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Galois images and modular curves

By

Keisuke Arai *

To the memory of Profe ssor Fumiyuki Momose

Abstract

This is a survey paper about Galois images, points on modular curves and Shimura curves,

together with an application. The main topics are as follows. (1) The images of the Galois

representations associated to elliptic curves and QM‐abelian surfaces. (2) Rational points,

points over quadratic fields on modular curves and Shimura curves. (3) Application to a

finiteness conjecture on abelian varieties with constrained prime power torsion.
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§1. Galois images associated to elliptic curves

Let k be a field of characteristic 0, and let \mathrm{G}_{k}=\mathrm{G}\mathrm{a}1(\overline{k}/k) be the absolute Galois

group of k where \overline{k} is an algebraic closure of k. Let p be a prime. For an elliptic curve
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E over k
,

let T_{p}E denote the p‐adic Tate module of E (for precise definition, look at

the last of this section), and let

$\rho$_{E/k,p}:\mathrm{G}_{k}\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}(T_{p}E)\cong \mathrm{G}\mathrm{L}(\mathrm{Z})

be the p‐adic Galois representation determined by the action of \mathrm{G}_{k} on T_{p}E . By a

�number field� we mean a finite extension of the rational number field \mathbb{Q}.
For an elliptic curve E over a number field K

,
it is very important to understand

the Galois representation $\rho$_{E/K,p} since it reflects arithmetic and geometric properties of

E . The following theorem asserts that the representation $\rho$_{E/K,p} has a large image if E

has no CM (complex multiplication: the precise definition is given in §5). This seems

to be a starting point of studying the images of Galois representations.

Theorem 1.1 ([43, IV‐11 Theorem], [44, p.299 Théorème 3

Let K be a number field, and let E be an elliptic curve over K. Suppose that E

has no CM. Then the following assertions hold.

(1) For any prime p ,
the image $\rho$_{E/K,p}(G) is open in \mathrm{G}\mathrm{L}(\mathrm{Z}) i.e. there exists an

integer n\geq 1 depending on K, E and p such that $\rho$_{E/K,p}(\mathrm{G}_{K})\supseteq 1+p^{n}\mathrm{M}_{2}(\mathbb{Z}_{p}) .

(2) For all but finitely many primes p ,
we have $\rho$_{E/K,p}(\mathrm{G}_{K})=\mathrm{G}\mathrm{L}_{2}(\mathbb{Z}_{p}) .

Remark.

In Theorem 1.1 (2), the upper bound of primes p satisfying $\rho$_{E/K,p}(\mathrm{G}_{K})\neq \mathrm{G}\mathrm{L}(\mathrm{Z})
is effectively estimated in terms of K and E ([18, p.487 Main Theorem 1]).

Remark.

In the situation of Theorem 1.1, suppose that E has CM. Then the image $\rho$_{E/K,p}(G)
contains an abelian subgroup of index 1 or 2 (cf. [48, p.106 Theorem 2.2 (\mathrm{b})] ). In par‐

ticular $\rho$_{E/K,p}(G) is not open in \mathrm{G}\mathrm{L}_{2}(\mathbb{Z}_{p}) .

We have the following question concerning the uniform surjectivity of $\rho$_{E/K,p}.

Question 1.2 ( [45, p.187 (Question) 6.5] ) .

For a number field K
,

does there exist a constant C_{\mathrm{S}\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{e}}(K)>0 satisfying the

following?
�For any prime p>C_{\mathrm{S}\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{e}}(\mathrm{K}) and for any elliptic curve E over K without CM, we have

$\rho$_{E/K,p}(\mathrm{G}_{K})=\mathrm{G}\mathrm{L}_{2}(\mathbb{Z}_{p})

We know a weak answer to the question i.e. the image $\rho$_{E/K,p}(G) has a uniform

lower bound.

Theorem 1.3 ([2, p.24 Theorem 1.2], cf. [9, Theorem 1.1]).
Let K be a number field, and let p be a prime. Then there exists an integer n\geq 1

depending on K and p satisfy ing the following.
\backslash For any elliptic curve E over K without CM, we have $\rho$_{E/K,p}(\mathrm{G}_{K})\supseteq 1+p^{n}\mathrm{M}_{2}(\mathbb{Z}_{p}) .�
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Remark.

In Theorem 1.3, the integer n is effectively estimated if the invariant j(E) is not

contained in an exceptional finite set ([2, p.24 Theorem 1.3]).

Notice that Theorem 1.3 is generalized to the following situation: not fixing K
,
but

bounding the degree of K.

Theorem 1.4 (Corollary of [10, Theorem 1.1]).
Let g\geq 1 be an integer, and let p be a prime. Then there exists an integer n\geq 1

depending on g and p satisfy ing the following.
\backslash For any number field K with [K : \mathbb{Q}]\leq g and for any elliptic curve E over K without

CM,
we have $\rho$_{E/K,p}(\mathrm{G}_{K})\supseteq 1+p^{n}\mathrm{M}_{2}(\mathbb{Z}_{p}).

�

We can switch Question 1.2 concerning the images of p‐adic representations to the

question below concerning the images of \mathrm{m}\mathrm{o}\mathrm{d} p representations via the following lemma.

Lemma 1.5 ([43, IV‐23 Lemma 3

Let p\geq 5 be a prime, and let H be a closed subgroup of \mathrm{G}\mathrm{L}_{2}(\mathbb{Z}_{p}) . Then H contains

\mathrm{S}\mathrm{L}() if and only if H\mathrm{m}\mathrm{o}\mathrm{d} p contains \mathrm{S}\mathrm{L}_{2}(\mathbb{Z}/p\mathbb{Z}) .

