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The \ell‐primary torsion conjecture for abelian surfaces

with real multiplication

By

Anna CADORET *

Abstract

We prove that the Bombieri‐Lang conjecture implies the P‐primary torsion conjecture for

abelian surfaces with real multiplication.

§1. Introduction

Let \mathfrak{O} be the ring of integers of a quadratic real field extension of \mathbb{Q} with discrimi‐

nant D and let X(n) denote the coarse moduli scheme for the stack of polarized abelian

surfaces with real multiplication by \mathfrak{O} and $\mu$_{n} ‐level structure (See Subsection 2.2 for

precise definitions). The irreducible components of the X(n) are normal, separated, ge‐

ometrically connected surfaces (defined over a number field depending on the involved

data) and it is known that the smallest integer n(D) such that X(n(D)) is of general

type is 1 except for finitely many cases, where it is 2 or 3 (Theorem 2.2).
The Bombieri‐Lang conjecture (Conjecture 2.1) predicts that if X is a surface of

general type over a number field k then the set of k‐rational points X(k) is not Zariski‐

dense in X . Thus, conjecturally, polarized abelian surfaces with real multiplication by
\mathfrak{O} and $\mu$_{n(D)} ‐level structure defined over k are parametrized by a closed subscheme

S\mapsto X(n(D)) whose irreducible components have dimension \leq 1.

For such a scheme S and any abelian scheme A\rightarrow S ,
works of A. Tamagawa and

the author show that, for any integer d\geq 1 and prime \ell the  P‐primary rational torsion

is uniformly bounded in the fibres at closed points s\in S whose residue degree [k(s) : k]
is \leq d (Theorem 2.4). So, assuming the Bombieri‐Lang conjecture, one can expect

that for any number field k and prime \ell the  k‐rational P‐primary torsion of polarized
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abelian surfaces with real multiplication by \mathfrak{O} and $\mu$_{n(D)} ‐level structure defined over k

is uniformly bounded.

The only difficulty stems from the fact that, for n(D)\leq 2 ,
the coarse moduli scheme

X(n) is not fine hence there is no universal abelian surface with real multiplication by
\mathfrak{O} and $\mu$_{n(D)} ‐level structure over it, to which one could apply directly the uniform

boundedness result of A. Tamagawa and the author. However, this can be overcome by

elementary cohomological and rigidification technics.

The main result we obtain in this short note is the following.

Theorem 1.1. Assume that the Bombieri‐Lang conjecture holds. Then for any

number field k and prime \ell there exists an integer  N:=N(\mathfrak{O}, k, \ell) such that, for any

polarized abelian surfa ce A with real multiplication by \mathfrak{O} and $\mu$_{n(D)} ‐level structure dened

over k :

|A(k)[\ell^{\infty}]|\leq p^{N}

In Section 2 we gather the several ingredients involved in the proof of Theorem 1.1.

The proof itself is carried out in Section 3.

Acknowledgements: I would like to thank Pete L. Clark for suggesting the idea of

this note as well as Marc‐Hubert Nicole, Matthieu Romagny and Akio Tamagawa for

their interest and constructive comments.

§2. Preliminaries

Given a scheme S over a field k and an integer d\geq 1 ,
we will write

S^{\leq d}:=\{s\in S|[k(s):k]\leq d\},

where k(s) denotes the residue field of S at s.

§2.1. Bombieri‐Lang conjecture

Given a field k of characteristic 0 ,
let \mathcal{P}(k) (resp. \mathcal{B}(k) ) denote the category of

all schemes smooth, projective and geometrically connected over k (resp. of all nor‐

mal schemes separated, of finite type and geometrically connected over k ). Also, let

\sim denote the birational equivalence on \mathcal{P}(k) (resp. \mathcal{B}(k) ), it follows from Nagata�s

compactification theorem and Hironaka�s desingularization theorem that the canonical

map

\mathcal{P}(k)/\sim\rightarrow B(k)/\sim

is bijective (e.g . [1, §2.1] ) . Thus any birational invariant defined on \mathcal{P}(k) naturally
extends to \mathcal{B}(k) ; this is in particular the case for Kodaira dimension and we say that

S\in \mathcal{B}(k) is of general type if its Kodaira dimension  $\kappa$(S) is equal to its dimension

\dim(S) . With this convention, we can formulate the so‐called Bombieri‐Lang conjecture
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Conjecture 2.1. Let  k be a number field and let S\in \mathcal{B}(k) be a surfa ce of general

type. Then the set of k ‐rational points S(k) is not Zariski‐dense in S.

