M}) ,

we can also show the following lemma, which settles the first assertion of

Proposition 4.5 (1) and the assertion (2).

Lemma 4.8 ([20], Lemma 3.5). The subgroup \mathcal{H}(N)(R) of \mathcal{H}(M)(R) is equal to

the subgroup \mathcal{H}(\mathfrak{M})_{e(1-w)/(p-1)}(R) .

By the description of the module of invariant differentials of truncated Barsotti‐

Tate groups stated before, we can show by taking a resolution that we have the same

description for any finite flat group scheme over \mathcal{O}_{K} killed by p . From this the assertion

(1a) follows. Replacing K with K_{1} ,
the explicit description of defining equations of

\mathcal{G}(L^{\vee})\times \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\tilde{\mathcal{O}}_{K}) shows the assertion (1b), which in turn implies the assertion (1c).
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