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Ramication and cleanliness

(joint work with Takeshi Saito)

By

Ahmed ABBES *

§1. Introduction

1.1 This is a report on a joint article with Takeshi Saito, with the same title [5],
devoted to studying the ramification of Galois torsors and of P‐adic sheaves in charac‐

teristic p>0 (with \ell\neq p), developing the project started in [1, 2, 3, 4, 10].

1.2 Let k be a perfect field of characteristic p>0, X be a smooth, separated and

quasi‐compact k‐scheme, D be a simple normal crossing divisor on X, U=X-D ; we

say for short that (X; D) is an snc‐pair over k . We fix a prime number \ell different from

 p and a finite local \mathbb{Z}_{l} ‐algebra  $\Lambda$ . Let \mathscr{F} be a locally constant constructible sheaf of

 $\Lambda$‐modules on  U . The main problems in ramification theory are the following:

(A) to describe the ramification of \mathscr{F} along D ;

(B) to give a Riemann‐Roch type formula for \mathscr{F} ,
that is, to compute the Euler‐Poincaré

characteristic with compact support of \mathscr{F} on U in terms of its invariants of ramifi‐

cation (provided by (A)).

In [3], we gave cohomological answers to both problems that rely on the notion of

characteristic class of \mathscr{F} . In the article under review, we develop a more geometric

approach to problem (A) and give a conjectural formula for (B), generalizing the one

proved in ([10] 3.7) and based on the finer notion of characteristic cycle of \mathscr{F} . For this

purpose, we start by studying the ramification of Galois torsors over U ,
that is, torsors

over U for the étale topology, under finite constant groups. Our approach is inspired by
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the ramification theory of local fields with imperfect residue fields that we developed in

[1, 2, 10]. Its leitmotiv is to eliminate the ramification by blow‐up.

§2. Review of ramication theory of local fields with imperfect residue

fields

2.1 Let K be a discrete valuation field, \mathscr{O}_{K} be the valuation ring of K, F be the

residue field of \mathscr{O}_{K}, \overline{K} be a separable closure of K and \mathscr{G} be the Galois group of \overline{K}\{K.
We assume that \mathscr{O}_{K} is henselian and that F has characteristic p . In ([1]3.12), we

defined a decreasing filtration \mathscr{G}_{\log}^{r}(r\in \mathbb{Q}_{\geq 0}) of \mathscr{G} by closed normal subgroups, called

the logarithmic ramication filtration. For a rational number r\geq 0 ,
we put

\displaystyle \mathscr{G}_{\log}^{r+}=\bigcup_{s>r}\mathscr{G}_{\log}^{s},
\mathrm{G}\mathrm{r}_{\log}^{r}(\mathscr{G})=\mathscr{G}_{\log}^{r}\{\mathscr{G}_{\log}^{r+}.

This filtration satisfies the following properties, among others:

(i) The group \mathscr{P}=\mathscr{G}_{\log}^{0+} is the wild inertia subgroup of \mathscr{G} , i.e., the p‐Sylow subgroup
of the inertia subgroup \mathscr{G}_{\log}^{0}([1]3.15) .

(ii) For every rational number r>0 ,
the group \mathrm{G}\mathrm{r}_{\log}^{r}(\mathscr{G}) is abelian and is contained in

the center of the pro‐p‐group \mathscr{P}\{\mathscr{G}_{\log}^{r+} ([2] Theorem 1).

Further properties are stated below.

2.2 Let L be a finite separable extension of K, r be a rational number \geq 0 . Then

\mathscr{G} acts on \mathrm{H}\mathrm{o}\mathrm{m}_{K-\mathrm{A}\mathrm{l}\mathrm{g}}(L, \overline{K}) via its action on \overline{K} . We say that the ramification of L\{K
is bounded by r (resp. by r+ ) if \mathscr{G}_{\log}^{r} (resp. \mathscr{G}_{\log}^{r+} ) acts trivially on \mathrm{H}\mathrm{o}\mathrm{m}_{K}(L, \overline{K}) . We

define the conductor c of L\{K as the infinimum of rational numbers r>0 such that the

ramification of L\{K is bounded by r . Then c is a rational number, and the ramification

of L\{K is bounded by c+([1]9.5) . If c>0 ,
the ramification of L\{K is not bounded by

c.