Let

\overline{ $\rho$}_{E/k,p}:\mathrm{G}_{k}\rightarrow \mathrm{G}\mathrm{L}()
denote the reduction of $\rho$_{E/k,p} modulo p.

Question 1.6.

For a number field K
,
does there exist a constant C(K)>0 satisfying the following?

�For any prime p>C(K) and for any elliptic curve E over K without CM, we have

\overline{ $\rho$}_{E/K,p}(\mathrm{G}_{K})=\mathrm{G}\mathrm{L}_{2}(\mathrm{F}_{p}).
�

For an integer N\geq 1 and a commutative group (or a commutative group scheme)
A

,
let A[N] denote the kernel of multiplication by N in A . For a field k

,
let \overline{k} denote

an algebraic closure of k . For a scheme S and an abelian scheme A over S ,
let End(A)

denote the ring of endomorphisms of A defined over S . If S= Spec ( k) for a field k and

if k'/k is a field extension, simply put End(A) :=\mathrm{E}\mathrm{n}\mathrm{d}_{\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k')}(A\times \mathrm{s}_{\mathrm{p}\mathrm{e}\mathrm{c}(k)} Spec ( k'))
and End (A) :=\mathrm{E}\mathrm{n}\mathrm{d}_{\overline{k}}(A) . For a prime p and an abelian variety A over a field k

,
let

T_{p}A:=\displaystyle \lim_{\leftarrow}A[p](k) be the p‐adic Tate module of A
,

where the inverse limit is taken

with respect to multiplication by p:A[p^{n+1}](\overline{k})\rightarrow A[p^{n}](\overline{k}) . For a number field K,
let h_{K} denote the class number of K.

The author is very sorry for the death of Professor Fumiyuki Momose, who has

made a major contribution to the study of Galois images, modular curves and modular

forms.
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§2. Points on modular curves corresponding to maximal subgroups

We divide Question 1.6 into four parts corresponding to the maximal subgroups
of \mathrm{G}\mathrm{L}_{2}(\mathrm{F}_{p}) . For each prime p ,

a maximal subgroup G of \mathrm{G}\mathrm{L}() with \det G=\mathrm{F}_{p}^{\times} is

conjugate to one of the following subgroups ([27, p.115116]).

\bullet Borel subgroup:

\mathrm{B}=\{\left(\begin{array}{l}
**\\
0*
\end{array}\right)\}.
\bullet Normalizer of a split Cartan subgroup :

\mathrm{N}_{+}=\{\left(\begin{array}{l}
*0\\
0*
\end{array}\right), \left(\begin{array}{l}
0*\\
*0
\end{array}\right)\}.
\bullet Normalizer of a non‐split Cartan subgroup (when  p\geq 3 ) :

\mathrm{N}_{-}=\{\left(\begin{array}{ll}
x & y\\
 $\lambda$ y & x
\end{array}\right), \left(\begin{array}{ll}
x & y\\
- $\lambda$ y & -x
\end{array}\right) (x, y)\in \mathrm{F}_{p}\times \mathrm{F}_{p}\backslash \{(0,0)\}

is a fixed element.
\} ,

where  $\lambda$\in \mathrm{F}_{p}^{\times}\backslash (\mathrm{F}_{p}^{\times})^{2}

\bullet Exceptional subgroup (when  p\geq 5 and p\equiv\pm 3\mathrm{m}\mathrm{o}\mathrm{d} 8 ) :

Ex = the inverse image of a subgroup (of \mathrm{P}\mathrm{G}\mathrm{L}_{2}(\mathbb{Z}/\mathrm{p}) ) which is isomorphic to S_{4}

by the natural surjection \mathrm{G}\mathrm{L}_{2}(\mathbb{Z}/p\mathbb{Z})\rightarrow \mathrm{P}\mathrm{G}\mathrm{L}_{2}(\mathbb{Z}/p\mathbb{Z}) .

Let X(p) be the modular curve corresponding \mathrm{t}\mathrm{o}*=\mathrm{B}, \mathrm{N}_{+}, \mathrm{N}_{-}
,
Ex ([27, p.116 Table],

cf. [12]). Each of X(p) is a proper smooth curve over \mathbb{Q} . We give moduli interpretations
of X(p) and X(p) below.

Let N\geq 1 be an integer. Let Y(N) be the coarse moduli scheme over \mathbb{Q} parame‐

terizing isomorphism classes of pairs (E, A) where E is an elliptic curve and A is a cyclic

subgroup of E of order N . For a number filed K
,

a pair (E, A) as above over K (i.e. E is

an elliptic curve over K
,

and A is a cyclic subgroup of E(K) of order N which is stable

under the action of the Galois group \mathrm{G}_{K} ; in other words A is K‐rational) determines

a K‐rational point on Y_{0}(N) . Conversely, a K‐rational point on Y(N) corresponds to

the \overline{K}‐isomorphism class of a pair (E, A) ,
where E is an elliptic curve over K and A is a

cyclic subgroup of E(K) of order N which is stable under the action of \mathrm{G}_{K} . Let X(N)
be the smooth compactification of Y(N) which is also defined over \mathbb{Q} . For a prime

N=p ,
we have a natural identification X_{\mathrm{B}}(p)=X_{0}(p) . For a later use, let w_{N} denote

the involution on X_{0}(N) defined over \mathbb{Q} determined by (E, A)\mapsto(E/A, E[N]/A) .
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For a prime p ,
let Y_{\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t}}(\mathrm{p}) be the coarse moduli scheme over \mathbb{Q} parameterizing

isomorphism classes of triples (E, \{A, B\}) where E is an elliptic curve and \{A, B\} is an

unordered pair of cyclic subgroups of E of order p with A\cap B=0 . For a number filed

K
,

a triple (E, \{A, B\}) as above over K (i.e. E is an elliptic curve over K
,

and \{A, B\}
is an unordered pair of cyclic subgroups of E(K) of order p with A\cap B=0 which

(=\{A, B\}) is stable under the action of \mathrm{G}_{K} ) determines a K‐rational point on Y_{\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t}}(p) .

