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A refinement of the local class field theory of Serre
and Hazewinkel

By

TAKASHI SUZUKI*and MANABU Y OSHIDA™**

Abstract

We give a refinement of the local class field theory of Serre and Hazewinkel. This refine-
ment allows the theory to treat extensions that are not necessarily totally ramified. Such a
refinement was obtained and used in the authors’ paper on Fontaine’s property (P.,), where
the explanation had to be rather brief. In this paper, we give a complete account, from nec-
essary knowledge of an appropriate Grothendieck site to the details of the proof. We start by
reviewing the local class field theory of Serre and Hazewinkel.
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§1. Introduction

Let K be a complete discrete valuation field with perfect residue field k£ of charac-
teristic p > 0 and let K" be the maximal abelian extension of K. When k is finite, the
usual local class field theory gives a canonical homomorphism

K* — Gal(K*™/K),

which induces a commutative diagram

0 —— Uk —_— K~ —_— 7 — 0

| ! l

0 —— T(K*/K) —— Gal(K**/K) —— Gal(k**/k) —— 0,

where Uk is the group of units of K and T denotes the inertia group. Serre ([Ser61])
gave an analogue of this theory for the case where the residue field k is algebraically
closed. For this, he developed the theory of proalgebraic groups (more precisely, pro-
quasi-algebraic groups) and their fundamental groups in his paper [Ser60]. There the
group of units Ux was viewed as a proalgebraic group over the residue field k. We denote
this proalgebraic group by Ug and its fundamental group by 7¥(Ug). He proved the
existence of a canonical isomorphism

™ (Ug) = Gal(K**/K).

This is the local class field theory of Serre. Later Hazewinkel generalized this theory to
the case where the residue field k is a perfect field. He defined the proalgebraic group
of units Ug over k and its fundamental group 7§(Ug) in a similar way in [DG70,
Appendice], and proved the existence of a canonical isomorphism

™(Uk) S T(K*/K).

This is the local class field theory of Hazewinkel.

In this paper, we extend the local class field theory of Serre and Hazewinkel so as to
describe the whole group Gal(K?*’/K) in the case where the residue field k is a general
perfect field. For this, we view the multiplicative group K* of K as a group scheme
(more precisely, a perfect group scheme, on which the Frobenius is an isomorphism),
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denoted by K*, which is isomorphic to the direct product of Ug and the discrete group
scheme Z over k. We will define its fundamental group 75 (K*) in Section 3 using the
Ext functor for the category of sheaves on a version of the fpqc site of k. Our main
result is the following.

Theorem 1.1.  For a complete discrete valuation field K with perfect residue
field k, there exists a canonical isomorphism

m™(K*) 5 Gal(K*™/K)
with a commutative diagram

0 —— m(Ux) —— mK) —— 7(Z) ——0

(L) k K |
0 —— T(K*/K) —— Gal(K**/K) —— Gal(k*®/k) —— 0,

where the left vertical isomorphism is the one given by the local class field theory of
Hazewinkel and the right vertical isomorphism is the natural one (see the end of Section
3.8) times —1.

In the case the residue field k is the finite field F, with ¢ elements, we have a
natural homomorphism K* — 7% (K*) such that the composite map K> — 7¥(K*) =
Gal(K®*/K) coincides with the canonical map of the usual local class field theory times
—1, which sends a prime element to an automorphism that acts on k*P = IF_q by the
q~'-th power map (see the paragraph after Proposition 4.3).

Actually Theorem 1.1 was previously formulated and proved in the authors’ paper
on Fontaine’s property (P,,) ([SY10, Prop. 4.1]). The explanation in that paper, how-
ever, had to be rather brief, since the details of this theorem are too complicated, so
that detailed explanation could destroy the organization of that paper. Giving precise
formulation of Theorem 1.1 and proving it is the subject of this paper.

The organization of this paper is as follows. In Section 2, we give a review of the
local class field theory of Serre and Hazewinkel. In formulating and proving the above
refinement of this theory, several difficulties naturally appear. The beginning of Section
3 is devoted to an explanation about these problems and to an outline of the way we
take to solve them. In Section 3, we define a version of the fpqc site of a perfect field k
and develop a general theory on it as preparation for the next section. Section 4 is the
local class field theory for a complete discrete valuation field K with perfect residue field
k. We construct some sheaves associated with K and its finite extensions, and prove
Theorem 1.1 as well as some auxiliary results that are needed in [SY10, §4]. Detailed
explanation about the organization of Sections 3 and 4 is given at the beginning of
Section 3.
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§2. Review of the local class field theory of Serre and Hazewinkel

In this section, we review the local class field theory of Serre and Hazewinkel. We
first discuss the part that is due to Serre. Let k be an algebraically closed field of
characteristic p > 0.

First we recall quasi-algebraic groups and proalgebraic groups over k, as well as their
fundamental groups, from Serre’s paper [Ser60]. Roughly speaking, a quasi-algebraic
group is the “perfection” of an algebraic group. Let us make this precise. For a com-
mutative algebraic group A over k and a non-negative integer i, let A% be the alge-
braic group A over k whose structure morphism is replaced by the composite of the
original structure morphism A — Speck and the p’-th power Frobenius morphism
Speck = Spec k. We denote by A(®) the projective limit of the sequence of algebraic
groups

s A® A g

where the morphism AG+tY — A® is the Frobenius morphism. We know that A
and A(®) are group schemes over k having the same underlying topological space.
We also know that A(>) is perfect, namely the Frobenius gives an isomorphism on
Al A commutative quasi-algebraic group over k ([Ser60, §1]) is a group scheme
of the form A(®) for some commutative algebraic group A over k. The category of
commutative quasi-algebraic groups is an artinian abelian category ([Ser60, §1, Prop. 5-
6]). Its procategory is the category of commutative proalgebraic groups defined by Serre
([Ser60, §2]). This is an abelian category with enough projectives ([Ser60, §2, Prop. 7 and
§3, Prop. 1]). The exactness of a sequence A — B — C in the category of commutative
proalgebraic groups is equivalent to the exactness of the sequence A(k) — B(k) — C(k)
induced on the groups of k-rational points ([Ser60, §1, Prop. 4-5]). Define a functor
7§ from the category of commutative proalgebraic groups to the category of profinite
abelian groups by taking the group of connected components (= the maximal profinite
quotient) ([Ser60, §5.1]). This functor is right exact ([Ser60, §5, Prop. 2]). For i > 0, the
i-th left derived functor of 7& is called the i-th homotopy group functor ([Ser60, §5, Def.
1]), which we denote by 7¥. The functor n¥ is called the fundamental group functor.
Let Ext}; be the i-th Ext functor for the category of commutative proalgebraic groups.
Since injlim,, 5, Homy(A,n"'Z/Z) = Hom(x§(A), Q/Z) for any proalgebraic group A,
we have injlim,,, Exti(A,n"'Z/7) = Hom(nF(A),Q/Z) for any i > 0. When i = 1,
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this means that 7f(A) classifies surjective isogenies to A with (pro-)finite constant
kernels.

Let K be a complete discrete valuation field with residue field k. Then, as explained
in Section 1 of Serre’s paper [Ser61], the group of units Ux of K can be viewed as a
proalgebraic group over k. We denote this proalgebraic group by Ug. This group
is affine (or equivalently, (pro-)linear) and connected ([Ser61, §1.3]). The group of k-
rational points of Ug is given by the abstract group Ux: Ug(k) = Uk. Also for each
n > 0, the group of n-th principal units Uy can be viewed as a proalgebraic group,
denoted by U%. This is a proalgebraic subgroup of U, the quotient Ug /U% being an
n-dimensional quasi-algebraic group. We have Ug = proj lim, >, Uk /U%, which gives
the proalgebraic structure for Ug. Also we have Ug/ U}< &~ G,(ﬁo ), where G,(ﬁo ) is the
quasi-algebraic group associated with the algebraic group G,, of invertible elements.
The Teichmiiller section G£3° ), U defines a splitting Uy = G£3° ) X U}<. The main

theorem of the local class field theory of Serre is the following.

Theorem 2.1 ([Ser61]).  Assume that k is algebraically closed as above. Then
there exists a canonical isomorphism

™(Uk) = Gal(K**/K).

Sketch of Proof. The construction of the isomorphism is as follows ([Ser61, §2]).
For a finite Galois extension L/K with Galois group G, let U, be the proalgebraic group
of units of L over k.! The norm map for L /K induces a homomorphism of proalgebraic
groups Ny i : Up — Ug that is surjective ([Ser61, §2, Cor. to Prop. 1]). The Galois
group G acts on Uy. Let I5 be the augmentation ideal of the group ring Z[G| and let
15U be the product of the G-module Uy, and the ideal I.