In fact, we define first the property that L\{K has a bounded ramification by a

rational number r>0 ,
then we deduce the filtration \mathscr{G}_{\log}^{r} (  r\in \mathbb{Q} ě0) of \mathscr{G} . I will not

recall the definition here, as I will introduce a geometric generalization for Galois torsors.

2.3 For any finite discrete  $\Lambda$‐representation  M of \mathscr{G} ,
we have a canonical slope de‐

composition

(2.3.1) M=\oplus_{r\in \mathbb{Q}\geq 0}M^{(r)},
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characterised by the following properties : M^{(0)}=M^{\mathscr{P}} and for every r>0,

(2.3.2) (M^{(r)})^{\mathscr{G}_{\log}^{r}}=0 and (M^{(r)})^{\mathrm{G}_{\log}^{r+}}=M^{(r)}.

The values r\geq 0 for which M^{(r)}\neq 0 are called the slopes of M . We say that M is

isoclinic if it has only one slope. If M is isoclinic of slope r>0 ,
we have a canonical

central character decomposition

(2.3.3) M=\oplus_{ $\chi$}M_{ $\chi$},

where the sum runs over finite characters  $\chi$:\mathrm{G}\mathrm{r}_{\log}^{r}\mathscr{G}\rightarrow$\Lambda$_{ $\chi$}^{\times} such that $\Lambda$_{ $\chi$} is a finite étale

 $\Lambda$‐algebra.

2.4 We assume in the following that  F is of finite type over k . We denote by $\Omega$_{F}^{1}(\log)
the quotient of $\Omega$_{F}^{1}\oplus(F\otimes_{\mathbb{Z}}K^{\times}) by the sub‐F‐module generated by elements of the form

(da; 0 ) -(0, \overline{a}\otimes a) ,
for a\in \mathscr{O}_{K}-\{0\} and \overline{a} its residue class in F . For every a\in K^{\times}

,
we

denote by dloga the class of (0,1\otimes a) . Then we have an exact sequence

(2.4.1) 0\rightarrow$\Omega$_{F}^{1}\rightarrow$\Omega$_{F}^{1}(\log)\rightarrow^{\mathrm{r}\mathrm{e}\mathrm{s}}F\rightarrow 0,

where \mathrm{r}\mathrm{e}\mathrm{s}((0, a\otimes b))=a . ordp) for a\in F and b\in K^{\times} . In particular, $\Omega$_{F}^{1}(\log) is an

F‐vector space of finite dimension, namely the transcendental degree of F over k plus
one.

We denote by \mathscr{O}_{\overline{K}} the integral closure of \mathscr{O}_{K} in \overline{K}
, by \overline{F} the residue field of \mathscr{O}_{\overline{K}},

by ord the valuation of \overline{K} normalized by \mathrm{o}\mathrm{r}\mathrm{d}(K^{\times})=\mathbb{Z} and, for any rational number

r
, by \displaystyle \mathfrak{m}\frac{r}{K} (resp. \displaystyle \mathfrak{m}\frac{r+}{K} ) the \mathscr{O}_{\overline{K}}‐module of elements x\in\overline{K} such that ordx) \geq r (resp.

ordx) >r ).
The following important property of the logarithmic ramification filtration was

proved in ([10] 1.24) if K has characteristic p ,
and in [11] if K has characteristic 0.

For any rational number r>0 ,
the group \mathrm{G}\mathrm{r}_{\log}^{r}\mathscr{G} is an \mathrm{F}_{p} ‐vector space, and we have a

canonical injective homomorphism

(2.4.2) rsw: \displaystyle \mathrm{H}\mathrm{o}\mathrm{m}_{\mathbb{Z}}(\mathrm{G}\mathrm{r}_{\log}^{r}\mathscr{G}, \mathrm{F}_{p})\rightarrow \mathrm{H}\mathrm{o}\mathrm{m}_{\overline{F}}(\mathfrak{m}\frac{r}{K}\{\mathfrak{m}\frac{r+}{K}, $\Omega$_{F}^{1}(\log)\otimes_{F}\overline{F}),

called the rened Swan conductor. Our definition of characteristic cycle is a generaliza‐
tion of this notion.

§3. Ramication of Galois torsors

3.1 Our approach is based on a geometric construction introduced in [3, 4, 10]. Let

(X; D) be an snc‐pair over k, U=X-D, D_{1} ,
. :.