Conversely, a K‐rational point on Y_{\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t}}(\mathrm{p}) corresponds to the \overline{K}‐isomorphism class of

a triple (E, \{A, B where E is an elliptic curve over K and \{A, B\} is an unordered

pair of cyclic subgroups of E(K) of order p with A\cap B=0 which (=\{A, B\}) is stable

under the action of \mathrm{G}_{K} . Let X_{\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t}}(\mathrm{p}) be the smooth compactification of Y_{\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t}}(\mathrm{p}) which

is also defined over Q. We have a natural identification X_{\mathrm{N}_{+}}(p)= Xplit(p). A point
on a modular curve is called a CM point if it corresponds to an elliptic curve with CM.

Then Question 1.6 is divided into four parts.

Question 2.1 (Question * ).
For a number field K

,
does there exist a constant C_{*}(K)>0 satisfying the follow‐

ing?
�For any prime p>C_{*}(K) ,

we have  X_{*}(p)(K)\subseteq {cusps, CM points.�

Then, owing to the following lemma, the answer to Question 1.6 is affirmative if

and only if the answers to Questions \mathrm{B}, \mathrm{N}_{+}, \mathrm{N}_{-}
,
Ex are all affirmative.

Lemma 2.2.

For a number field K
,

there exists a constant C_{cyc}(K)>0 satisfy ing the following.
\backslash For any prime p>C_{cyc}(K) and for any elliptic curve E over K

,
we have \det$\rho$_{E/K,p}(\mathrm{G}_{K})=

\mathbb{Z}_{p}^{\times} (and so \det\overline{ $\rho$}_{E/K,p}(\mathrm{G}_{K})=\mathrm{F}_{p}^{\times}) .�

Proof.
Since \det$\rho$_{E/K,p} is the p‐adic cyclotomic character ([43, IV‐5]), we can choose

C_{\mathrm{c}\mathrm{y}\mathrm{c}}(\mathrm{K}) to be the largest prime that divides the discriminant of K (and C_{\mathrm{c}\mathrm{y}\mathrm{c}}(\mathrm{Q}) to be

1).
\square 

We have the following partial answers to these questions. Theorem 2.3 below was

shown by combining several (algebraic, geometric and analytic) methods, which have

been widely used to study rational points on various modular curves.

Theorem 2.3 ([28, p.129 Theorem 1

We have X_{\mathrm{B}}(p)(\mathbb{Q})= {cusps} for any prime p>163 . Equivalently, for any prime

p>163 and for any elliptic curve E over \mathbb{Q} , the representation \overline{ $\rho$}_{E/\mathbb{Q},p} is irreducible.
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Theorem 2.3 was generalized to almost all quadratic fields.

Theorem 2.4 ([33, p.330 Theorem \mathrm{B}

Let K be a quadratic field which is not an imaginary quadratic field of class number

one. Then there exists a constant C_{\mathrm{B}}(K)>0 satisfy ing the following two equivalent
conditions.

(1) For any prime p>C_{\mathrm{B}}(K) ,
we have X_{\mathrm{B}}(p)(K)= {cusps.

(2) For any prime p>C(K) and for any elliptic curve E over K
,

the representation

\overline{ $\rho$}_{E/K,p} is irreducible.

Remark.

In Theorem 2.4, the set of primes p with  X_{\mathrm{B}}(p)(K)\neq {cusps} is effectively esti‐

mated except at most one prime. If such a prime exists, it is concerned with a Siegel
zero of the  L‐functions of quadratic characters (cf. [28, p.160 Theorem \mathrm{A}] ).

Remark.

We know by [28, p.131 Theorem 4] (cf. [44, p.306 Proposition 21]) that for any

prime p\geq 11 and for any semi‐stable elliptic curve E over \mathbb{Q} , the representation \overline{ $\rho$}_{E/\mathbb{Q},p}
is irreducible (and furthermore surjective). This result is generalized to semi‐stable

elliptic curves over certain number fields ([23, p.246 Théorème], [24, p.615 Théorème 1,
Théorème 2], cf. [11]).

For a prime p ,
let J(p) be the Jacobian variety of X_{0}(p) ,

which is an abelian variety
over \mathbb{Q} . By abuse of notation let w_{p} denote also the involution on J(p) defined over

\mathbb{Q} induced by w_{p} : X_{0}(p)\rightarrow X_{0}(p) . Consider the quotient J_{0}^{-}(p) of J(p) defined by

J_{0}^{-}(p) :=J_{0}(p)/(1+w_{p})J_{0}(p) ,
which is also an abelian variety over \mathbb{Q} . For rational

points on X_{\mathrm{N}_{+}}(p) ,
we know the following.