We show that the sequence

N
(2.1) 0—G® UL/ U, 2" Uk —0

is an exact sequence of proalgebraic groups, where G?” is the maximal abelian quotient
of G viewed as a constant group over k and the first map sends o +— o(wp)/7 for
a prime element w; of L. The group of k-rational points of the proalgebraic group
Ker(Nz,x)/IcUy is the Tate cohomology group H~Y(G,Up) ([Ser79, VIII, §1]). Con-
sider the short exact sequence of G-modules

(2.2) 0—-Up—L*—>7Z—0.

The norm map Ny, x: L* — K* is surjective also as a morphism of abstract groups,
so H°(G,L*) = 0. By Hilbert’s theorem 90, we have H'(G,L*) = 0. Therefore we

INote that the residue field of L is k since k is algebraically closed, so that we can define Uy, over
k in the same way we defined Ug .
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have
(2.3) HY(G,L*)=0 forany iecZ

by [Ser79, IX, Th. 8]. Hence we have H (G, UL) & H 2(G,Z) = G*. This proves
the exactness of the sequence (2.1).

The homotopy long exact sequence induced by the short exact sequence (2.1) gives
an exact sequence

m(Ug) — 7§ (G*) — (UL /16Uy).

We have 75 (G#P) = G#P. Since Uy, is connected, so is U, /IgUy, hence 7(U/IgUL) =
0. Therefore we have a surjection 7¥(Ug) — G** = Gal(L/K)*". Taking the limit in
L, we have a surjection 7¥(Ug) — Gal(K?"/K). This is injective (“the existence the-
orem”; [Ser61, §4, Th. 1]). The isomorphism 7% (Ug) = Gal(K?®"/K) thus obtained is
the one stated at the theorem. O

Now we review Hazewinkel’s generalization of Serre’s theory ([DG70, Appendice]).
Let k be a perfect field. Although he used the category of affine group schemes over £k,
we instead use the categories of quasi-algebraic groups and proalgebraic groups over k to
make the discussion parallel to that of Serre. Quasi-algebraic groups and proalgebraic
groups over k are defined in a similar way as before. The exactness of a sequence
A — B — C of commutative proalgebraic groups over k is equivalent to the exactness
of the sequence A(k) — B(k) — C(k) induced on the groups of k-rational points. The
functor from the category of commutative proalgebraic groups over k to the category
of profinite abelian groups taking the maximal proconstant quotient is denoted by «¥.
The left derived functors 7F of 7% are called the homotopy group functors and 7f
is called the fundamental group functor. The Pontryagin dual of 7¥(A) is given by
injlim,, >, Exti (A,n"'Z/Z). For a complete discrete valuation field K with residue field
k, the proalgebraic group of units U g over k is defined similarly. We have Uk (k) = Uk.
Also we have Ug (k) = AI‘? = the group of units of the completion of the maximal
unramified extension K" of K. The main theorem of the local class field theory of
Hazewinkel is the following.

Theorem 2.2 ([DG70, Appendice]).  In the case k is a general perfect field, there
exists a canonical isomorphism

1 (Uk) = T(K™/K),
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where T denotes the inertia group.?

Sketch of Proof. For a finite totally ramified Galois extension L/K, the exact
sequence (2.1) is defined over k with G* = Gal(L/K)*" viewed as a constant group
([DGT70, Appendice, §4.2]). Thus we have a surjection 7F(Uf) — Gal(L/K)*. For
any infinite totally ramified Galois extension L'/K, we have a surjection 7f(Ug) —»
Gal(L'/K)® by taking the limit over subfields L C L’ finite Galois over K. We can
choose L' so that L' K" is the separable closure of K ([DG70, Appendice, §2.1]). The
composite map 7¥(Ug) — Gal(L'/K)* — T(K*/K) is independent of the choice of
such L’ ([DG70, Appendice, §6.2]) and is an isomorphism ([DG70, Appendice, §7.3]).

We give another proof of the theorem by reducing it to Serre’s theorem 2.1. If we
apply this theorem for the completion K™ of the maximal unramified extension of K ,
we get an isomorphism

(2.4) (U ) S Gal((K™)* /K™),

The proalgebraic group U ;... can be obtained as the base extension of Ug from k to k,
so the absolute Galois group Gal(k/k) of k acts on 7% (U zue)- The group Gal(k/k) acts
on Gal((K™)*>/K"™) as well by lifting elements Gal(k/k) to (K")* and then taking
the conjugation action of them on Gal((K™)ab/K"). With these actions, the isomor-
phism (2.4) is Gal(k/k)-equivariant. We show that the Gal(k/k)-coinvariants of the
left-hand side (resp. the right-hand side) is 7§ (Uf) (resp. T(K?*/K)). The assertion
for the right-hand side follows from the fact that the natural surjection Gal(K*P/K) —
Gal(k/k) admits a section ([Ser02, §4.3, Exercises]). For the left-hand side, we use
the natural spectral sequence H®(k, Ext%(Ukur,Q/Z)) = Extf:rj (Uk,Q/Z). We have
Homz(U gu:, Q/Z) = 0 by the connectedness of Ug.,. Thus HO(k, Ext%(Uf{ur ,Q/7)) =
Exty(Ug,Q/Z). Hence the Gal(k/k)-coinvariants of 7% (U .,.) is 7§(Uk). Thus we
have the required isomorphism by taking the Gal(k/k)-coinvariants of the isomorphism
(2.4). O

§3. The perfect fpqc site

Now we want to formulate and prove Theorem 1.1. Let us point out what we need
for this. As explained in Introduction, we need to work in a category containing both

2Actually Hazewinkel used in [DG70, V, §3, 4.2 and Appendice] a slightly different functor ~ to
establish an isomorphism v(Ug) = T(K?*P/K). However, for a connected affine proalgebraic
group A (for example, A = Ukg), we have Hom(v(A), N) = Ext (A, N) for any finite constant N
by [DG70, V, §3, 4.2 Prop.] and hence v(A) = 7F(A). Essentially the definition of v(U) is the
Gal(k/k)-coinvariants of 7f (U jur ). Hence one step of the second proof of the theorem below can
be interpreted as reproving v(Ug) & ﬂ"f(UK).
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the proalgebraic group Ug over the perfect field k£ and the discrete group scheme 7Z, to
which the homotopy group functors 7% should be extended. We want to have an abelian
category as such a category. This causes a problem since the quotient of a proalgebraic
group by a discrete infinite group cannot be defined in an elementary way. To deal with
this, we first define a version of the fpqc site of k. We denote it by (Perf/k)pqe and
call it the perfect fpqc site of k (Section 3.1). The underlying category of (Perf/k)epqc
consists of perfect k-schemes (perfect means that the Frobenius is invertible), so that
it contains quasi-algebraic groups. Note that the perfect étale topology explained at
[Mil06, I1I, §0, “Duality for unipotent perfect group schemes”] is insufficient for our
purpose, since in general a surjection of proalgebraic groups is not a surjection in the
perfect étale topology as it is not necessarily of finite presentation. Also we have to
be a bit careful about flatness, since in general the relative Frobenius morphism of a
k-scheme is not flat and, unlike the perfect étale topology, a scheme flat over a perfect
k-scheme could be imperfect. What we need for these points is Proposition 3.1 below.
The category Ab(Perf/k)gpqc of sheaves of abelian groups on (Perf/k)gpqc is the category
we choose to work with. Toward defining 7% on Ab(Perf/k)gpqc, the problem is that
Ab(Perf /k)gpqe no longer has sufficient projective objects, so we cannot define 7¥ to be
the left derived functors of 7§. Instead, we use the Ext functor for Ab(Perf/k)gpqe to
define w¥ (Section 3.2). We prove in Section 3.3 that Ab(Perf/k)gqe contains both the
category of commutative affine proalgebraic groups and the category of commutative
étale group schemes both as abelian thick full subcategories. The thickness implies that
Ext,lc and so 7¥ are preserved. To prove Theorem 1.1, we want to imitate Serre’s proof
of Theorem 2.1. This gives rise to two problems. One problem is that the exactness of
a sequence in Ab(Perf/k)¢pqc is not always determined by the exactness of the sequence
induced on the groups of k-points. We deal with this by defining Tate cohomology not
as groups but as sheaves (Section 3.4) and giving one situation where k-points have
enough information (Proposition 3.6). Then we can convert the vanishing result (2.3)
of Tate cohomology groups into that of Tate cohomology sheaves (Proposition 4.2). The
other problem is that, for a finite extension of complete discrete valuation fields L/K
with residue extension k' /k, we need to regard the group of units and the multiplicative
group of L as sheaves in several different ways, some of which defined on (Perf/k)gpqc and
others on (Perf/k)gpqc. These are sheaf versions of the groups defined at [Ser79, XIII,
§5, Exercise 2]. To define these sheaves and make the discussion smooth, we discuss a
version of the Greenberg functor ([DG70, V, §4, no. 1]) in Section 3.5. All the above is
the way we take here for Theorem 1.1 (and was for our original paper [SY10]). Of course
this is not the only way to formulate and obtain the same theorem or its equivalent.
Several different approaches will be possible. Nevertheless, the authors believe that the
way we take here is at least one of the most standard ways. Note that some part of the
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machinery in Sections 3 and 4 has already been used at [Suz09].
From now on throughout this paper, we always mean by k a fixed perfect field of
characteristic p > 0.