; D_{m} be the irreducible components of

D . We denote by (X \times kX)' the blow‐up of X\times kX along D_{i}\times D for all 1\leq i\leq m.
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We define the framed self‐ product X*kX of (X; D) over k as the open sub‐scheme of

(X \times kX)' obtained by removing the strict transforms of D\times kX and X\times kD (called
the logarithmic self‐product in [10]). We give in ([5]5.20) an equivalent definition using

logarithmic geometry, that extends to more general situations. The diagonal morphism

$\delta$_{X}:X\rightarrow X\times kX lifts uniquely to a morphism  $\delta$:X\rightarrow X*kX ,
called the framed

diagonal of (X; D) (and the logarithmic diagonal in [10]). We consider X*kX as an

X‐scheme by the second projection.

3.2 Let R be an effective rational divisor on X with support in D (i.e., a sum of

non‐negative rational multiples of the irreducible components of D ). We define in ([5]
5.26) the dilatation (X*kX)^{(R)} of X*kX along  $\delta$ of thickening  R as an affine scheme

over X*kX that fits in a canonical Cartesian diagram

(3.2.1) U\rightarrow^{$\delta$_{U}}U\times kU

j\downarrow $\delta$^{(R)} \downarrow j^{(R)}
X\rightarrow(X*kX)^{(R)}

where j^{(R)} is a canonical open immersion, $\delta$^{(R)} is the unique morphism lifting  $\delta$, j is the

canonical injection and $\delta$_{U} is the diagonal morphism. If R has integral coefficients, then

(X*kX)^{(R)} is a dilatation in the sense of Raynaud, more precisely, (X*kX)^{(R)} is the

maximal open sub‐scheme of the blow‐up of X*kX along  $\delta$(R) ,
where the exceptional

divisor is equal to the pull‐back of R by the second projection to X (cf. [5] 4.1).

X X\times kX X*kX (X*kX)^{(R)}

D\ovalbox{\tt\small REJECT}
* *

(*) The two curved lines should be removed ( i.e.
, dotted).
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3.3 Let V be a Galois torsor over U of group G, R be an effective rational divisor

on X with support in D . We consider V\times kV as a Galois torsor over U\times kU of group

G\times G ,
and denote by W the quotient of V\times kV by \triangle(G) ,

where \triangle:G\rightarrow G\times G is the

diagonal homomorphism. The diagonal morphism $\delta$_{V}:V\rightarrow V\times kV induces a morphism

$\epsilon$_{U}:U\rightarrow W lifting the diagonal morphism $\delta$_{U}:U\rightarrow U\times kU . Note that W represents

the sheaf of isomorphisms of G‐torsors from U\times kV to V\times kU over U\times kU ,
and that $\epsilon$_{U}

corresponds to the identity isomorphism of V (identified with the pull‐backs of U\times kV
and V\times kU by $\delta$_{U}) . We denote by Z the integral closure of (X*kX)^{(R)} in W , by

 $\pi$:Z\rightarrow(X\times kX)^{(R)} the canonical morphism and by  $\epsilon$:X\rightarrow Z the morphism induced

by $\epsilon$_{U}:U\rightarrow W . We have  $\pi$\circ $\epsilon$=$\delta$^{(R)}.

(3.3.1)

Let x\in X . We say that the ramification of V\{U at x is bounded by R+\mathrm{i}\mathrm{f} the morphism
 $\pi$ is étale at  $\epsilon$(x) ,

and that the ramification of V\{U along D is bounded by  R+\mathrm{i}\mathrm{f} $\pi$ is

étale over an open neighborhood of  $\epsilon$(X) ([5]7.3).
We establish several properties of this notion. First, we prove that it satisfies

descent for faithfully flat and \log‐smooth morphisms ([5]7.7). The second property

plays a key role in [5] : if  R has integral coefficients, we prove that the ramification of

V\{U along D is bounded by R+\mathrm{i}\mathrm{f} and only if there exists an open neighborhood Z_{0} of

 $\epsilon$(X) in Z which is étale over (X*kX)^{(R)} and such that  $\pi$(Z_{0}) contains (X*kX)^{(R)}\times xR
([5]7.13). Third, we relate this notion to its analogue for finite separable extensions of

local fields : let  $\xi$ be a generic point of  D, \overline{ $\xi$} be a geometric point of X above  $\xi$, S be the

strict localization of X at \overline{ $\xi$}, K be the fraction field of  $\Gamma$(S, \mathscr{O}_{S}) ,
r be the multiplicity

of R at  $\xi$ . We put  V\times U SpecK) = SpeCL, where L=\displaystyle \prod_{i=1}^{n}L_{i} is a finite product of

finite separable extensions of K . We prove in ([5]7.18) that the ramification of V\{U at

 $\xi$ is bounded by  R+\mathrm{i}\mathrm{f} and only if, for every 1\leq i\leq n ,
the logarithmic ramification of

L_{i}\{K is bounded by r+\mathrm{i}\mathrm{n} the sense of (2.2).