Conjecture 2.1 was stated by E. Bombieri for surfaces and generalized by S. Lang
for schemes S\in \mathcal{B}(k) of arbitrary dimension under the following more precise form.

Let k be a number field and let S\in B(k) be of general type. Then there existe a

closed subscheme Z\mapsto S, Z\neq S such that for any finite field extension k\mapsto k' the set

S(k')\backslash Z(k') is finite.

The Lang conjecture (and even the Bombieri‐Lang conjecture) is widely open. The

most striking result is that it holds for subvarieties of abelian varieties [7].

§2.2. The stack of abelian surfaces with real multiplication

Let \mathbb{Q}\mapsto K be a degree g totally real field extension and let \mathfrak{O} denote the ring
of integers of K . Let \mathrm{C} and \mathrm{C}^{+} denote the class group and strict class group of \mathfrak{O},

respectively. Fix a system \mathcal{J}_{1} ,
. .

:; \mathcal{J}_{h+} of fractional ideals of \mathfrak{O} , which, endowed with

their natural notion of positivity, form a complete system of representatives of C.

For \mathcal{J} one of the \mathcal{J}_{1} ,
. .

:, \mathcal{J}_{h+} ,
a g‐dimensional \mathcal{J}‐polarized abelian scheme with real

multiplication by \mathfrak{O} is a triple (A,  $\iota$,  $\lambda$) ,
where:

-A\rightarrow S is an abelian scheme of relative dimension g ;

- $\iota$ : \mathfrak{O}\mapsto End(A) is a ring homomorphism;
- $\lambda$ : (\mathcal{M}_{A}, \mathcal{M}_{A}^{+})\sim\rightarrow(\mathcal{J}, \mathcal{J}^{+}) is a polarization that is, an \mathfrak{O} ‐linear isomorphism of étale

sheaves between the invertible \mathfrak{O} ‐module \mathcal{M}_{A} of all symmetric \mathfrak{O} ‐linear homomorphisms
from A to A^{\vee} and \mathcal{J} , identifying the positive cone of polarizations \mathcal{M}_{A}^{+} with the totally
real elements \mathcal{J}^{+} in \mathcal{J}.

Let \mathbb{Q}(\mathcal{J}) denote the field of definition of \mathcal{J} and  S_{\mathfrak{O},g,\mathcal{J}}\rightarrow spec ( \mathbb{Q}(\mathcal{J})) the étale

stack of g‐dimensional \mathcal{J}‐polarized abelian schemes with real multiplication by O. Set

 S_{\mathfrak{O},g}:=\sqcup S_{\mathfrak{O},g,\mathcal{J}_{i}}1\leq i\leq h+\cdot
One can furthermore endow \mathcal{J}‐polarized abelian schemes with real multiplication by \mathfrak{O}

with a $\mu$_{n} level‐structure, that is an injective \mathfrak{O} ‐linear homomorphism of étale sheaves:

 $\epsilon$:$\mu$_{n}\otimes_{\mathbb{Z}}\mathfrak{D}^{-1}\mapsto A,

where \mathfrak{D} is the different of \mathbb{Q}\mapsto K . Let S_{\mathfrak{O},g,\mathcal{J}}(n) and S_{\mathfrak{O},g}(n) denote the corresponding
stacks.