§3.1. Definition and first properties

We define the site (Perf/k)gpqec below. We first recall perfect rings and perfect
schemes (cf. [Gre65]).

A k-algebra R is called perfect if the p-th power map on R is bijective. Any perfect
k-algebra R is reduced, since if 7 = 0 for r € R and n > 1, then r?° = rP"~"p" = ( for
e > 0 with p® > n, so r = 0.3 For a k-algebra R and a non-negative integer i, let R(")
be the k-algebra R whose structure map is replaced by the composite of the p*-th power
map k = k and the original structure map k¥ — R. We denote by R(>) the perfect
k-algebra defined by the injective limit

R— R® L R® ...

where R — RU+D ig the p-th power map. Likewise, a k-scheme X is perfect if the
Frobenius morphism on X is an isomorphism. We denote by Perf/k the full subcate-
gory of the category of k-schemes Sch/k consisting of perfect k-schemes. Perfectness
is Zariski-local. A perfect k-scheme is reduced. For a k-scheme X and a non-negative
integer i, we denote by X® the k-scheme X whose structure morphism is replaced
by the composite of the original structure morphism X — Speck and the p’-th power
Frobenius morphism Spec k = Spec k. We denote by X (°°) the perfect k-scheme defined
by the projective limit

s Xx® 5 xM x

where X1 — X is the Frobenius morphism. The functor (co): Sch/k — Perf/k
sending X — X() is right adjoint to the inclusion functor Perf/k < Sch/k. The
fiber product of two perfect k-schemes over a perfect k-scheme taken in Sch/k gives a
perfect k-scheme. A k-scheme (resp. k-algebra) is said to be quasi-algebraic if it can be
obtained by applying the functor (co) to an algebraic (that is, of finite type) one.

Now we define a site (Perf/k)pqc, which we call the perfect fpqc site of &, as follows.
The underlying category of (Perf/k)gqc is the category of perfect k-schemes Perf/k. Its
topology is the fpqc topology, namely a family of morphisms {X, — X} in Perf/k is a
covering for (Perf/k)gpqc if it is a covering for the fpqc site (Sch/k)gpqc of k (cf. [SGA3-1,
Exp. IV], [SGA4-1]). We denote by Ab(Perf/k)pqc (resp. Ab(Sch/k)ipqc) the category
of sheaves of abelian groups on (Perf/k)gpqc (resp. (Sch/k)epqce)-

3This argument shows that the p-reducedness defined in [Gre65] is the same as the usual reducedness.
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Proposition 3.1.  The functor (c0): Sch/k — Perf/k gives a morphism of sites
(Perf/k)tpqe — (Sch/k)tpqe- The pullback (00)*: Ab(Sch/k)gpqe — Ab(Perf/k)gpqe is
given by the restriction functor |peys . In particular, |peys /i is an exact functor.

Proof. The only non-trivial part is that (co): Sch/k — Perf/k sends covering
families for (Sch/k)pqc to those for (Perf/k)gqc. It suffices to show that if S is a flat
algebra over a k-algebra R, then S(°) is flat over R(®®). We have S() = S and R®) = R
for i > 0 if we forget the k-algebra structures. Therefore S is flat over R(). Taking
injective limits, we know that S(>) is flat over R(>). O

If F € Ab(Perf/k)epqc, then for a perfect k-algebra R and a finite family of perfect
R-algebras R; with [[ R; faithfully flat over R, the sequence F(R) — [[, F(R;) =
[L;; F(Ri ®r R;) is exact. Conversely, if a covariant functor F from the category
of perfect k-algebras to the category of abelian groups satisfies this condition, then
the Zariski-sheafification of F' is in Ab(Perf/k)gpqc. This correspondence sets up an
equivalence of categories, which follows from the corresponding fact for the usual fpqc
site (cf. for example [KrelO, Prop. 9.3 and Cor. 9.4]) and the fact that perfectness is
Zariski-local.

§3.2. Homotopy groups and fundamental groups

Let Ext}, be the i-th Ext functor for Ab(Perf/k)yqe. For i > 0, we define the i-th
homotopy group of A € Ab(Perf/k)gqc, denoted by m¥(A), to be the Pontryagin dual
of the torsion abelian group injlim,, Extk (A, n~'Z/Z). We call 7¥(A) the fundamental
group of A. The system {m¥};>¢ is a covariant homological functor from Ab(Perf/k)gpqc
to the category of profinite abelian groups.

Proposition 3.2.  Let k'/k be a finite extension. We denote by Resy /3, the Weil
restriction functor Ab(Perf/k)gpqc — Ab(Perf/k)gpqc.

1. Resyy, is left adjoint to the restriction functor Ab(Perf/k)mpqe — Ab(Perf/k")pqc.
In particular, Resy . is an exact functor.

2. We have a canonical isomorphism 7F (Resy /, F') = ¥ (F') for F' € Ab(Perf /k)pqe
and 1 > 0.

Proof. 1. Let F' € Ab(Perf/k )gpqc and G € Ab(Perf/k)gpqec. They are sheaves
also for the big étale site of perfect schemes respectively over k' and over k. The Weil
restriction functor is the pushforward functor by the finite étale morphism Speck’ —
Spec k. The claim can thus be proved by the same argument as the proof of [Mil80, V,
§1, Lem. 1.12].
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2. Assertion 1 implies that Eth(Resk//k F' Q) = Ext}, (F',G) for alli > 0. Setting
G = n~17/7, taking the injective limit in n and taking the Pontryagin dual, we get the
result. O

§ 3.3. Affine proalgebraic groups and étale group schemes

We show that Ab(Perf/k)gqc contains both the category of commutative affine
proalgebraic groups and the category of commutative étale group schemes as abelian
thick full subcategories.

Proposition 3.3.  The natural functor from the category of commutative affine
proalgebraic groups over k to Ab(Perf/k)epqc is a fully faithful exact functor. Its essential
image 1is the category of commutative perfect affine group schemes, which is thick (i.e.
closed under extension) in Ab(Perf/k)pqc.

Proof. Fully faithful. Let A, B be commutative affine proalgebraic groups over k.
By definition, A (resp. B) can be written as the projective limit of some affine quasi-
algebraic groups Ay (resp. B,) over k. For an affine scheme X, we denote by O(X)
the ring of global sections of the structure sheaf of X. We denote by Homypoalg (resp.
Homgyasialg, Homy,alg) the set of homomorphisms in the category of proalgebraic groups
(resp. quasi-algebraic groups, bi-algebras) over k. We have

Homypyoaig (A, B) = proj lim injiim Homguasialg (Ax, By)
n

= projlim injlim Hompais(O(B,), O(Ax))
I A

= projlim Homp;ae(O(B,),injlim O(Ay))
m A

= Homyjaie (inj lim O(B,,), injlim O(Ay))
" A

= Hombialg(O(B)7 O(A))
e HOmk(A, B)

(Here Homy, is, as before, the set of homomorphisms in Ab(Perf/k)gpqc-)

Essential image. Any affine group scheme over k can be written as the projective
limit of affine algebraic group schemes ([DG70, III, §3, 7.5 Cor. (b)]). This implies the
result.

Exact. It suffices to show that, for an injection of commutative affine proalge-
braic groups A — B, its cokernel in Ab(Perf/k)pqc is an affine proalgebraic group,
or equivalently, a perfect affine group scheme. Since A and B are affine, we can nat-
urally regard them as sheaves on (Sch/k)gpqe. Let C be the cokernel of A — B in
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Ab(Sch/k)gpqc. Since the restriction functor |pe/i: Ab(Sch/k)mpqe — Ab(Perf/k)gpqc is
an exact functor by Proposition 3.1, we know that C|pet /i gives the cokernel of A — B
in Ab(Perf/k)pqc. The remaining task is to show that C' is representable by a perfect
affine group scheme. By [DG70, III, §3, 7.2 Th.], C is representable by an affine group
scheme. Consider the commutative diagram in Ab(Sch/k)gqc with exact rows

0O — s A . gy o) ___, o

! J !

O— A — B —— (C —— 0,

where vertical arrows are given by the Frobenius morphisms. Since A and B are perfect,
the first and second vertical morphisms are isomorphism, hence so is the third. Therefore
C is perfect.