Theorem 2.5 ( [31, p.116 Theorem (0.1)] ) .

Let p be a prime satisfy ing (p=11 orp\geq 17) and p\neq 37 . Suppose \# J_{0}^{-}(p)(\mathbb{Q})<\infty.
Then  X_{\mathrm{N}_{+}}(p)(\mathbb{Q})\subseteq {cusps, CM points.

Remark.

Theorem 2.5 seems to be the first result that distinguishes CM points among non‐

cuspidal rational points. In fact, the formal immersion method was used in a part of

the proof of Theorem 2.3: we deduce a contradiction by assuming the existence of a

non‐cuspidal rational point on  X_{\mathrm{B}}(p) . But a priori the modular curve X(p) has a

non‐cuspidal rational point (which is a CM point), so the above method is not applicable.

Remark.

The genus of the modular curve X(p) is positive if and only if p=11 or p\geq 17.
In Theorem 2.5, p=37 is excluded since the group \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{X}(37)) of automorphisms of
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X(37) defined over \overline{\mathbb{Q}} is large i.e. \mathrm{A}\mathrm{u}\mathrm{t}(X_{0}(37))\cong \mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z} (cf. [29, p.27], [36,
p.279 Satz 1]). Notice that each automorphism in \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{X}(37)) is defined over \mathbb{Q}.

Later the assertion in Theorem 2.5 was shown to hold even if p=37.

Theorem 2.6 ([16, p.288 Theorem 3.2] or [34, p.160 Theorem 0.1]).
We have  X_{\mathrm{N}_{+}}(37)(\mathbb{Q})\subseteq {cusps, CM points.

Now we know the existence of the constant  C_{\mathrm{N}_{+}} The following theorem was

shown by a new method using a modular unit.

Theorem 2.7 ([6, p.570 Theorem 1.2]).
There exists a constant C_{\mathrm{N}_{+}}()>0 such that we have  X_{\mathrm{N}_{+}}(p)(\mathbb{Q})\subseteq {cusps, CM points}

for any prime  p>C_{\mathrm{N}_{+}}() .

Remark.

In [6] the constant C_{\mathrm{N}_{+}}() is effectively estimated, but the value obtained there is

quite huge.

Recently, by using the Gross vectors method in the previous works [40] and [42]
together with the aid of a computer, the estimate has been greatly improved.

Theorem 2.8 ([7]).
We have  X_{\mathrm{N}_{+}}(p)(\mathbb{Q})\subseteq {cusps, CM points} for any prime  p\geq 11, p\neq 13.

For X_{\mathrm{N}-}(p)(\mathbb{Q}) ,
little seems to be known.

Question Ex is solved for any number field K.

Theorem 2.9 ([27, p.118]).
For any number field K

,
there exists a constant C_{\mathrm{E}\mathrm{x}}(K) satisfy ing the following.

\backslash For any prime p>C_{\mathrm{E}\mathrm{x}}(K) ,
we have  X_{\mathrm{E}\mathrm{x}}(p)(K)=\emptyset .

�

Note that Theorem 2.9 is proved by a local method, which in particular leads to

the following.

Theorem 2.10 ([27, p.118]).
If  p>13 ,

then X_{\mathrm{E}\mathrm{x}}(p)(\mathbb{Q}_{p})=\emptyset.

§3. Variant: Points on X_{0}^{+}(N)

Let N\geq 1 be an integer. For rational points on X_{0}(N) ,
we know the following.



152 Keisuke Arai

Theorem 3.1.

([30, p.745 Théorème], [26, p.63 (5.2.3.1)], [25, p.221 Proposition IV.3.5, p.222 Propo‐
sition IV.3.10], [28, p.131], [19, p.23], [20, p.18 Theorem 6, p.20 Theorem 7], [21, p.241
Theorem 1], [22, p.423 Theorem 1])

We have X_{0}(N)(\mathbb{Q})= {cusps} if and only if N does not belong to the following set:

\{N|N\leq 19\}\cup\{21 , 25, 27, 37, 43, 67, 163 \}.

Now we consider the modular curve X_{0}^{+}(N) defined by taking a quotient:

X_{0}^{+}(N):=X_{0}(N)/w_{N}.

Then X_{0}^{+}(N) is a proper smooth curve over \mathbb{Q} . Note that if N=p^{2} for a prime p ,
then

the natural map X_{0}(p^{2})\rightarrow X_{\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t}}(p) defined by (E, A)\mapsto(E/A[p], \{A/A[p], E[p]/A[p]\})
induces an isomorphism  X_{0}^{+}(p^{2})\cong Xplit(p). We have the following open question.

Question 3.2.

For a number field  K
,

does there exist a constant C_{0}^{+}(K)>0 satisfying the follow‐

ing?
�For any integer N>C_{0}^{+}(K) ,

we have  X_{0}^{+}(N)(K)\subseteq {cusps, CM points.�

Notice that even if  N is an arbitrarily large, the equality X_{0}^{+}(N)(\mathbb{Q})= {cusps}
does not hold. We know the following partial answer to Question 3.2.

Theorem 3.3 ( [32, p.269 Theorem (0.1)] ) .

Let N be a composite number. If N has a prime divisor p which satises the

following two conditions, then  X_{0}^{+}(N)(\mathbb{Q})\subseteq {cusps, CM points.
(i) (p=11 or p\geq 17) and p\neq 37.

(ii) ] J_{0}^{-}(p)(\mathbb{Q})<\infty.

Remark.