The stacks S_{\mathfrak{O},g}(n) , n\geq 0 are Deligne‐Mumford stacks locally of finite presenta‐

tion and with finite inertia; let c:S_{\mathfrak{O},g,\mathcal{J}}(n)\rightarrow S_{\mathfrak{O},g,\mathcal{J}}(n) denote their coarse moduli

schemes. For n\geq 3, c:S_{\mathfrak{O},g,\mathcal{J}}(n)\rightarrow S_{\mathfrak{O},g,\mathcal{J}}(n) is a fine moduli scheme. See [12], [14,
Chap. X], [6] for more details.
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For g=2 ,
the coarse moduli schemes S_{\mathfrak{O},2,\mathcal{J}}(n) are 2‐dimensional normal schemes,

separated and geometrically connected over \mathbb{Q}(\mathcal{J}) . The analytic space associated with

S_{\mathfrak{O},2,\mathcal{J}}(n)\times \mathbb{Q}(\mathcal{J})\mathbb{C} can be identified with \mathrm{P}\mathrm{S}\mathrm{L}_{2}^{n}(\mathfrak{O}\oplus \mathcal{J})\backslash \mathfrak{H}^{2} . Here

\mathfrak{H}=\{z\in \mathbb{C}|\mathrm{i}\mathrm{m}(z)>0\}

and \mathrm{P}\mathrm{S}\mathrm{L}_{2}^{n}(\mathfrak{O}\oplus \mathcal{J})=\mathrm{S}\mathrm{L}_{2}^{n}(\mathfrak{O}\oplus \mathcal{J})/\{\pm 1\} ,
where \mathrm{S}\mathrm{L}_{2}^{n}(\mathfrak{O}\oplus \mathcal{J}) is the subgroup of SL(k)

of matrices:

\left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right)
with a\equiv d mod \mathcal{J}, c\in n\mathcal{J} and b\in n\mathcal{J}^{-1} . Using this analytic description, one can

show the following [9], [10], [14, Thm. VII.3.3 and VII.3.4].

Theorem 2.2. For any real quadratic field extension \mathbb{Q}\mapsto K with ring of inte‐

gers \mathfrak{O} and discriminant D one has

-S_{\mathfrak{O},2,\mathcal{J}} is of general type except ifD=5 , 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44, 53,

56; 57; 60; 61; 65; 69; 73; 77; 85; 88; 92; 93; 105; 120; 140; 165 (we will then say that D

is exceptional).

-S_{\mathfrak{O},2,\mathcal{J}}(2) is of general type except if D=5 , 8, 12, in which case S_{\mathfrak{O},2,\mathcal{J}}(3) is of

general type.

We set n(D)=1 if D is non‐exceptional, n(D)=2 if D is exceptional \neq 5 , 8, 12

and n(D)=3 if D=5 , 8, 12.

§2.3. Strong uniform boundedness of P‐primary torsion in 1‐dimensional

families of abelian varieties

The Mordell‐Weil theorem asserts that for any number field k and abelian variety A

over k the (abelian) group A(k) of k‐rational points is finitely generated. In particular its

torsion subgroup A(k)_{tors} is finite. Given a prime \ell
,

the  P‐primary torsion conjecture is

a uniform conjectural form of Mordell‐Weil theorem for the P‐Sylow subgroups A(k)[\ell^{\infty}]
of A(k)_{tors}.

Conjecture 2.3 (P‐primary torsion conjecture). For any integer  $\delta$\geq 1

‐ Weak form: For any number field k and prime \ell there exists an integer  N:=

N( $\delta$, P, k) depending only on  $\delta$, \ell and  k such that for any  $\delta$ ‐dimensional abelian

variety  A over k one has

|A(k)[\ell^{\infty}]|\leq p^{N}
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‐ Strong form: For any integer  d\geq 1 and prime \ell there exists an integer  N:=

N( $\delta$, P, d) depending only on  $\delta$, \ell and  d such that for any number field k with [k :