Thick. Let 0 = A — B — C — 0 be an exact sequence in Ab(Perf/k)spqc with
A and C perfect affine. Then B is an A-torsor over C' for the perfect fpqc topology.
Therefore B is perfect affine by the fpqc descent for affine morphisms together with an
argument similar to the proof of [DG70, III, §4, 1.9 Prop. (a)]. O

Proposition 3.4.  Commutative étale group schemes over k form an abelian
thick full subcategory of Ab(Perf/k)gpqc-

Proof. Any scheme étale over k is a disjoint union of the Spec’s of (an infinite
number of) finite extensions of the perfect field k. Such a scheme is perfect. The
proposition is obvious except the thickness. For the thickness, it is enough to show
that a torsor B over Speck for the perfect fpqc topology under a commutative étale
group scheme A is representable by an étale scheme. Such a torsor can be trivialized by
extending the base Speck to a perfect affine k-scheme Spec R faithfully flat over Spec k
(i.e. R #0). It is enough to show that R can be taken to be a finite Galois extension of
k.

Actually it is enough to show that R can be taken to be quasi-algebraic (see Section
3.1 for the definition) over k because of the following argument. Let m be a maximal
ideal of R # 0. If R is quasi-algebraic, then R/m is a finite extension of k by the Noether
normalization theorem. Take a finite Galois extension k' of k containing R/m. Then
we can replace R by k.

Now we show that R can be taken to be quasi-algebraic over k. Recall from
[DGT70, 111, §4, 6.5] that there is an isomorhism between the group of A-torsors over
Speck that can be trivialized by Spec R and the first Amitsur cohomology group
H} (R/k,A) of R/k with coefficients in A. Therefore it is enough to show that
there exists a quasi-algebraic k-subalgebra R; of R such that the Amitsur cocycle
class ¢ € Hjx_ (R/k,A) that corresponds to the torsor B belongs to the subgroup
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H} (Ri/k,A). Let o: Spec R xj Spec R — A be a representative of the cocycle class
o. It is enough to show that there exists a quasi-algebraic k-subalgebra Ry of R such
that o factors as the natural morphism Spec R X Spec R — Spec Ry X Spec Ry fol-
lowed by some cocycle o1: Spec Ry X Spec Ry — A. We first construct such oy just as
a morphism of schemes and then show that it is indeed a cocycle.

Since Spec R X Spec R = Spec(R ®; R) is quasi-compact and A is étale over k,
the morphism o: Spec R X Spec R — A factors through a finite subscheme Spec(k; x
-+ X ky) of A, where the k; are finite extensions of k. The corresponding k-algebra
homomorphism k; X --- X k, — R®; R factors through R, ®; Rq, where R; is a quasi-
algebraic k-subalgebra of R. Therefore the morphism o: Spec R X Spec R — A factors
as Spec R X Spec R — Spec Ry X Spec R; followed by Spec Ry X Spec Ry — A. We
denote this morphism Spec Ry X Spec Ry — A by o7.

Finally we show that the morphism o;: Spec R; x; Spec Ry — A is a cocycle,
namely its coboundary do;: Spec Ry X Spec Ry X Spec Ry — A is zero. The composite
of the natural morphism Spec R X Spec R X, Spec R — Spec Ry X Spec R1 X Spec Ry
and Joy is do, which is zero since o is a cocycle. This implies that do; is zero since
R ®k Ry ®x Ry — R Qi R® R is injective. Therefore o is a cocycle. This completes
the proof.

O

These propositions have several consequences. By Proposition 3.3, we may identify
the category of commutative affine proalgebraic groups with the category of commu-
tative perfect affine group schemes, which is the quotient category of the category of
commutative affine group schemes by its full subcategory of proinfinitesimal groups.

For commutative affine proalgebraic groups A and B, the group of first extension
classes of B by A as commutative proalgebraic groups is the same as that as sheaves
of abelian groups on (Perf/k)pqc and on (Sch/k)gpqe by Proposition 3.3. In particular,
our 75 (A) for a commutative proalgebraic group A defined in Section 3.2 coincides with
Hazewinkel’s 7§ (A). For a commutative étale group A over k, the first cohomology group
of (Perf/k)spqe with values in A is equal to the group of first extension classes of Z by
A in (Perf/k)epqe, which is equal to that in the étale site of k& by Proposition 3.4, which
in turn is equal to the Galois cohomology group H'(k, A) = H'(Gal(k/k), A(k)).* In
particular, we have injlim,, Ext}.(Z,n~'Z/7) = H'(Gal(k/k), Q/Z),> which shows that
¥ (Z) = Gal(k*P /k).

We define two homomorphisms, (3.1) and (3.2) below, that are related to 7¥ and
will be used later in Section 4.4. For a sheaf A € Ab(Perf/k)spqc, we have a natural

4Do not confuse this type of Galois cohomology groups with Tate cohomology sheaves that we define
in the next section.
SExtj, here and Homy, below are relative to the site (Perf/k)pqc as before.
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homomorphism
71-k
(3.1) A(k) = Homy(Z, A) = Hom(n¥(Z), 7% (A)) = Hom(Gal(k* /k), 7% (A)).

More explicitly, this comes from the homomorphism Exty (A, N) — Hom(A(k), H' (k, N))
for finite constant N that sends an extension class 0 - N — B — A — 0 to the
coboundary map of Galois cohomology A(k) = H°(k,A) — H(k,N). If k is quasi-
finite in the sense of [Ser79, XIIL, §2], then Gal(k/k) = Z, so (3.1) is reduced to a
homomorphism

(3.2) A(k) — wh(A).

If we further assume that A is a connected affine proalgebraic group over k, then
the homomorphism (3.2) above and hence 7§ (A) can be understood nearly completely

by the following proposition. This result will not be used later.

Proposition 3.5.  Assume k is quasi-finite. Let A be a connected affine proal-
gebraic group over k.

1. The homomorphism (3.2) induces an isomorphism from the completion of A(k) by
its normic subgroups ([Ser?9, XV, §1, Exercise 2]) to wF(A).

2. If k is a finite field with q elements, then the homomorphism (3.2) is an isomor-
phism. Its inverse is given by the boundary map of the homotopy long exact sequence
for Lang’s short exact sequence 0 — A(k) — A a0 ([DG70, 111, §5, 7.2]),
where F' is the g-th power Frobenius morphism.

Proof. 1. It is enough to show that for finite constant /N, the map Ext,le(A, N) —
Hom(A(k), HY(k,N)) = Hom(A(k), N) is an injection whose image consists of all ho-
momorphisms to N with normic kernels. For the injectivity, let 0 = N — B — A — 0
be an extension class whose image in Hom(A(k), N) is trivial, namely the coboundary
map of Galois cohomology A(k) — H'(k,N) = N is zero. Then the homomorphism
N = HYk,N) — H'(k,B) is injective. This is surjective since H!(k, A) = 0 by
[Ser79, XV, §1, Exercise 2 (a)]. Let By be the connected component of B contain-
ing the identity. Then we have H!(k, B) = H'(k, B/By) since H'(k, By) = 0 for any
i > 1 by the same exercise. The group B/Bjy is pro-finite-étale. Hence H'(k, B/By)
is the cokernel of the endomorphism F' — 1 on B/By by [Ser79, XIII, §1, Prop. 1],
where F is the given generator of Gal(k/k) = Z. This cokernel is 7%(B) by defini-
tion. The isomorphism N = 7f(B) thus obtained is given by the composite of the
natural homomorphisms N < B —» 7%(B). Therefore N is a direct factor of B, so
the extension class 0 — N — B — A — 0 is trivial. This shows the injectivity of
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Exti(A,N) — Hom(A(k), N). The characterization of the image of this homomor-
phism directly follows from the definition of normic subgroups.

2. First we show that the endomorphism F — 1 induces zero maps on homo-
topy groups. We have an equality Homy(F,id) = Homg(id, F) as endomorphisms of
the abelian group Homy(A, N) for any sheaf N € Ab(Perf/k)gq.. Hence we have
Ext (F,id) = Ext} (id, F) as endomorphisms of Ext} (A, N) for any 4 > 0. If N is con-
stant, we have F' = id on N, so Ext} (id, F) = id. Therefore F =id (=1) and F—1 =0
on 7F(A).

