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Lattice Packing from Quaternion Algebras

By

Fang‐Ting Tu * and Yifan YANG **

Abstract

In this paper, we will discuss ideal lattices from a denite quaternion algebra, which is

an analogue of the ideal lattices from number fields. In particular, we will construct the root

lattices D_{4}, E_{8} ,
the Coxeter‐Todd lattice K_{12} ,

the laminated lattice $\Lambda$_{16} ,
the Leech lattice $\Lambda$_{24},

and a lattice of rank 32 with center density 3^{16}/2^{2} . All of them have the highest densities

known in their own dimensions 4, 8, 16, 24, and 32.

§1. Introduction

A lattice in the Euclidean space \mathbb{R}^{n} is a pair (; B) of a free \mathbb{Z}‐module  $\Lambda$ of finite

rank, and a positive denite symmetric \mathbb{Z}‐bilinear form B . The center density of this

lattice is dened by

$\delta$_{ $\Lambda$}:=\underline{||v||^{n}}
2^{n}\sqrt{\det $\Lambda$}

�

where v is a nonzero vector in  $\Lambda$ with the smallest norm (see [10]). Lattices are closely
related to the sphere packing problem. In mathematics, there are many applications of

lattice packing, such as in number theory and coding theory.
There are many ways to construct lattices, and one of them is using ideals from

number fields([3,4,5,6,7]). We call such lattices ideal lattices, which is obtained by
a scaled trace construction. To be more precise, we let  I be an ideal in a totally real
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number field or a CM field K
,

and  $\alpha$ be a totally positive element in  K . Then we have

a positive denite quadratic form given by

Q_{ $\alpha$}(x)=\mathrm{t}\mathrm{r}_{\mathbb{Q}}^{F}(\mathrm{x}\mathrm{x})_{;}

where  $\sigma$ :  K\rightarrow K is a \mathbb{Q}‐linear involution and F is the subeld of K fixed by  $\sigma$ . In

this case, we let the pair (I;  $\alpha$) denote the ideal lattice associated to the quadratic form

Q_{ $\alpha$} . Bayer‐Fluckiger used this to construct the root lattice E_{8} ,
the Coxeter‐Todd lattice

K_{12} ,
and the Leech lattice $\Lambda$_{24} ([5]). Besides, she gave a criterion to determine whether

a number field of class number one is Euclidean ([5]), and discussed upper bounds of

Euclidean minima of some special number fields ([8]).
As the ideal lattices from a number field, we can also construct lattices from the

ideals of a denite quaternion algebra over a totally real number field [1, 2, 11, 14, 15, 16,

17]. By a suitable scaled trace construction, the reduced trace of such kind quaternion

algebra gives rise a non‐degenerate symmetric bilinear form. The aim of this paper is to

use this construction of ideal lattices from denite quaternion algebras to construct the

densest known lattices in dimension 4, 8, 16, 24, and 32. In particular, they are the root

lattices D_{4}, E_{8} ,
the Coxeter‐Todd lattice K_{12} ,

laminated lattice $\Lambda$_{16} ,
the Leech lattice

$\Lambda$_{24} ,
and a lattice of rank 32 with center density 3^{16}/2^{24} ,

which has the best known

density in dimension 32.

In this paper, we will first discuss quadratic forms on quaternion algebras in section

2. In section 3, we will introduce lattice construction from quaternion algebras, then

we establish a determinant formula, and finally give some examples for construction of

lattices.

§2. Quaternion Algebras

In this section, we will briey recall some basic denitions and properties of quater‐

nion algebras, especially quaternion algebras over a local field or number field. Most of

the materials are referred to [18]. From now on, we let K be a field and its characteristic

is not 2.

§2.1. Quaternion algebras and quadratic forms

A quaternion algebra A over a field K is a central simple algebra of dimension 4

over K
,

or equivalently, there exist i, j\in A and a, b\in K^{*} so that

A=K+Ki+Kj+Kij, i^{2}=a, j^{2}=b, ij=-ji:

In such case, we denote by (\displaystyle \frac{a,b}{K}) the quaternion algebra A
,
which has canonical K‐basis

\{1, i, j, k=ij\}.
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Notice that an element h in a quaternion algebra satises a monic polynomial

equation over K of degree at most 2. Therefore, any quaternion algebra A=(\displaystyle \frac{a,b}{K}) is

provided with a unique K‐linear anti‐involution: A\rightarrow A
,
which is called conjugation.