\mathbb{Q}]\leq d and  $\delta$ ‐dimensional abelian variety  A over k one has

|A(k)[\ell^{\infty}]|\leq p^{N}

The  $\delta$=1 case of the strong P‐primary torsion conjecture essentially follows from

the fact that for any prime \ell the gonality of the modular curves  Y_{1}(\ell^{n}) (classifying
elliptic curves with a torsion point of order exactly \ell^{n} ) goes to +\infty with  n . Indeed,
combined with Faltings‐Lang‐Frey [8], this implies that for any integer d\geq 1 the sets

Y_{1}(\ell^{n})^{\leq d} are finite for n large enough (depending on d). But if Y_{1}(\ell^{n})^{\leq d} is non‐empty
for all n\geq 0 ,

it follows from the usual compactness argument that

\displaystyle \lim_{\leftarrow}Y_{1}(\ell^{n})^{\leq d}
is non‐empty as well, which contradicts Mordell‐Weil theorem.

For  $\delta$\geq 2 ,
the P‐primary torsion conjecture is widely open. However, the following

higher dimensional relative variant of the strong P‐primary torsion conjecture holds [2],
[3], [4].

Theorem 2.4. Let k be a number field, S a normal curve, separated, of finite

type and geometrically connected over k and A\rightarrow S an abelian scheme. Then, for any

integer d\geq 1 and prime \ell there exists an integer  N:=N(A, P, d) depending only on A,
\ell and  d such that for any s\in S^{\leq d} on has

|A_{s}(k(s))[\ell^{\infty}]|\leq l^{N}

When applied to the �universal elliptic scheme�

E\displaystyle \equiv y^{2}+xy-x^{3}+\frac{36}{j-1728}x+\frac{1}{j-1728}\rightarrow \mathbb{P}_{j}^{1}\backslash \{0, 1728, +\infty\}
theorem 2.4 yields the 1‐dimensional case of the P‐primary torsion conjecture.

§3. Proof of theorem 1.1

We now proceed to the proof of Theorem 1.1 by combining the ingredients gathered
in Section 2.

Fix a finite extension k of \mathbb{Q}(\mathcal{J}) and, for simplicity, write n for n(D) and c :

\mathcal{X}(n)\rightarrow X(n) for the pullback of c:S_{\mathfrak{O},2,\mathcal{J}}(n)\rightarrow S_{\mathfrak{O},2,\mathcal{J}}(n) via \mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}(k)\rightarrow \mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{Q}(\mathcal{J})) .

In any case, the canonical morphism of stacks F : \mathcal{X}(6)\rightarrow \mathcal{X}(n) induces a commutative
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diagram

\mathcal{X}(6)\rightarrow^{F}\mathcal{X}(n)

c\downarrow \downarrow c
X(6)\rightarrow X(n)f �

where the bottom arrow f : X(6)\rightarrow X(n) is a finite surjective morphism of surfaces. By
Theorem 2.2 (and assuming the Bombieri‐Lang conjecture), the irreducible components

of the Zariski closure \mathrm{X}(n) of X(n)(k) in X(n) have dimension \leq 1 . Since \mathrm{X}(n) has

finitely many irreducible components (being of finite type over k ), it is enough to bound

uniformly the P‐primary torsion of the abelian surfaces associated with points in \mathcal{X}(n)(k)
lying over \sim \mathrm{J} for each irreducible component \sim \mathrm{J} of \mathrm{X}(n) . So, without loss of generality,
we may assume that \mathrm{X}(n) is irreducible.

§3.1. \dim(\mathrm{X}(n))=0 (i.e. \mathrm{X}(n) is a singleton)

Since c:\mathcal{X}(n)\rightarrow X(n) is a coarse moduli scheme, it induces a bijection

\mathcal{X}(n)(\overline{k})/\sim\rightarrow\sim X(n)(\overline{k}) .

In particular, any two A_{i}(=(A_{i}, $\iota$_{i}, $\lambda$_{i}, $\epsilon$_{i}))\in \mathcal{X}(n)(k) ,
i=1

,
2 become isomorphic in

\mathcal{X}(n)(\overline{k}) . The conclusion then follows from Lemma 3.1 below applied to the forgetful
functor \mathcal{X}(n)\rightarrow \mathcal{A}_{2} and the fact that for any abelian variety A over a number field k

and integer d\geq 1 the set

A^{\leq d}\cap A(\overline{k}) tors

is finite [5, Lemma 3.19].