When N\in\{73 , 91, 103, 125, 137, 191, 311 \} ,
the modular curve X_{0}^{+}(N) has an ex‐

ceptional rational point i.e. a rational point which is neither a cusp nor a CM point

([15, p.206], cf. [14]).

The assumption p\neq 37 in Theorem 3.3 was shown to be superfluous.

Theorem 3.4 ([3, p.2273 Theorem 1.2]).
Let M\geq 2 be an integer. Let K be \mathbb{Q} or an imaginary quadratic field. If  K\neq

\mathbb{Q} , assume 37 does not split in K and 3 does not divide h_{K} . Then  X_{0}^{+}(37M)(K)\subseteq
{cusps, CM points.

Remark.

Theorem 3.4 for  M=37 and K=\mathbb{Q} implies Theorem 2.6.



Galois images and modular curves 153

Theorem 3.3 is generalized to certain quadratic fields.

Theorem 3.5 ([4, Theorem 1.6]).
Let N be a composite number. Let K be a quadratic field satisfy ing X_{0}(N)(K)=

{cusps. If N has a prime divisor p which satises the fo llowing fo ur conditions, then

 X_{0}^{+}(N)(K)\subseteq {cusps, CM points.

(i) (p=11 or p\geq 17) and p\neq 37.

(ii) If p=11 ,
then \mathrm{o}\mathrm{r}\mathrm{d}_{p}N=1.

(iii) p is unramied in K.

(iv) J_{0}^{-}(p)(K)=J_{0}^{-}(p)() and \# J_{0}^{-}(p)(\mathbb{Q})<\infty.

§4. Galois images associated to QM‐abelian surfaces

Let B be an indefinite quaternion division algebra over \mathbb{Q} . Let

d=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}(B)

be the discriminant of B . Then d>1 and d is the product of an even number of distinct

primes. Choose and fix a maximal order \mathcal{O} of B . If a prime p does not divide d
,

fix an

isomorphism \mathcal{O}\otimes_{\mathbb{Z}}\mathbb{Z}_{p}\cong \mathrm{M}() of \mathbb{Z}_{p} ‐algebras.

Denition 4.1 (cf. [8, p.591]).
Let S be a scheme over \mathbb{Q} . A QM‐abelian surface by \mathcal{O} over S is a pair (A, i) where

A is an abelian surface over S (i.e. A is an abelian scheme over S of relative dimension

2), and  i:\mathcal{O}\mapsto End(A) is an injective ring homomorphism (sending 1 to id). We

consider that  A has a left \mathcal{O}‐action. We sometimes omit (

(\mathrm{b}\mathrm{y}\mathcal{O}
� and simply write \mathrm{a}

QM‐abelian surface�

Let k be a field of characteristic 0 . As explained below, a QM‐abelian surface (A, i)
over k where i is an isomorphism has a Galois representation which looks like that of

an elliptic curve (cf. [37]). By this reason, a QM‐abelian surface is also called a fake

elliptic curve or a false elliptic curve.

Let (A, i) be a QM‐abelian surface over k . Suppose that (A, i) satisfies the following
condition:

(4 \cdot 1)  i : \mathcal{O}\rightarrow^{\cong} End(A) =\mathrm{E}\mathrm{n}\mathrm{d}(A) .

Note that the condition (4.1) corresponds to �no CM� in the case of an elliptic curve.

Now we consider Galois representations associated to (A, i) . Take a prime p not dividing
d . We have isomorphisms of \mathbb{Z}_{p} ‐modules:

\mathbb{Z}_{p}^{4}\cong T_{p}A\cong \mathcal{O}\otimes_{\mathbb{Z}}\mathbb{Z}_{p}\cong \mathrm{M}_{2}(\mathbb{Z}_{p}) .
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The middle is also an isomorphism of left \mathcal{O}‐modules ( [37, p.300 Proposition 1.1 (1)] ) ;

the last is also an isomorphism of \mathbb{Z}_{p} ‐algebras (which is fixed as above). We sometimes

identify these \mathbb{Z}_{p} ‐modules. Take a \mathbb{Z}_{p} ‐basis

e_{1}=\left(\begin{array}{l}
10\\
00
\end{array}\right), e_{2}=\left(\begin{array}{l}
00\\
10
\end{array}\right), e_{3}=\left(\begin{array}{l}
01\\
00
\end{array}\right), e_{4}=\left(\begin{array}{l}
00\\
01
\end{array}\right)
of \mathrm{M}_{2}(\mathbb{Z}_{p}) . Then the image of the natural map

\mathrm{M}_{2}(\mathbb{Z}_{p})\cong \mathcal{O}\otimes_{\mathbb{Z}}\mathbb{Z}_{p}\mapsto \mathrm{E}\mathrm{n}\mathrm{d}(T_{p}A)\cong \mathrm{M}_{4}(\mathbb{Z}_{p})

lies in \{\left(\begin{array}{ll}
X & 0\\
0 & X
\end{array}\right)|X\in \mathrm{M}_{2}(\mathbb{Z}_{p})\} . The \mathrm{G}_{k} ‐action on T_{p}A induces a representation