Therefore the boundary map of the homotopy long exact sequence for 0 — A(k) —
A A0 gives an isomorphism 7F(A) = 7&(A(k)) = A(k)® since A is connected.
We show that the composite A(k) — 7F(A) = A(k), or the composite Hom(A(k), N) —
Exty (A, N) — Hom(A(k), N) for any (pro-)finite constant N, is the identity map. It
is enough to show that, taking N = A(k), the composite map Hom(A(k), A(k)) —
Exty (A, A(k)) — Hom(A(k), A(k)) sends the identity map to itself. The identity
map in Hom(A(k), A(k)) goes to the extension class 0 — A(k) — A =4 S 0in
Exty (A, A(k)). The coboundary map of Galois cohomology for this sequence is the
identity map. Hence we get the result. O

§3.4. Tate cohomology sheaves

Let G be a finite (abstract) group and let A be a sheaf of G-modules on (Perf/k)gpqc.
For each i € 7Z, we define the i-th Tate cohomology sheaf of G with values in A, denoted
by I:Ii(G, A), as follows. For i > 0, let C*(G, A) be the product of copies of A labeled
by the finite set G* = G x --- x G. For i < 0, let C*(G, A) be the product of copies of A
labeled by G~"!. We can define differentials {d; };c7 for {C*(G, A)};cz as morphisms
of sheaves by using the differentials for the standard complete complex of the usual Tate
cohomology in inhomogeneous cochain presentation, namely for i > 0 (resp. i < —1), we
use the formula in [Ser79, VII, §3] (resp. [Ser79, VII, §4]) and for i = —1, we use the norm
map Ng = > cq0: A — A We then define H'(G, A) to be the i-th cohomology of
the complex {(C*(G, A),d;)}iez, namely Ker(d;)/Im(d;—1), the image and the quotient
being taken in Ab(Perf/k)pqe.” The sheaf H?(G, A) is the sheafification of the presheaf
R— H ‘(G, A(R)) of the usual Tate cohomology group of G with values in the G-module
A(R). A short exact sequence of sheaves of G-modules on (Perf/k)g,qc induces a long
exact sequence of the Tate cohomology sheaves.

Proposition 3.6.  Let G be a finite group and let A be a sheaf of G-modules on

6This means that F' — 1 is universal among isogenies onto A with proconstant kernels.

"This is different from the Galois cohomology group H*(k, A) = H*(Gal(k/k), A(k)). The group
A(k) has actions of both groups G and Gal(k/k) (commuting with each other), the first one coming
from the action of G on the sheaf A, the second from the action of Gal(k/k) on the coefficient field
k. These actions are unrelated in general, so are the corresponding cohomology theories.
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(Perf/k)tpqc. We assume the following three conditions.

e There exists an exact sequence 0 — A, — A — Ae — 0 of sheaves of G-modules on
(Perf/k)tpqc-

e A, is an affine proalgebraic group.
o A, is an étale group scheme with A.(k) finitely generated as an abelian group.

Then the i-th Tate cohomology sheaf ﬁi(G, A) is affine for each i € Z. The group of its
k-points is given by the Tate cohomology group H (G, A(k)).

Proof. First we show that Hi (G, A,) is affine and Hi (G, A,)(k) = HY(G, Ay (k)).
The complex {C(G, A,)}iez consists of affine proalgebraic groups. Therefore its co-
homology H (G, A,) is affine. Since the functor sending a commutative proalgebraic
group to the group of its k-points is exact, we know that H' (G, A,)(k) = H/(G, A, (k)).

The same argument shows that H (G, Ae) is an étale group scheme. Moreover we
know that H?(G, A,) is finite since A, (k) is a finitely generated abelian group ([Ser79,
VIII, §2, Cor. 2]). In particular, I:Ii(G, A.) is affine. Since the functor sending a
commutative étale group scheme to the group of its k-points is exact, we know that
FIZ(GaAe)(E) = FI%(Ga Ae(E)) A

Now we show that the sheaf H'(G, A) is affine. The short exact sequence 0 —
A, - A— A, — 0 induces a long exact sequence
(3.3)

o HTNG, A S HGL Ag) — HI(GLA) — HI(G, A % HIPY(G, Ay) — -+

and a short exact sequence
0 — Coker(d;_,) — H'(G, A) — Ker(d;) — 0.

As we saw above, the domain and the codomain of the morphism d;_;: H —l@, A —
H'(G, A,) are affine. Hence so are Coker(d;_;) and Ker(d;). By the thickness of the
category of affine proalgebraic groups in Ab(Perf/k)gqc (Proposition 3.3), the sheaf
HY(G, A) is affine.

Next we show that H'(G, A)(k) = H' (G, A(k)). Since each term of the sequence
(3.3) is an affine proalgebraic group, the corresponding sequence for k-points
(3.4)

= HTHG, A (F) — H' (G Au) (k) — H'(G, A) (k) — HY(G, Ae)(k) — HHH(G, A) (k) — -

is exact. On the other hand, the sequence 0 — A, (k) — A(k) — Ac(k) — 0 is exact,
since fibers of the morphism A — A, over k-points of A, are A,-torsors over Speck for
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the perfect fpqc topology, which have to be trivial by Lemma 3.7 below. Consider the
resulting long exact sequence
(3.5)

= HTYG, Ac(R) — HY(G, Au(R)) — H'(G, A(R)) — H'(G, Ac(k)) — HHG, Au (k) — - -

The terms in the sequences (3.4) and (3.5) except the middle ones are isomorphic. Hence
so are the middle. |

The following lemma used above should be well-known at least in the case of the
usual fpgc topology. But the authors could not find an appropriate reference. Let us
give a proof of it.

Lemma 3.7.  Assume that k is algebraically closed. Let A be a commutative
affine proalgebraic group over k. Then any A-torsor over Speck for the perfect fpgc
topology is trivial.

Proof. Let X be such a torsor. As in the proof of the part of Proposition 3.3 for
thickness, X is representable by a perfect affine scheme. Let T be the set of pairs (B, x),
where B is a proalgebraic subgroup of A and x is a k-point of the quotient A/B-torsor
X/B. The set T' is non-empty since X/A = Speck. Also T has a natural order. We
want to show that 7' contains a pair (B, z) with B = 0.

We first show that 7' contains a minimal element. Let {(Bx,zx)} be a totally or-
dered sequence in T'. We set B = (1] By. The natural A-morphism X/B — projlim X/B)
is an isomorphism since the both sides are A/B-torsors. Let z = (x)) € projlim(X/B))(k) =
(X/B)(k). Then the pair (B, z) is a lower bound of {(Bx,zx)}. By Zorn’s lemma, we
know that 1" contains a minimal element.

Let (B, z) be a minimal element of 7. We show that B = 0. Since A is proalgebraic,
it is enough to see that any proalgebraic subgroup C' C A with A/C quasi-algebraic
contains B. The fiber F' of the projection X/(BNC) — X/B over x € (X/B)(k) is a
B/B N C-torsor. Since B/BNC = (B+C)/C C A/C and A/C is quasi-algebraic, we
know that B/B N C is quasi-algebraic as well. Hence the B/B N C-torsor F' is quasi-
algebraic by [DG70, I, §3, 1.11 Prop.]. Therefore F' has a k-point y by the Noether
normalization theorem. The pair (BNC,y) is an element of T that is less than or equal
to (B, x). By minimality, we have (BN C,y) = (B,x), so B C C. O

§3.5. The perfect Greenberg functor

We quickly recall the Greenberg functor over k (cf. [DG70, V, §4, no. 1]). Let W
be the ring scheme of Witt vectors of infinite length over k. A profinite W (k)-module,
defined at [DGT70, V, §2, 1.1], is a pro-object in the category of W (k)-modules of finite
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length. The functor M — M(k) from the category of affine W-modules to the category
of profinite W (k)-modules admits a left adjoint, called the Greenberg functor. The
Greenberg functor induces an equivalence of categories from the category of profinite
W (k)-modules to the quotient category of the category of affine W-modules by the
subcategory of proinfinitesimal ones ([DG70, V, §4, 1.8 Rem. (a)]).

As mentioned at the end of Section 3.3, the category of commutative perfect affine
group schemes over k is the quotient category of commutative affine group schemes by its
full subcategory of proinfinitesimal groups. Therefore the composite of the Greenberg
functor and the functor (oco) gives an equivalence of categories from the category of
profinite W (k)-modules to the category of perfect affine W) _modules. We call this
composite functor the perfect Greenberg functor over k and denote it by Grng. Its
inverse is given by the functor M — M(k). More explicit description of Grny, is given
as follows.

Proposition 3.8.  For a profinite W (k)-module M and a perfect k-algebra R,
the natural map W (R) Qwxy M — (Grng M)(R) is an isomorphism, where & denotes
the completed tensor product.

Proof. By [DG70, V, §4, 1.7 Rem. (b)], it is enough to see that the natural map
W(R) @w @y M — W(S) ®w ) M is injective for any faithfully flat R-algebra S. We
have R(>) = R since R is perfect. Therefore the R-algebra S(°°) is faithfully flat as
shown in the proof of Proposition 3.1. Replacing S by S(°°), we may assume S is perfect.
Thus the problem is reduced to showing that W, (S) is faithfully flat over W, (R) for any
n > 0if R is a perfect k-algebra and S is a faithfully flat perfect R-algebra. Note that
Wn(R)/pWy(R) = R and W,,(S)/pW,(S) = S since R and S are perfect. Therefore
the result follows from the local criterion of flatness. O

We will need the following proposition on the relation between Grng and Grny,
where k' /k is a finite extension, in terms of the Weil restriction Resy /.