Lemma 3.1. Let S be any scheme, let \mathcal{A}_{ $\delta$}\rightarrow S denote the étale stack of  $\delta$-

dimensional abelian varieties over S and let \mathcal{X}\rightarrow S be an algebraic stack with quasi‐

finite inertia1. Then for any morphism A:\mathcal{X}\rightarrow \mathcal{A}_{ $\delta$} of fibered categories, there exists

an integer \triangle:=\triangle( $\delta$)\geq 1 such that for any S‐field k and x
, ; y\in \mathcal{X}(k) such that x|_{\overline{k}}

and y|_{\overline{k}} are isomorphic in \mathcal{X}(\overline{k}) , there exists a finite extension k\mapsto k_{x,y} with degree

[k_{x,y}:k]\leq\triangle such that  A(x)|_{k_{x,y}} and A(y)|_{k_{x,y}} become isomorphic in \mathcal{A}_{ $\delta$}(k_{x,y}) .

Here, given a morphisme of S‐schemes V\rightarrow U and an object x\in \mathcal{X}(U) ,
we write x|_{V}

for the image of x via the canonical pull‐back functor \mathcal{X}(U)\rightarrow \mathcal{X}(V) . For instance,
with this notation, A(x)|_{k_{x,y}} is nothing but  A(x)\times k_{x},\cdot

lRecall that the inertia stack of \mathcal{X} is dened to be \mathcal{I}_{S}(\mathcal{X}) :=\mathcal{X}\times \mathcal{X}\times s^{\mathcal{X}}\mathcal{X}\rightarrow \mathcal{X} . Hence, in

particular, it follows from the denition of the fibre product in the 2‐category of S‐groupoids that

for any geometric point x\in \mathcal{X}( $\Omega$) the fibre \mathcal{I}_{S}(\mathcal{X})_{x} can be identied with Aut (x) . The assumption
that \mathcal{X} has finite inertia is only there to ensure that the automorphism group of geometric points
is finite.



THE \ell‐primary torsion conjecture for abelian surfaces with real multiplication 201

Proof. Recall first that there exists an integer  B( $\delta$)\geq 1 such that for any field k

and  $\delta$‐dimensional abelian variety  A over k
, any finite subgroup G of Aut(A) has order

\leq B( $\delta$) . Indeed, let \ell be a prime different from the characteristic of  k . Then, since

End (A) acts faithfully on T_{l}(A) [ 11
,

Lemma 12.2], G is a finite subgroup of \mathrm{G}\mathrm{L}_{2 $\delta$}(\mathbb{Z}_{\ell}) .

But such subgroups have order bounded by a constant depending only on  $\delta$ and \ell[13,
LG 4.27, Thm. 5]. The conclusion thus follows from the fact that we can take \ell=2 or

3.

Given x\in \mathcal{X}(k) ,
write \mathrm{T}\mathrm{w}(x/k) for the set of isomorphism classes of twists of x

over k that is pairs (x',  $\phi$) ,
where x'\in \mathcal{X}(k) and  $\phi$ :  x|_{\overline{k}^{\rightarrow}}^{\sim}x'|_{\overline{k}} is an isomorphism in

\mathcal{X}(\overline{k}) . One has a commutative diagram of pointed sets:

\mathrm{T}\mathrm{w}(\mathrm{A}(\mathrm{x})=\mathrm{k}) \mathrm{H}( $\Gamma$ ; \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{A}(\mathrm{x})

\mathrm{H}( $\Gamma$ ; \mathrm{A}(\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{x} )))