 $\rho$ : \mathrm{G}_{k}\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}_{\mathcal{O}\otimes_{\mathrm{Z}}\mathbb{Z}_{p}}(T_{p}A)\subseteq \mathrm{A}\mathrm{u}\mathrm{t}(T_{p}A)\cong \mathrm{G}\mathrm{L}_{4}(\mathbb{Z}_{p}) ,

where \mathrm{A}\mathrm{u}\mathrm{t}_{\mathcal{O}\otimes_{\mathrm{Z}}\mathbb{Z}_{p}} (TA) is the group of automorphisms of T_{p}A commuting with the action

of \mathcal{O}\otimes_{\mathbb{Z}}\mathbb{Z}_{p} . The above obser(ion implies

Aut \mathcal{O}\otimes \mathbb{Z}_{p}(T_{p}A)=\{\left(\begin{array}{ll}
aI_{2} & bI_{2}\\
cI_{2} & dI_{2}
\end{array}\right)|\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right)\in \mathrm{G}\mathrm{L}_{2}(\mathbb{Z}_{p})\}\subseteq \mathrm{G}\mathrm{L}_{4}(\mathbb{Z}_{p}) ,

where I_{2}=\left(\begin{array}{l}
10\\
01
\end{array}\right) . Then the representation  $\rho$ factors through

 $\rho$:\mathrm{G}_{k}\rightarrow\{\left(\begin{array}{ll}
aI_{2} & bI_{2}\\
cI_{2} & dI_{2}
\end{array}\right)|\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right)\in \mathrm{G}\mathrm{L}_{2}(\mathbb{Z}_{p})\}\subseteq \mathrm{G}\mathrm{L}_{4}(\mathbb{Z}_{p}) .

Let

$\rho$_{(A,i)/k,p}:\mathrm{G}_{k}\rightarrow \mathrm{G}\mathrm{L}(\mathrm{Z})

denote the Galois representation determined by \left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right) ,
so that we have $\rho$_{(A,i)/k,p}( $\sigma$)=

\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right) if  $\rho$( $\sigma$)=\left(\begin{array}{ll}
aI_{2} & bI_{2}\\
cI_{2} & dI_{2}
\end{array}\right) for  $\sigma$\in \mathrm{G}_{k} . Let

\overline{ $\rho$}_{(A,i)/k,p}:\mathrm{G}_{k}\rightarrow \mathrm{G}\mathrm{L}()

denote the reduction of $\rho$_{(A,i)/k,p} modulo p . Note that the determinant

\det$\rho$_{(A,i)/k,p}:\mathrm{G}_{k}\rightarrow \mathbb{Z}_{p}^{\times}

is the p‐adic cyclotomic character ( [37, p.300 Proposition 1.1 (2)] ) .

As an analogue of Theorem 1.1, we have the following.
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Theorem 4.2 ( [37, p.299 Theorem (below)] ) .

Let K be a number field and (A, i) be a QM‐abelian surfa ce by \mathcal{O} over K satisfy ing

(4\cdot 1) (with k=K). Then the following assertions hold.

(1) Ta ke a prime p not dividing d . Then the representation $\rho$_{(A,i)/K,p} has an open

image i.e. there exists an integer n\geq 1 depending on K, \mathcal{O}, (A, i)/K and p such that

$\rho$_{(A,i)/K,p}(\mathrm{G}_{K})\supseteq 1+p^{n}\mathrm{M}_{2}(\mathbb{Z}_{p}) .

(2) For all but finitely many primes p (with pfd), we have $\rho$_{(A,i)/K,p}(\mathrm{G}_{K})=\mathrm{G}\mathrm{L}_{2}(\mathbb{Z}_{p}) .

Remark.

In [37], the case where p divides d is also treated.

The representation $\rho$_{(A,i)/K,p} also has a uniform lower bound.

Theorem 4.3 ([1, p.167 Theorem 2.3], cf. [9, Theorem 1.1]).
Let K be a number field, and let p be a prime not dividing d . Then there exists an

integer n\geq 1 depending on K, \mathcal{O} and p satisfy ing the following.
\backslash For any QM‐abelian surfa ce (A, i) by \mathcal{O} over K satisfy ing (4\cdot 1) (with k=K), we have

$\rho$_{(A,i)/K,p}(\mathrm{G}_{K})\supseteq 1+p^{n}\mathrm{M}_{2}(\mathbb{Z}_{p}) .

,,

As an analogue of Theorem 1.4, we have the following generalization of Theorem

4.3.

Theorem 4.4 (Corollary of [10, Theorem 1.1]).
Let g\geq 1 be an integer, and let p be a prime not dividing d . Then there exists an

integer n\geq 1 depending on g, \mathcal{O} and p satisfy ing the following.
\backslash For any number field K with [K : \mathbb{Q}]\leq g and for any QM‐abelian surfa ce (A, i) by \mathcal{O}

over K satisfy ing (4\cdot 1) (with k=K), we have $\rho$_{(A,i)/K,p}(\mathrm{G}_{K})\supseteq 1+p^{n}\mathrm{M}_{2}(\mathbb{Z}_{p}) .

,,

§5. Points on Shimura curves of $\Gamma$_{0}(\mathrm{p}) ‐type

We keep the notation and the convention in §4. Let M^{B} be the coarse moduli

scheme over \mathbb{Q} parameterizing isomorphism classes of QM‐abelian surfaces by \mathcal{O} . Then

M^{B} is a proper smooth curve over \mathbb{Q} , called a Shimura curve (cf. [8], [17]). For a number

field K
,

a QM‐abelian surface (A, i) by \mathcal{O} over K determines a K‐rational point on M^{B}.