Proposition 3.9.  Let k' /k be a finite extension and let A be a profinite W (k')-
module. Then we have a canonical isomorphism Resys i, Grng A = Grny A, where we
regard A as a profinite W (k)-module to define Grny A.

Proof. Since Grny: A is perfect affine, so is Resy /;, Grng A by [DGT70, I, §1, 6.6
Prop. (a)]. Since Grng A is a W(®)-module over k, so is Resys /;, Grngs A over k'
Therefore both Resys/;, Grngr A and Grny A are perfect affine W () _modules over k.
We have (Resy /,, Grng: A)(k) = A = (Grny, A)(k). This proves the result. O
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§4. Local class field theory: a refinement

Let K be a complete discrete valuation field with residue field k. We denote by
Ok the ring of integers, by Uk the group of units, by Uy the group of n-th principal
units and by px the maximal ideal. The ring of integers and the group of units of the
completion of the maximal unramified extension K is denoted by A}g and U}?

§4.1. Sheaves associated with a local field

As in [DG70, V, 84, no. 3.1], we define Ox = Grng(Ok) (note that in the equal
characteristic case, we view O as a profinite W (k)-module via W (k) - k — Ok).
This has a natural W()-algebra structure ([DG70, V, §4, 2.6 Prop.]). We define a
proalgebraic group Uk to be O%. For n > 0, we define a proalgebraic ideal p, C Og
to be Grny, p% and a proalgebraic subgroup U C Uk to be 14+p% if n # 0 (for n = 0,
we set U% = Ug).

We have the Teichmiiller lifting map w: GELOO)

— W) . Q. If mx is a prime
element of Ok and R is a perfect k-algebra, every element of Ok (R) can be written as
Yoo ywlan)m for a unique sequence of elements a, € R. In particular, 7k is not a
zero-divisor in Ok (R).
For a perfect k-algebra R, we define a ring K(R) to be O (R)®0, K (= Ox (R)[rx']).

We show that K gives a sheaf of rings on (Perf/k)gpqc in the manner described at the
end of Section 3.1. Let R be a perfect k-algebra and let Ry, ..., R, be perfect R-algebras
with [[ R; faithfully flat over R. The sheaf condition for Ok says that the sequence

Ox(R) — [[Ox(R:) = [[ Ok (R:i ®r R;)
i i
is exact. Since K is flat over Ok and the products are finite products, the sequence
Ok (R)®o, K — [[ Ok (i) ®0, K = [[ Ox(R; ®r R;) ®0, K
i i\
is exact. Therefore K gives a sheaf on (Perf/k)gpqc-
Also the functor K* is a sheaf since we have a cartesian diagram

K* —— {1} = Speck
l l
Kx, K —— K,

where the bottom arrow is the multiplication and the left arrow is given by a +— (a,a™1).
We have a natural morphism of sheaves of rings O — K and a natural morphism of
sheaves of groups Ux — K*. These are injective since mg is not a zero-divisor in
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Ox(R) as we saw before. We have K(k) = K and K(k) = K. In general for a
perfect field k' containing k, the ring K (k") is a complete discrete valuation field whose
normalized valuation is the lift of that for K. If wx is a prime element of Ok and R
is a perfect k-algebra, every element of K(R) can be written as ) ., w(a,)7y for a
unique sequence of elements a,, € R with a,, = 0 for n < 0 sufficiently small.

We define the valuation map as a morphism of sheaves K* — 7Z as follows. For a
perfect k-algebra R and x € Spec R, we denote by kg, the residue field of Spec R at
x. The image of a € R by the natural k-algebra homomorphism R — kg, is denoted
by a(z). For each x € Spec R, let v, be the composite of the map K*(R) — K*(kgr »)
coming from R — kg, and the map K*(kr,) — Z coming from the normalized
valuation of the complete discrete valuation field K(kg 5 ).

Proposition 4.1.

1. For a perfect k-algebra R and oo € K*(R), the map = — vz(«) from the underlying
topological space of Spec R to 7 is locally constant. This defines a morphism of
sheaves K* — 7.

2. The sequence 0 — U — K* — Z — 0 is a split exact sequence in Ab(Perf/k)epqc.

Proof. 1. We fix a prime element 7 of O. Let a = ), w(a,)7k with a, € R,
a, = 0 for n < 0 sufficiently small. For an integer [, we have

{z € Spec R |vy(a) > I} ={z € SpecR|a;_1(z) = aj_2(z) = --- = 0},

which is a closed subset of Spec R. We know this set is open as well by writing it
as {x € Spec R|v,(a™t) < —I}. Therefore this set is open and closed. This proves
Assertion 1.

2. The injectivity of Ugx — K* was proved before. The morphism K* — 7Z
has a section corresponding to a prime element in K(k) = K. We prove that the
kernel of K* — Z is Ug. An element o« = Y w(a,)7% € K*(R) is in the kernel of
K*(R) — Z(R) if and only if ay,(z) = 0 and ag(x) # 0 for any = € Spec R and n < 0.
Since R is reduced, this is equivalent to saying that a,, = 0 for n < 0 and ag € R*,
which in turn is equivalent to a € Ui (R). O

§4.2. Sheaves associated with a finite extension of a local field

Let L be a finite extension of K with residue field &’. The above constructions
of sheaves can be made also for the pair (L, k") instead of the pair (K, k). We write
the resulting sheaves by Opr i/, Up s, Ly, etc. For example, we regard the ring of
integers Op, of L as a profinite W (k')-algebra to define Or, j to be Grnys O, which is
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a sheaf of rings on (Perf/k’)fpqc. On the other hand, the ring O, can be regarded as a
profinite W (k)-algebra, so that we can define another sheaf of rings on (Perf/k)¢pqc to be
Grny, O, which we denote by Oy, . The inclusion O — O, is a morphism of profinite
W (k)-algebras, so it induces an inclusion Ox — Oy j of perfect affine W(w)—algebras
over k. For a perfect k-algebra R, we have Of, x(R) = O (R) ®0, Or. Hence we can
define the norm map Ny x: Opr — Og as a morphism of sheaves on (Perf/k)gpqc.
We define sheaves Uy, and Ly on (Perf/k)gpqc by setting Ug x(R) = O, (R)* and
Li(R) = O x(R) ®p, L for each perfect k-algebra R. When L/K is totally ramified,
these two constructions give the same sheaves Oy, ;v = O 3 and Ly = Ly, so that we
can omit the subscript k = k¥’ without ambiguity.

If L/K is a finite Galois extension, the Galois group G = Gal(L/K) acts on Oy, over
W (k) and the inertia group T'= T'(L/K) acts on O, over W (k). By the functoriality of
Grny and Grny, the sheaves Oy, ;, and Ly, become sheaves of G-modules on (Perf/k)spqc
and the sheaves Oy s and Ly, become sheaves of T-modules on (Perf/k")gpqc. The norm
map Ny k coincides with the action of the element Ng = > ., o of the group ring
Z|G].

We return to a general finite extension L/K. We describe rational points of the
sheaves defined above. We have Oy p(k) = Op (k') = Or and Li(k) = L/ (K') =
L. Also we have Or (k) = W(k) Qwx) Or = O¥ ®0p, Op. To make this more
explicit, let M be the maximal unramified subextension of L/K. For a k-embedding
p: kK — k, we denote by (’A)}‘g ®’(’9M Oy, the tensor product of A}‘g and Op, over Oy
with OF regarded as an Ojpr-algebra via the Og-embedding Oy — O} that is the
liftt of p. Then the natural map @}l{r Qo O — HpeHomk(k',E) @‘[‘{r ®%M Op, sending
a®bto (a®”Db), is a ring isomorphism. This isomorphism translates the action of an
element p' € Gal(k/k) into the automorphism (), — ((¢f' ® ido, )(ay-1,)),, Where
P ®idp, : @‘;g ®g;p o, 5 (’A)}lg ®%,, OL is the isomorphism that sends a 2 P b
to p'(a) ®” b8 If L/K is Galois, the same isomorphism translates the action of an
element o € Gal(L/K) into the automorphism (), — ((id@Er ® 0)(Qpo|r ))p, Where
id@zr ®o: OF ®Z)GA|JM Op 5 0w ®,, Or is the isomorphism that sends a ®P7 b to
a®”o(b).? For each p € Homy (k', k), the ring OW ®0,, O1 is non-canonically isomorphic
to O, Similarly we have Ly (k) = K" @ L & I1, K™ @h L= (Lvr)Homi(K"E)  the
last isomorphism being non-canonical.