\mathrm{T}\mathrm{w}(x/k)\rightarrow \mathrm{H}^{1}a($\Gamma$_{k}, \mathrm{A}\mathrm{u}\mathrm{t}(x|_{\overline{k}})) ,

where  $\beta$ is an isomorphism of pointed sets. By the quasi‐finite inertia assumption, the

group Aut (x|_{\overline{k}}) is finite so A(\mathrm{A}\mathrm{u}\mathrm{t}(x|_{\overline{k}})) is a finite subgroup of Aut (A(x|_{\overline{k}})) and, by the

observation above, has order \leq B() . Set k_{x}:=\overline{k}^{\mathrm{k}\mathrm{e}\mathrm{r}( $\varphi$)} ,
where  $\varphi$ :  $\Gamma$_{k}\rightarrow \mathfrak{S}(A(\mathrm{A}\mathrm{u}\mathrm{t}(x|_{\overline{k}})))

is the permutation representation associated with the $\Gamma$_{k} ‐set A(\mathrm{A}\mathrm{u}\mathrm{t}(x|_{\overline{k}})) . Then [k_{x} :

k]\leq B( $\delta$) ! and A(\mathrm{A}\mathrm{u}\mathrm{t}(x|_{\overline{k}})) is a trivial $\Gamma$_{k_{x}} ‐module so \mathrm{H}^{1}(k_{x}, A(\mathrm{A}\mathrm{u}\mathrm{t}(x|_{\overline{k}}))) can be

identified with the set of orbits of

\mathrm{H}\mathrm{o}\mathrm{m}_{Group}($\Gamma$_{k_{x}}, A(\mathrm{A}\mathrm{u}\mathrm{t}(x|_{\overline{k}})))

under the right action by inner automorphisms of A(\mathrm{A}\mathrm{u}\mathrm{t}(x|_{\overline{k}})) . Now, given y\in \mathrm{T}\mathrm{w}(x/k) ,

set

k_{x,y}:=k_{x}^{\mathrm{k}\mathrm{e}\mathrm{r}(ba(y)|_{k_{x}})}
then [k_{x,y} : k]\leq B( $\delta$)!B() and ba(y)|_{k_{x,y}} is trivial. Since  $\beta$ is an isomorphism of

pointed sets and the above diagram commutes, this implies that  $\beta \alpha$(y)|_{k_{x,y}} is trivial as

well. So \triangle( $\delta$)=B( $\delta$)!B() works. \square 

§3.2. \dim(\mathrm{X}(n))=1

Let X(6) denote the pullback of \mathrm{X}(n)\mapsto X(n) via f : X(6)\rightarrow X(n) . Up to con‐

sidering separately the (finitely many) irreducible components of X(6), we may assume

that X(6) is irreducible. From Subsection 3.1, we may freely remove finitely many points
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from \mathrm{X}(n) hence also assume that X(6) is a curve smooth (separated and of finite type)
over k . Eventually, we may freely replace k by any finite extension k\mapsto k' hence assume

that X(6) is geometrically connected over k.

As c:\mathcal{X}(6)\rightarrow X(6) is a fine moduli scheme, there is a section

\mathcal{X}(6)_{\vee}^{c}\rightarrow X(6)
corresponding to a \mathcal{J}‐polarized abelian scheme with real multiplication by \mathfrak{O} and $\mu$_{6^{-}}

level structure (A,  $\iota$,  $\lambda$,  $\epsilon$)\rightarrow X(6) . For simplicity, write again

A:=A\times x(6)\mathrm{X}(6)\rightarrow \mathrm{X}(6)

for the pullback of A\rightarrow X(6) via X(6) \mapsto X(6) . Then, from Theorem 2.4, for any

prime \ell and integer  d\geq 1 there exists an integer N:=N(A, P, d) such that for any

x\in \mathrm{X}(6)^{\leq d} one has

|A_{x}(k(x))[\ell^{\infty}]|\leq l^{N}

This is true, in particular, for

d=e\triangle(2) ,

where e denotes the degree of f : \mathrm{X}(6)\rightarrow \mathrm{X}(n) . But for any A'=(A',  $\iota$,  $\lambda$,  $\epsilon$)\in \mathcal{X}(n)(k)
above some x\in \mathrm{X}(n)(k) and any x'\in f^{-1}(x) , A'\times k\overline{k} and F(A_{x'}\times k(x')\overline{k}) become

isomorphic in \mathcal{X}(n)(\overline{k}) . So the conclusion, again, follows from Lemma 3.1 applied to

the forgetful functor \mathcal{X}(n)\rightarrow \mathcal{A}_{2}.