3.4 Let V be a Galois torsor over U of group G, Y be the integral closure of X in V,
R be an effective rational divisor on X with support in D . Assume that the following
conditions are satisfied:

(i) for every geometric point \overline{y} of Y
,
the inertia group I_{\overline{y}}\subset G of \overline{y} has a normal p‐Sylow

subgroup ;

(ii) for every generic point  $\xi$ of  D
,

the ramification of V\{U at  $\xi$ is bounded by  R+.
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Then we prove that the ramification of V\{U along D is bounded by R+([5]7.19) . This

result is an analogue of the Zariski‐Nagata purity theorem.

3.5 Let V be a Galois torsor over U of finite group G . We define the conductor

of V\{U relatively to X to be the minimum effective rational divisor R on X with

support in D such that for every generic point  $\xi$ of  D
,

the ramification of V\{U at  $\xi$
is bounded by  R+ . This terminology may be slightly misleading as the ramification

of V\{U along D may not be bounded by R+\mathrm{i}\mathrm{n} general. However, we prove in ([5]
7.22), as a consequence of 3.4, that under a strong form of resolution of singularities,
there exists an snc‐pair (X; D') over k and a proper morphism f:X'\rightarrow X inducing an

isomorphism X'-D'\rightarrow\sim U ,
such that if we denote by R' the conductor of V\{U relatively

to X'
,

the ramification of V\{U along D' is bounded by R'+.

§4. Ramication of P‐adic sheaves

4.1 Let (X; D) be an snc‐pair over k, U=X-D, \mathscr{F} be a locally constant con‐

structible sheaf of  $\Lambda$‐modules on  U, R be an effective rational divisor on X with sup‐

port in D, x\in X, \mathrm{X} be a geometric point of X above x . Recall that  $\Lambda$ is a finite local

\mathbb{Z}_{l} ‐algebra (1.2). We denote by \mathrm{p}\mathrm{r}_{1}, \mathrm{p}\mathrm{r}_{2}:U\times kU\rightarrow U the canonical projections and put

(4.1.1) \mathscr{H}(\mathscr{F})=\mathscr{H}om(\mathrm{p}\mathrm{r}_{2}^{*}\mathscr{F}, \mathrm{p}\mathrm{r}_{1}^{*}\mathscr{F}) .

We prove in ([5]8.2) that the base change morphism

(4.1.2)  $\alpha$:$\delta$^{(R)*}j_{*}^{(R)}(\mathscr{H}(\mathscr{F}))\rightarrow j_{*}$\delta$_{U}^{*}(\mathscr{H}(\mathscr{F}))=j_{*}(\mathscr{E}nd(\mathscr{F}))

relatively to the Cartesian diagram (3.2.1) is injective. Furthermore, the following
conditions are equivalent :

(i) The stalk $\alpha$_{\mathrm{X}} of the morphism  $\alpha$ at \overline{x} is an isomorphism.

(ii) There exists a Galois torsor V over U trivializing \mathscr{F} such the ramification of V\{U
at x is bounded by R+.

We say that the ramication of \mathscr{F} at \overline{x} is bounded by R+\mathrm{i}\mathrm{f}\mathscr{F} satisfies these equivalent
conditions. We say that the ramication of \mathscr{F} along D is bounded by R+\mathrm{i}\mathrm{f} the ram‐

ification of \mathscr{F} at \overline{x} is bounded by R+ for every geometric point \overline{x} of X . We establish

several properties of this notion similar to those for Galois torsors. In particular, we

relate it to the analogue notion for Galois representations of local fields (with possibly

imperfect residue fields) ([5]8.8).
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4.2 Let \mathscr{F} be a locally constant constructible sheaf of  $\Lambda$‐modules on  U . We define

the conductor of \mathscr{F} relatively to X to be the minimum of the set of effective rational

divisors R on X with support in D such that for every geometric point \overline{ $\xi$} of X above a

generic point of D
,
the ramification of \mathscr{F} at \overline{ $\xi$} is bounded by R+ . As for Galois torsors,

this terminology may be slightly misleading as the ramification of \mathscr{F} along D may not be

bounded by R+\mathrm{i}\mathrm{n} general. However, we prove that under a strong form of resolution of

singularities, there exists an snc‐pair (X; D') over k and a proper morphism f:X'\rightarrow X
inducing an isomorphism X'-D'\rightarrow\sim U ,

such that if we denote by R' the conductor of

\mathscr{F} relatively to X'
,

the ramification of \mathscr{F} along D' is bounded by R'+([5]8.11) .