We discuss the valuation map for L. We apply Res,/,, to the split exact se-
quence 0 — Upp — L, — Z — 0 in Ab(Perf/k’)spqc. By Proposition 3.9, we have
Resyr /i Ok = Ok, and so Resyr/p, Ly & Lg. The sheaf Resy/y, Z is the étale group

8This map is well-defined since if ¢ € Oy, then the two different expressions of the same element
1@F  Pe= (0"~ 1p)(c) ®° "' 1 are mapped to the same element 1 ®° ¢ = p(c) ®” 1.

9Similarly, this map is well-defined since if ¢ € Oy, then the two different expressions of the same
element 1 ®°71M ¢ = (po)(c) ®PIM 1 are mapped to the same element 1 ®” o(c) = (po)(c) ®° 1.
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scheme over k whose group of k-points is the Gal(k/k)-module Z[Homy(k', k)], the
free abelian group generated by the Gal(k/k)-set Homy (k', k). Therefore we have a
split exact sequence 0 — Uy, — L — Z[Homy (K, k)] — 0 in Ab(Perf/k)gpqe. The
map (L))(k) — Z[Homy(K', k)] is translated, via the above description, to the map
((Lvr)x)Homu(K"F) _, 7 Homy (K, k)] sending (ap)p = 22, Viu(ay)p. We have a com-

mutative diagram with exact rows

0 —— Uy — KX —— ) — 0
lincl lincl l

(4.1) 0 —— Uy —— L —— Z[Homg(K, k)] —— 0
N

0 —— Ug — K* —— 7 — 0,

where the first morphism at the right column sends 1 to > o P and the second sends every
ptol. We define Uy, 4/, to be the kernel of the composite map L — Z[Homy (¥, k)] —
Z. We have an exact sequence

This sequence is the one we will use instead of the sequence (2.2). If L/K is Galois,
then the inclusions Up y — Up pr/p — L,Z< are morphisms of sheaves of G-modules.
Thus we have an action of G on Coker(Uyp ; — L;) = Z|Gal(k'/k)]. The action of an
element o € G on Z|Gal(k'/k)] is given by multiplication by the image of ¢! from the
right.

§4.3. Proof of the main theorem
We prove Theorem 1.1. We need the following vanishing result.

Proposition 4.2.  Let L/K be a finite Galois extension. Then the Tate co-
homology sheaf fli(Gal(L/K),L;) vanishes for all i € 7Z. More generally, for any
subextension E of LK, the sheaf H(Gal(L/E), L) vanishes for all i € Z.

Proof. First we show that H*(Gal(L/K),L)) = 0. By the exact sequence 0 —

ULy — L — Z[Gal(k' /k)] — 0 and Proposition 3.6, we know that the sheaf H*(Gal(L/K), L))

is an affine proalgebraic group with group of k-points given by H*(Gal(L/K), L} (k)) =
HY(Gal(L/K),(K™ Qg L)*). The description of (K™ ®g L)* in Section 4.2 shows
that this Gal(L/K)-module is induced from the T'(L/K)-module (L™)*. By Shapiro’s

lemma ([Ser79, VII, §5, Exercise]), we have H*(Gal(L/K), (K" ®xL)*) = H(T(L/K), (L™)*).

This group is zero as shown in the proof of Theorem 2.1.
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Next we show that H?(Gal(L/E),L;) = 0. The isomorphism L} 2 Res; /, LS,
stated in Section 4.2 is Gal(L/FE)-equivariant. Since Resy» y, is an exact functor by part
1 of Proposition 3.2, we have H*(Gal(L/E),L}) = Resyn /x H(Gal(L/FE),L},), which
is zero by the first case. O

Proof of Theorem 1.1. First we construct a homomorphism 7 (K*) — Gal(L/K)b
for each finite Galois extension L/K. Let k' be the residue field of L. We set G =
Gal(L/K), g = Gal(k'/k), T = T(L/K) and T, = T(L N K*®/K). We regard G,
g and T, as constant groups over k (though the group ring Z[g] is regarded as an
étale group over k as before). We apply Proposition 4.2 to the short exact sequence
(4.2) of sheaves of G-modules. The long exact sequence then gives an isomorphism
fli_l(G,Z) = }AIi(G,UL,k//k) for any i € Z.

We examine this isomorphism for i = 0. Since I:I_I(G, 7) = 0, we have I:IO(G, Up k) =
0. This means, by the definition of Tate cohomology, that the norm map (endomor-
phism) N = " _~0: U wx — Upg pryi is a surjection onto the G-invariant part of
the sheaf of G-modules Uy, ;. Since the G-invariant part of the morphism L} — Z[g|
is the valuation map K* — Z, the G-invariant part of Uy, ./, is Ux. Hence the norm
map N gives a surjection Up, p//, — Uk.

Next we examine the same isomorphism for i = —1. Since H2(G, Z) is the constant
group G®P, we have fI‘l(G, Up k) & G?P. By definition, the sheaf fI‘l(G, Up /i)
is the kernel of the norm map N: Uy, 3/, — Uk divided by the product IgUyp, /. of
the sheaf of G-modules Uy, 4/, and the augmentation ideal I¢ of the group ring Z[G].
Therefore we get a short exact sequence 0 — G*P — Ur w/k/I1cUrL, ik R Uk — 0.

Consider the following commutative diagram with exact rows:

0 — UL,k’/k/IGUL,k’/k — L;:/IGUL,k’/k Z 0
I~ [~ H
0 —— Ug —_— K~ Z 0.

The above short exact sequence fits in the first column of this diagram. Hence we get
a short exact sequence

0— Gab — L;/IGUL,k’/k ﬁ I{>< — 0.
The resulting long exact sequence of homotopy groups gives a homomorphism
mh(K*) — G?P,

Note that we can give the following more explicit description of the morphism G2*P —

L. /IgUp, i via the presentation L (k) = Hpeg(f(“r ®fh; L)* given in Section 4.2.
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Let o = (), € HPEQ(K‘“r ®%; L)™ be the element given by a, = 1 for p # id and
aig = 1®mp, for a prime element 77, of Or.1Y Then, by writing down all maps involved,
we see that the image of o € G?" is given by o(a)/a (see Section 4.2 for the description
of o(c)). This element o(a)/c is further mapped to o~! — 1 via the valuation map
L — Z[g].

Next we show that the homomorphisms 7% (K*) — G?" just constructed form an
inverse system for finite Galois extensions L/K. Let L; be a finite Galois extension of
K containing L. Let k] be the residue field of L; and set G; = Gal(L;/K). To show
that the homomorphisms 7% (K*) — G5 and 7F(K*) — G are compatible, consider
the following commutative diagram with exact rows:

0 E— UL1,k’1/k Lik Z 0
P |
0 —— UL,k//k Ll>c< 7 0.

The top row is a sequence of sheaves of G1-modules and the bottom row is a sequence of
sheaves of G-modules. The actions are compatible with the natural surjection G; — G.
This diagram induces a commutative diagram on homology

H1(G1,Z) —— Ho(G1,Ur, w//k)

H [

H\(G1,Z) —— Ho(G1,Up, /1)

! l

Hl(G,Z) D HO(GaUL,k’/k)'

Note that Ny, ,r maps the kernel of Ng, = N,/ on Up, /i to the kernel of Ng =
Np/k on Up iy since Np, g = Npjg o Np,/r. Therefore we have a commutative
diagram

H=%(G1,Z) —— HY(G1, Uz, w1

l lNLl/L

H*(G,2) —— H NG, UL ).

The left vertical map is identified with the natural surjection G5 — G®P. Therefore we

10This « is different from 8 := 1 ® 7L € (K" ®p L)* unless L/K is totally ramified, since j3
corresponds to (1®° 7)), € Hpeg (K" ®f%, L)*, whose p-component for any p # id is 1®° 7y, # 1.
Also if L/K is unramified and 7, is taken from K, then o(8) = 8 and o(8)/8 = 1 # o(a) /e unless
L =K.
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have a commutative diagram with exact rows

0 —— G —— Ly, /1, UL, j e —— KX —— 0

o e

0 —— G —— LY/IgUppp —25% KX —— 0,
The resulting long exact sequences of homotopy groups show the compatibility.