Remark 3.2.

1. The proof given here applies as it is to other similar situations. For instance if

\mathcal{A}_{ $\delta,\ \gamma$} denotes the stack of  $\delta$‐dimensional abelian varieties endowed with a degree  $\gamma$^{2}
polarization and c : \mathcal{A}_{ $\delta,\ \gamma$}\rightarrow A_{ $\delta,\ \gamma$} its coarse moduli scheme then, for any number

field k and 2‐dimensional subscheme S\mapsto A_{ $\delta,\ \gamma$} such that S\in \mathcal{B}(k) is of general

type, the P‐primary torsion of the abelian varieties associated with points in \mathcal{A}_{ $\delta,\ \gamma$}(k)
lying over S is uniformly bounded.

2. Even in the fine moduli situation, that is A\rightarrow S is an abelian scheme with S\in \mathcal{B}(k)
of general type, our proof does not show that the Bombieri‐Lang conjecture implies
that for integer d\geq 2 and prime \ell the  P‐primary k(s) ‐rational torsion in the fibres

A_{s}, s\in S^{\leq d} is uniformly bounded. The obstruction comes from the fact that the

set S^{\leq d} might be Zariski dense in S even if for each finite extension k\mapsto k' with

degree [k' : k]\leq d the set S(k') is not.

Remark 3.3 (Adding structures). One can show [1, Lemma4.11] that the P‐primary
torsion conjecture is equivalent to
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Conjecture 3.4. Let  k be a number field, S\in \mathcal{B}(k) , A\rightarrow S an abelian scheme

and \ell a prime, then there exists an integer  N:=N(A, \ell) such that A_{s}[\ell^{\infty}](k)\subset A_{s}[P^{N}]
for all s\in S(k) .

When S is a surface, combining the technics of [1], [4, Lemma 3.5] and assuming the

Lang conjecture for surfaces, one can show that conjecture 3.4 holds provided

‐ for all v\in T_{l}(A_{ $\eta$})\backslash PT(A) the dimension of $\pi$_{1}(S)v as a P‐adic analytic space is

\geq 3 ;

-A_{ $\eta$}[\ell^{n_{l}}](k( $\eta$))=A_{ $\eta$}[\ell^{n_{l}}] (in other words, A\rightarrow S is endowed with a \mathrm{f}\mathrm{u}\mathrm{l}1-1\mathrm{e}\mathrm{v}\mathrm{e}1-P^{n_{l}}-

structure defined over S ) with

n_{\ell}= 1 if \ell\geq 5 ;

2 if \ell=3 ;

3 if \ell=2.

This shows that adding structures (especially full‐level structures) should force the \ell-

primary torsion conjecture to hold; a main difficulty is thus to remove the hypothesis
that small full‐level structures are defined over the base field.

In Theorem 1.1, we add two kind of structures: real multiplication, so that the

parameter space be a surface (recall that A_{g,1} is three‐dimensional) and $\mu$_{n(D)} ‐level

structures so that the parameter space be of general type. In view of the above consid‐

erations and though it makes the proof more complicated (for n(D)\geq 3 ,
the difficulty

stemming from the fact that c : S_{\mathfrak{O},2,\mathcal{J}}(n)\rightarrow S_{\mathfrak{O},2,\mathcal{J}}(n) is not a fine moduli scheme

disappears), it is important that n(D) be as small as possible. The fact that we can

choose n(D)=1 for almost all D and in any case n(D)\leq 3 (so, in particular, n(D)
independent of \ell ) relies on the highly non‐trivial classification theorem 2.2.
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