Conversely, a K‐rational point on M^{B} corresponds to the \overline{K}‐isomorphism class of a QM‐
abelian surface (A, i) by \mathcal{O} over some finite extension L of K (contained in \overline{K}). Here we

can take L=K if and only if B\otimes_{\mathbb{Q}}K\cong \mathrm{M}(\mathrm{K}) ( [17, p.93 Theorem (1.1)] ) . Let p be a

prime not dividing d . Let M_{0}^{B}(p) be the coarse moduli scheme over \mathbb{Q} parameterizing

isomorphism classes of triples (A, i, V) where (A, i) is a QM‐abelian surface by \mathcal{O} and

V is a left \mathcal{O}‐submodule of A[p] with \mathrm{F}_{p} ‐dimension 2. Then M_{0}^{B}(p) is a proper smooth
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curve over \mathbb{Q} , which we call a Shimura curve of $\Gamma$_{0}(\mathrm{p}) ‐type. For a number field K, \mathrm{a}

triple (A, i, V) as above over K (i.e. (A, i) is a QM‐abelian surface by \mathcal{O} over K
,

and V

is a left \mathcal{O}‐submodule of A[p](K) with \mathrm{F}_{p} ‐dimension 2 which is stable under the action

of \mathrm{G}_{K}) determines a K‐rational point on M_{0}^{B}(p) . Conversely, a K‐rational point on

M_{0}^{B}(p) corresponds to the \overline{K}‐isomorphism class of a triple (A, i, V) ,
where there is a

finite extension L of K (contained in \overline{K} ) such that (A, i) is a QM‐abelian surface by \mathcal{O}

over L and V is a left \mathcal{O}‐submodule of A[p](K) with \mathrm{F}_{p} ‐dimension 2 stable under the

action of \mathrm{G}_{L} . Here we can take L=K if B\otimes_{\mathbb{Q}}K\cong \mathrm{M}(\mathrm{K}) and \mathrm{A}\mathrm{u}\mathrm{t}_{\mathcal{O}}(A)=\{\pm 1\},
where Aut \mathrm{o}(\mathrm{A}) is the group of automorphisms of A defined over \overline{K} compatible with the

action of \mathcal{O} . The curve M_{0}^{B}(p) is an analogue of the modular curve X_{0}(p) . In fact, for a

triple (A, i, V) as above over a number field K
,
the representation \overline{ $\rho$}_{(A,i)/K,p} is reducible

just like the \mathrm{m}\mathrm{o}\mathrm{d} p representation \overline{ $\rho$}_{E/K,p} associated to an elliptic curve E over K with

a K‐rational cyclic subgroup of order p (which determines a K‐rational point on X(p) )
([5]) .

For real points on M^{B}
,

we know the following.

Theorem 5.1 ([47, p.136 Theorem 0

We have M^{B}(\mathbb{R})=\emptyset.

Remark.

For any prime p we have  M_{0}^{B}(p)(\mathbb{R})=\emptyset ,
because there is a natural map  M_{0}^{B}(p)\rightarrow

 M^{B} defined over \mathbb{Q} . So for a number field K having a real place, we have M_{0}^{B}(p)(K)=\emptyset.

Here we recall the notion of CM (complex multiplication) on an abelian variety.
Let k be a field, and let A be an abelian variety over k . For a field extension k'/k ,

the

abelian variety A is said to have CM over k' if \mathrm{E}\mathrm{n}\mathrm{d}_{k'}(A)\otimes_{\mathbb{Z}}\mathbb{Q} contains a product R of

number fields satisfying \dim_{\mathbb{Q}}R=2\dim A . Conventionally A is said to have CM if it

has CM over \overline{k}.

Consider the case where the characteristic of k is 0 . If A is \overline{k}‐simple and has CM

(by R), then End (A)\otimes_{\mathbb{Z}}\mathbb{Q}\cong R ([35, p.202 Table (Chapter IV Section 21 . If (A, i)
is a QM‐abelian surface over k

,
then either A has CM or A is \overline{k}‐simple. If (A, i) is a

QM‐abelian surface over k with CM, then A is \overline{k}‐isogenous to E\times E where E is an

elliptic curve over \overline{k} with CM. A point on M_{0}^{B}(p) is called a CM point if it corresponds
to a QM‐abelian surface with CM.

As an analogue of Theorem 2.4, we know the following.

Theorem 5.2 ([5]).
Let K be an imaginary quadratic field with h_{K}\geq 2 . Then there exists a constant

C_{0}^{QM}(K)>0 depending only on K satisfy ing the following conditions.

(1) (a) If B\otimes_{\mathbb{Q}}K\cong \mathrm{M}_{2}(K) ,
then  M_{0}^{B}(p)(K)=\emptyset holds for any prime  p>C_{0}^{QM}(K)

with p-d.
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(b) If B\otimes_{\mathbb{Q}}K\not\cong \mathrm{M}_{2}(K) ,
then  M_{0}^{B}(p)(K)\subseteq {  CM points} holds for any prime

p>C_{0}^{QM}(K) with p-d.

(2) For any prime p>C_{0}^{QM}(K) with p-d and for any QM‐abelian surfa ce (A, i) by
\mathcal{O} over K satisfy ing (4\cdot 1) (with k=K), the representation \overline{ $\rho$}_{(A,i)/K,p} : \mathrm{G}_{K}\rightarrow

\mathrm{G}\mathrm{L}() is irreducible.