Hence we have obtained a homomorphism 7% (K*) — Gal(K®"/K). We show that
this satisfies the commutative diagram (1.1) in the theorem. Let I; be the augmentation
ideal of the group ring Z[g]. Since g = T, o/l g by p < p—1, we have an exact sequence
0 — g — Zlg]/I} — Z — 0. Also the surjection L)} — Z[g] gives a surjection
Ur, k/k = Iy. Multiplying I, we have a surjection IgUp, 1/ — Iglg = Ig. Therefore
the kernel of the surjection L /IcUy i — Zl[gl/I5 is Urx/(Urk N 1gUL k).
Hence we have the following commutative diagram with exact rows and columns:

0 0 0
0 —— Ty, —— Uri/(UrxNIcUp /1) Ug 0
43) 0 — G — LY /16Uy ok Kx 0
0 —— g —— Zlg)/ I3 Z 0

0 0 0.

Here, since the composite map G** — Ly /IcUy, v/, — Zlg]/I; sends o to o=! —1 =
1—o as we saw after the construction of 7F(K*) — G#P, the homomorphism g*® — Z[g]
is switched from the natural one p — p — 1 to —1 times it. The resulting long exact
sequences of homotopy groups give the commutative diagram (1.1).

We show that the left vertical map of the diagram (1.1) coincides with the isomor-
phism of the local class field theory of Hazewinkel. If L/K is totally ramified, then
the top horizontal sequence of (4.3) becomes 0 — G* — U /IoUr — Ug — 0. The
morphism G®® — U /IgUr sends o — o(nr)/mr for a prime element 77 of O as
we saw after the construction of the homomorphism 7¥(K*) — G2". Therefore our
sequence 0 — G*° — UL /IoUp — Ug — 0 for totally ramified L/K coincides with
the sequence (2.1), so we see the coincidence.
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The left and right vertical arrows of the diagram (1.1) are isomorphisms. Hence so
is the middle. |

§4.4. Auxiliary results

Propositions 4.3, 4.4 and 4.5 below are originally Lemmas 4.3, 4.4 and 4.5, respec-
tively, of [SY10, §4].

Proposition 4.3.  Let E/K be a finite extension with residue extension k" [k.
Then the isomorphisms of Theorem 1.1 for K and E satisfy the following commutative
diagram:

™ (Ng/x) ) k
—

i (Ep) T (KX) —— 7§(Ker(Ng/k)) —— 0

i L i

G — G¥® — Ga(ENnK*/K) —— 0.

Res

Here we identified 71'{“”(E,>§,,) with 7 (E;) by part 2 of Proposition 3.2. The map 0 is
the boundary map of the homotopy long exact sequence coming from the short exact

Ng,Kk

sequence 0 — Ker(Ng/ i) — Ef — K* — 0.

Proof. First we show that 0 is surjective. Consider the long exact sequence
= 7 (B]) - wH(KX) % i (Ker(Ngyx)) — 76 (BY) — m(K*) — 0.

It is enough to show that the last map 75 (E) — nf(K*) is an isomorphism. This
follows from the bottom half of the diagram (4.1) by noticing that Ux and Ugj are
connected.

Next we show that the left square of the diagram is commutative. We may assume
FE is either separable or purely inseparable.

First we treat the case F is separable. Let L be a finite Galois extension of K
containing E and let k' be the residue field of L. We set G = Gal(L/K) and H =
Gal(L/FE). It is enough to show that the diagram

k) T WVE) e
Wl(Ek) - 7T1(K )
Ha'b can. Ga'b

is commutative. For this, it suffices to construct a diagram

N
0 —— H® —— L*/IzUp i PR —— 0

lcan. lcan. lNE/K

N
0 —— G —— LY/IgUpp/p —2 KX —— 0
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and prove the commutativity of the squares and the exactness of the rows. We construct
the top row. We regard the exact sequence 0 — Ugp r/p — L — 7Z — 0 of (4.2) as
an exact sequence of sheaves of H-modules. By Proposition 4.2, we have H ‘(H, L)) =
0. Therefore we have I:Ii_l(H, 7) = fIi(H, Uy i/k). The H-invariant part of the
morphism L; — Z is E; — Z, which implies that the H-invariant part of Uy, j//p is
Ug, /- The rest of the construction of the top row is the same as that of the bottom
row, which we did in the previous section. The commutativity of the left square follows
from the naturality of corestriction maps

H*(H,Z) —— HY(H,Uyp )

Coresl lCores

H2(G,Z) —~— H G, UL wm).

Next we treat the case E/K is purely inseparable. Let L/K be a finite Galois

extension with residue extension k'/k. We set F' = LE. Then Gal(L/K) = Gal(F/E).
We have a commutative diagram

0 —— Uprw /i F; A 0
o L |
0 —— Urwm L; ) 0.
The rest of the proof is easy and similar to the separable case. O

If k is quasi-finite with given generator F' of its absolute Galois group, the above
proposition implies that the homomorphism K* — 7¥(K*) of (3.2) followed by the
isomorphism 7§ (K*) = Gal(K*"/K) gives a homomorphism K * /Ng,x EX — Gal(EN
K®* /K). This and the diagram (1.1) together imply that our K* — Gal(K*"/K) has
to be the same as the canonical homomorphism of the usual local class field theory times
—1, which sends a prime element to an automorphism that acts on k*® =k by F~1.

Proposition 4.4.  Let L/K be a finite totally ramified abelian extension with
Galois group G. Let v =1 g be the Herbrand function, m > 1 an integer, N: Up —
Ug the norm map and N : UL/Uf(m_lH1 — Uk /UR its quotient. Then we have
7§ (Ker(N)) = G/G™, where G™ is the m-th ramification group in the upper numbering.

Proof. By [Ser61, §3.4, Prop. 6 (a)], we have N(U%(m_l)ﬂ) = U’%. This and a
diagram chase show that the commutative diagram
0 —— Ker(N) ﬂUf(m_lHl —— Ker(N) OU%(m_l) ——— Ker(N) —— 0

H ! J

0 —— Ker(N)ﬂU%(m_lH_1 — Ker(N) — Ker(N) —— 0
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has exact rows, where N: U%(m_l)/U%(m_l)Jrl — U%_l/U%. Apply 7% to this dia-
gram. We use [Ser61, §3.5, Prop. 8, (ii)], Proposition 4.3 (or [Ser61, §2.3, Cor. to Prop.
3]) and [Ser61, §3.4, Prop. 6, (b)] for the top middle term, bottom middle term and the
top right term respectively. Then we get a commutative diagram with exact rows

W’S(Ker(N)ﬂU%(m_l)H) — Gt — gml)gm —— 0

| l |

ﬂ’(‘f(Ker(N)ﬂU%(m_l)H) — G ——— 7mf(Ker(N)) —— 0.
Thus we have 7&(Ker(N)) = G/G™. O

Proposition 4.5. Let L/K, G, ¢ and N have the same meaning as in the
previous proposition. The homomorphism K* — Hom(Gal(k* /k), 7% (K*)) of (3.1)
with the isomorphism ©F(K*) & Gal(K*/K) induces isomorphisms K> /NL* =
Hom(Gal(k*" /k), G) and U}’g_l/U}}lNUip(m_l) =~ Hom(Gal(k?® /k), G™~1/G™) for any
integer m > 1. If K'/ K is a finite unramified extension with residue extension k'/k and
L' = K'L, then these isomorphisms satisfy commutative diagrams

KX/NL* ——— Hom(Gal(k*®/k),G)

KX /NL'™ ——— Hom(Gal(k'**/k'),G),
Ur—tyumNUY™Y ——  Hom(Gal(k*/k), G™—1/G™)
Uy um NUP™ Y ——— Hom(Gal(k'*P/k'), G™=1/G™).

Here the vertical maps are induced by the inclusion K* — K'* and the natural map
Gal(k'®P /k") — Gal(k*®/k).

Proof. First we have K*/NL* = Uk /NUp, since L/K is totally ramified. We
have short exact sequences

0—-G—-UL/IcU, —Ug —0 and
0— Gml/Gm — U uytt Ut Lt -0
of proalgebraic groups over k by (2.1) and [Ser61, §3.4, Prop. 6 (b)] respectively.

The coboundary maps of Galois cohomology of k!! for these sequences give the maps
UX/NUS — Hom(Gy,G) and UL~ /URNULY™ Y - Hom(Gg, G™~1/G™) in the

11 Again do not confuse this with Tate cohomology sheaves.
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statement by construction. We have Up/IoUp = GH) x Ul /IgUL. The group
Ul /I5UL is a connected affine unipotent proalgebraic group, so it has a filtration with
subquotients all isomorphic to GS;”). We have H(k, Gﬁnoo)) = Hl(k,Ggoo)) =0, so
H'(k,UL/IgUL) = 0. Also U%(m_l)/Uﬁ(m_lH1 is isomorphic to G5 if m = 1 and
to G if m > 1. Hence we have Hl(k,Uf(m_l)/U%(m_l)H) = 0. Therefore we get
the required isomorphisms. The commutativity of the two diagrams are the naturality
of corestriction maps. O

This proposition shares large part with Fesenko’s result in his paper [Fes93].
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