4.3 The last part of [5] is devoted to studying important specialization properties that

lead to the fundamental notion of cleanliness and to the definition of the characteristic

cycle. Let R be an effective divisor on X with support in D.1 We prove ([5]4.6) that

(X*kX)^{(R)} is smooth over X and that

(4.3.1) E^{(R)}=(X*kX)^{(R)}\times xR

is canonically isomorphic to the twisted logarithmic tangent bundle

V ($\Omega$_{X/k}^{1}(\log D)\otimes_{\mathscr{O}_{X}}\mathscr{O}_{X}(R))\times xR

over R . We denote by Ě(R) the dual vector bundle. Consider the commutative diagram
with Cartesian squares

(4.3.2) E^{(R)}\rightarrow(X*kX)^{(R)}\leftarrow Uj^{(R)}\times kU

 R\downarrow\rightarrow X-\downarrow \mathrm{p}\mathrm{r}_{2}U\downarrow
Let \mathscr{G} be a sheaf of  $\Lambda$‐modules on  U\times kU . We call R ‐specialization of \mathscr{G} and denote by

v_{R}(\mathscr{G}, X) ,
the sheaf on E^{(R)} defined by

(4.3.3) v_{R}(\mathscr{G}, X)=j_{*}^{(R)}(\mathscr{G})|E^{(R)}.

Let \mathscr{F} be a locally constant constructible sheaf of  $\Lambda$‐modules on  U such that its

ramification along D is bounded by R+, \mathscr{H}(\mathscr{F}) be the sheaf on U\times kU defined in

(4.1.1). We prove in ([5] 8.15) that v_{R}(\mathscr{H}(\mathscr{F}), X) is additive, which means that its

restrictions to the fibers of E^{(R)} over R are invariant by translation (cf. [5] 3.1). This

important property was first proved in ([10] 2.25); we give a new proof.

lWe consider rational divisors on X with support in D and integral coefficients as Cartier divisors

on X.
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We fix a non‐trivial additive character  $\psi$:\mathrm{F}_{p}\rightarrow$\Lambda$^{\times} and denote by S\subset\v{E}(R) the

support of the Fourier‐Deligne transform of v_{R}(\mathscr{H}(\mathscr{F}), X) relatively to  $\psi$ (cf. [5] 3.4);
more precisely,  S is the subset of points of Ě(R) where the stalks of the cohomology
sheaves of the Fourier‐Deligne transform are not all zero (cf. [5] 3.5). The additivity
of v_{R}(\mathscr{H}(\mathscr{F}), X) is equivalent to the fact that, for every x\in R ,

the set S\cap\check{E}_{x}^{(R)} is

finite (cf. [5] 3.6). We call S the Fourier dual support of v_{R}(\mathscr{H}(\mathscr{F}), X) . We prove in

fact that S is the underlying space of a closed sub‐scheme of Ě(R) which is finite over

R (cf. [5] 8.18). Note that S is a priori a constructible subset of Ě(R) and that it is

not obvious that it is closed in Ě. We say that v_{R}(\mathscr{H}(\mathscr{F}), X) is non‐degenerate if S

does not meet the zero section of Ě(R) over R.

4.4 Let \mathscr{F} be a locally constant constructible sheaf of  $\Lambda$‐modules on  U,  $\xi$ be a generic

point of  D, X_{( $\xi$)} be the henselization of X at  $\xi$, $\eta$_{ $\xi$} be the generic point of X_{( $\xi$)}, \overline{ $\eta$}_{ $\xi$} be a

geometric generic point of X_{( $\xi$)}, \mathscr{G}_{ $\xi$} be the Galois group of \overline{ $\eta$}_{ $\xi$} over $\eta$_{ $\xi$} . We say that \mathscr{F}

is isoclinic at  $\xi$ if the representation \mathscr{F}_{\overline{ $\eta$}_{ $\xi$}} of \mathscr{G}_{ $\xi$} is isoclinic (2.3), and that \mathscr{F} is isoclinic

along D if it is isoclinic at all generic points of D.