§6. Application to a finiteness conjecture on abelian varieties

For a number field K and a prime p ,
let \overline{K}_{p} denote the maximal pro‐p extension of

K() which is unramified away from p ,
where $\mu$_{p} is the group of p‐th roots of unity in

\overline{K} . For a number field K
,

an integer g\geq 0 and a prime p ,
let \mathscr{A}(K, g,p) denote the set

of K‐isomorphism classes of abelian varieties A over K
,

of dimension g ,
which satisfy

K(A[p^{\infty}])\subseteq\overline{K}_{p},

where K(A[p^{\infty}]) is the field generated over K by the p‐power torsion of A . By [46,
p.493 Theorem 1] we know that an abelian variety A over K whose class belongs to

\mathscr{A}(K, g,p) has good reduction at any prime of K not dividing p ,
because the extension

K(A[p^{\infty}])/K() is unramified away from p . So the solution of the Shafarevich con‐

jecture ([13, p.363 Satz 6]) implies that \mathscr{A}(K, g,p) is a finite set. For fixed K and g,

define the set

\mathscr{A}(K, g):=\{([A],p)|[A]\in \mathscr{A}(K, g,p

We have the following finiteness conjecture on abelian varieties.

Conjecture 6.1 ([41, p.1224 Conjecture 1

Let K be a number field, and let g\geq 0 be an integer. Then the following two

equivalent conditions hold.

(1) The set \mathscr{A}(K, g) is finite.

(2) There exists a constant C_{\mathrm{R}\mathrm{T}}(K, g)>0 depending on K and g such that we have

\mathscr{A}(K, g,p)=\emptyset for any prime  p>C_{\mathrm{R}\mathrm{T}}(K, g) .

As an application of Theorem 2.3 and Theorem 2.4, we know the following.

Theorem 6.2 ([41, p.1224 Theorem 2, p.1227 Theorem 4

Let K be \mathbb{Q} or a quadratic field which is not an imaginary quadratic field of class

number one. Then the set \mathscr{A}(K, 1) is finite.

Let B be an indefinite quaternion division algebra over \mathbb{Q} . Let \mathscr{A}(K, 2,p)_{B} be

the set of K‐isomorphism classes of abelian varieties A over K in \mathscr{A}(K, 2, p) whose
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endomorphism algebra End(A) contains a maximal order \mathcal{O} of B as a subring. Define

also the set

\mathscr{A}(K, 2)_{B}:=\{([A],p)|[A]\in \mathscr{A}(K, 2,p)_{B}\},

which is a subset of \mathscr{A}(K, 2) . If one of the following two conditions is satisfied, we know

that the set \mathscr{A}(K, 2)_{B} is empty (Remark after Theorem 5.1, [17, p.93 Theorem (1.1)]).
(i) K has a real place.

(ii) B\otimes_{\mathbb{Q}}K\not\cong \mathrm{M}_{2}(K) .

As an application of Theorem 5.2 (2), we have the following.

Theorem 6.3 ([5]).
Let K be an imaginary quadratic field with h_{K}\geq 2 . Then the set \mathscr{A}(K, 2)_{B} is

finite.

Let \mathcal{Q}\mathcal{M} be the set of isomorphism classes of indefinite quaternion division algebras
over \mathbb{Q} . Define the set

\displaystyle \mathscr{A}(K, 2)_{\mathcal{Q}\mathcal{M}}:=\bigcup_{B\in \mathcal{Q}\mathcal{M}}\{([A],p)|[A]\in \mathscr{A}(K, 2,p)_{B}\},
which is a subset of \mathscr{A}(K, 2) . As a corollary of Theorem 6.3, we know the following.

Corollary 6.4 ([5]).
Let K be an imaginary quadratic field with h_{K}\geq 2 . Then the set \mathscr{A}(K, 2)_{\mathcal{Q}\mathcal{M}} is

finite.

Conjecture 6.1 is partly solved for any K and any g as seen in Theorem 6.5 and

Theorem 6.6 below. Let \mathscr{A}(K, g,p)_{\mathrm{s}\mathrm{t}} be the set of K‐isomorphism classes of semi‐stable

abelian varieties in \mathscr{A}(K, g,p) . Define also the set

\mathscr{A}(K, g)_{\mathrm{s}\mathrm{t}}:=\{([A],p)|[A]\in \mathscr{A}(K, g,p)_{\mathrm{s}\mathrm{t}}\},

which is a subset of \mathscr{A}(K, g) .

Theorem 6.5 ([38, p.2392 Corollary 4.5]).
For any number field K and for any integer g\geq 0 ,

the set \mathscr{A}(K, g)_{st} is finite.

For a prime p and an abelian variety A of dimension g over a number field K
,

let

$\rho$_{A/K,p}:\mathrm{G}_{K}\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}(T_{p}A)\cong \mathrm{G}\mathrm{L}(\mathrm{Z})

be the p‐adic Galois representation determined by the action of \mathrm{G}_{K} on the p‐adic Tate

module T_{p}A . Let \mathscr{A}(K, g, p)_{\mathrm{a}\mathrm{b}} be the set of K‐isomorphism classes of abelian varieties
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A over K in \mathscr{A}(K, g,p) such that the image $\rho$_{A/K,p}(G) is an abelian group. Define

also the set

\mathscr{A}(K, g)_{\mathrm{a}\mathrm{b}}:=\{([A],p)|[A]\in \mathscr{A}(K, g,p)_{\mathrm{a}\mathrm{b}}\},

which is a subset of \mathscr{A}(K, g) .

Theorem 6.6 ([39]).
For any number field K and for any integer g\geq 0 ,

the set \mathscr{A}(K, g)_{ab} is finite.
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