Assume first that \mathscr{F} is isoclinic along D
,

and let R be its conductor relatively to

X. We say ([5]8.23) that \mathscr{F} is clean along D if the following conditions are satisfied:

(i) the ramification of \mathscr{F} along D is bounded by R+ ;

(ii) there exists a \log‐smooth morphism of snc‐pairs  f:(X', D')\rightarrow(X, D) over k such

that the morphism X'\rightarrow X is faithfully flat, that R'=f^{*}(R) has integral coef‐

ficients, and if we put U'=X'-D' and \mathscr{F}'=\mathscr{F}|U' ,
that the R'‐specialization

v_{R}', (\mathscr{H}(\mathscr{F}'), X') of \mathscr{H}(\mathscr{F}') in the sense of (4.3.3) relatively to (X; D is additive

and non‐degenerate.

Note that we may replace (ii) by the stronger condition that it holds for any morphism

f satisfying the same assumptions (cf. [5] 8.24).
This notion can be extended to general sheaves as follows. Let \overline{x} be a geometric

point of X . We say that \mathscr{F} is clean at \overline{x} if there exists an étale neighborhood X' of \overline{x}

in X such that, if we put U'=U\times x^{X'} and denote by D' the pull‐back of D over X',
there exists a finite decomposition

(4.4.1) \mathscr{F}|U'=\oplus_{1\leq i\leq n}\mathscr{F}_{i}'

of \mathscr{F}|U' into a direct sum of locally constant constructible sheaves of  $\Lambda$‐modules \mathscr{F}_{i}'
(1\leq i\leq n) on U' which are isoclinic and clean along D' in the previous sense. We say

that \mathscr{F} is clean along D if it is clean at all geometric points of X (cf. [5] 8.25). Note

that for isoclinic sheaves, the two definitions are equivalent (cf. [5] 8.27).
The notion of cleanliness was first introduced by Kato for rank 1 sheaves in [6].
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Our definition extends his. It was extended to isoclinic sheaves by the second author

(T. S.) in ([10] §3.2).
Roughly speaking, if \mathscr{F} is clean along D

,
then its ramification along D is controlled

by its ramification at the generic points of D . This is the main idea behind the following
definition of the characteristic cycle of \mathscr{F}.

4.5 We assume that X is connected and denote by d the dimension of X
, by

\mathrm{T}_{X}^{*}(\log D)=\mathrm{V}($\Omega$_{X\{k}^{1}(\log D)) the logarithmic cotangent bundle of X and by $\xi$_{1} ,
. . .

, $\xi$_{n}
the generic points of D . For each 1\leq i\leq n ,

we denote by F_{i} the residue field of X at

$\xi$_{i} , by S_{i}= Spec ( \mathscr{O}_{K_{i}}) the henselization of X at $\xi$_{i} and by $\eta$_{i}=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(K_{i}) the generic

point of S_{i} . We fix a separable closure \overline{K}_{i} of K_{i} and denote by \mathscr{G}_{i} the Galois group of

\overline{K}_{i}\{K_{i}.
Let \mathscr{F} be a locally constant constructible sheaf of free  $\Lambda$‐modules on  U which is

clean along D . We denote by M_{i} the  $\Lambda$[\mathscr{G}_{i}] ‐module corresponding to \mathscr{F}|$\eta$_{i} , by

(4.5.1) M_{i}=\oplus_{r\in \mathbb{Q}\geq 0}M_{i}^{(r)}

its slope decomposition and, for each rational number r>0 , by

(4.5.2) M_{i}^{(r)}=\oplus_{ $\chi$}M_{i, $\chi$}^{(r)}
the central character decomposition of M_{i}^{(r)} . Note that M_{i, $\chi$}^{(r)} is a free  $\Lambda$‐module of

finite type for all  r>0 and all  $\chi$ . By enlarging  $\Lambda$
,

we may assume that for all rational

numbers  r>0 and all central characters  $\chi$ of  M_{i}^{(r)} (i.e., all characters  $\chi$:\mathrm{G}\mathrm{r}_{\log}^{r}\mathscr{G}_{i}\rightarrow$\Lambda$_{ $\chi$}^{\times}
that appear in the decomposition (4.5.2)), we have  $\Lambda$_{ $\chi$}= $\Lambda$ . Since \mathrm{G}\mathrm{r}_{\log}^{r}\mathscr{G}_{i} is abelian

and killed by p(2.4) ,  $\chi$ factors uniquely as \mathrm{G}\mathrm{r}_{\log}^{r}\mathscr{G}_{i}\rightarrow \mathrm{F}_{p}\rightarrow $\psi \Lambda$^{\times} ,
where  $\psi$ is the non‐

trivial additive character fixed in 4.3. We denote also by  $\chi$:\mathrm{G}\mathrm{r}_{\log}^{r}\mathscr{G}_{i}\rightarrow \mathrm{F}_{p} the induced

character and by

(4.5.3) rsw: \displaystyle \mathfrak{m}\frac{r}{K}\{\mathfrak{m}\frac{r+}{K}ii\rightarrow$\Omega$_{F_{i}}^{1}(\log)\otimes\overline{F}_{i}
its refined Swan conductor (2.4.2). Let F_{ $\chi$} be the field of definition of rsw, which is

a finite extension of F_{i} contained in \overline{F}_{i} . The refined Swan conductor \mathrm{r}\mathrm{s}\mathrm{w}( $\chi$) defines a

line L_{ $\chi$} in \mathrm{T}_{X}^{*}(\log D)\otimes_{X}F_{ $\chi$} . Let \overline{L}_{ $\chi$} be the closure of the image of L_{ $\chi$} in \mathrm{T}_{X}^{*}(\log D) .

For each 1\leq i\leq n ,
we put

(4.5.4) CC_{i}(\displaystyle \mathscr{F})=\sum_{r\in \mathbb{Q}_{>0}}\sum_{ $\chi$}\frac{r\cdot \mathrm{r}\mathrm{k}_{ $\Lambda$}(M_{i, $\chi$}^{(r)})}{[F_{ $\chi$}:F_{i}]}[\overline{L}_{ $\chi$}],
which is a d‐cycle on \mathrm{T}_{X}^{*}(\log D)\times x^{D_{i}} . It follows from the proof of ([10] 1.26) that the

coefficient of [\overline{L}_{ $\chi$}] is an element of \displaystyle \mathbb{Z}[\frac{1}{p}] ,
and hence gives an element of  $\Lambda$.
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Let  $\sigma$:X\rightarrow \mathrm{T}_{X}^{*}(\log D) be the zero‐section of \mathrm{T}_{X}^{*}(\log D) over X . We define the

characteristic cycle of \mathscr{F} and denote by CC(\mathscr{F}) ,
the d‐cycle on \mathrm{T}_{X}^{*}(\log D) defined by

(4.5.5) CC(\displaystyle \mathscr{F})=\mathrm{r}\mathrm{k}_{ $\Lambda$}(\mathscr{F})[ $\sigma$]-\sum_{1\leq i\leq n}CC_{i}(\mathscr{F}) .

Recall ([3]2.1.1) that we associated to j_{!}\mathscr{F} a characteristic class, denoted by

C(j_{!}\mathscr{F}) ,
which is a section of \mathrm{H}^{0}(X, \mathscr{K}_{X}) ,

where \mathscr{K}_{X}=f^{!} $\Lambda$ and  f:X\rightarrow Spec (  k)
is the structural morphism.

Conjecture 4.6. Under the assumptions of (4.5), we have in \mathrm{H}^{0}(X, \mathscr{K}_{X})

(4.6.1) C(j_{!}\mathscr{F})=(CC(\mathscr{F}), [ $\sigma$]) ,

where the right hand side is the intersection pairing relatively to \mathrm{T}_{X}^{*}(\log D) .

Kato defined the characteristic cycle of a clean sheaf of rank 1 in [7]. The second

author (T. S.) extended the definition to isoclinic and clean sheaves in ([10] 3.6) and

proved conjecture 4.6 for these sheaves in (loc. cit. 3.7).

4.7 We may optimistically expect that for any locally constant constructible sheaf

\mathscr{F} of  $\Lambda$‐modules on  U ,
there exists an snc‐pair (X; D') over k and a proper morphism

of snc‐pairs (X\prime, D')\rightarrow(X, D) inducing an isomorphism X'-D'\rightarrow\sim U such that \mathscr{F} is

clean along D' . Kato proved this property for rank 1 sheaves on surfaces ([7]4.1).
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