The reduced trace on A is dened by \mathrm{t}\mathrm{r}(h)=h+\overline{h} ; the reduced norm is dened to be

N(h)=h\overline{h} . We remark that \mathrm{t}\mathrm{r}(h)=2h and N(h)=h^{2} ,
while h lies in the center K.

Then these maps lead to a nondegenerate symmetric K‐bilinear form on A
,

which is

given by B(x, y)=\mathrm{t}\mathrm{r}(x\mathrm{y}) .

§2.2. Classication of Quaternion algebras

For a local field K
,

there are at most 2 structures of quaternion algebras over K,

up to isomorphism. If K=\mathbb{C} ,
there is only one structure for \mathbb{C}‐quaternion algebra, the

matrix algebra M_{2} For the Archimedean local field \mathbb{R}
,

a quaternion algebra over \mathbb{R}

is isomorphic to M_{2}() or the quaternions of Hamilton, \mathbb{H} . If K is non‐Archimedean,
then a quaternion algebra over K is either isomorphic to M(K) or the unique division

quaternion algebra over K.

We now recall the classication of quaternion algebras over a number field. Let

K be a number field, v be a place of K
,

and K_{v} be the local field respect to v. \mathrm{A}

quaternion algebra A over a number field K is said to be ramied at v if A_{v}=A\otimes_{K}K_{v}
is a division algebra.

Let Ram (A) denote the set of ramied places of A . Then the set Ram (A) is even.

Moreover, if S is a finite set of noncomplex places of K such that |S| is even, then

there exists a quaternion algebra A over K such that Ram(A)=S . Therefore, if an

even number of noncomplex places of K is given, then there exists one and only one

K‐quaternion algebra that ramies exactly at these places.
In the case of a totally real number field K

,
if a quaternion algebra over K is

ramied at all the real innite places, we say that the quaternion algebra is denite;

otherwise, we call it indenite. We remark that a quaternion algebra A is denite if

and only if the quadratic form given by B(x, y)=\mathrm{t}\mathrm{r}(x\overline{y}) on A is positive denite.

§2.3. Ideals in Quaternion Algebras

As the fractional ideals in a number field, there is a similar theory for ideals in a

quaternion algebra. Let R be a Dedekind domain and K be its field of fractions. Let A

be a quaternion algebra over K . An ideal of A is a complete R‐lattice in A . If an ideal

of A is also a ring with unity, it is called an order. A maximal order of A is an order

that is not properly contained in another order of A.

If I is an ideal and O is an order of A . We say that I is a left ideal of \mathcal{O}

if \mathcal{O}I\subset I; I is a right ideal of \mathcal{O} if I\mathcal{O}\subset I . The inverse of I is dened to be

I^{-1}=\{h\in A : IhI\subset I\} ,
which is also an ideal. The norm of I is the R‐fractional
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ideal generated by \{N(x) : x\in I\} . We denote by N(I) the norm of I . The dual I^{*} of I

is I^{*}=\{h\in A:\mathrm{t}\mathrm{r}(h\overline{I})\subset R\} . The discriminant of an order \mathcal{O} is disc() =\mathrm{N}(\mathcal{O}^{*})^{-1}.
It is known that the discriminant of \mathcal{O} is an R‐ideal generated by the set

\{\det(\mathrm{t}\mathrm{r}(h_{i}\overline{h_{j}})) : 1\leq i, j\leq 4, h_{i}\in \mathcal{O}\}.

Moreover, if \mathcal{O} has a free R‐basis \{h_{1}, h_{2}, h_{3}, h_{4}\} ,
then disc() is the principal R‐ideal

\det(\mathrm{t}\mathrm{r}(h_{i}\overline{h_{j}}))R.

§3. Lattice from Quaternion Algebras

In this section, we will discuss lattices from a denite quaternion algebra, and then

construct lattices have the highest densities known in their own dimensions 4, 8, 16, 24,
and 32.

§3.1. From quaternion algebra to ideal lattices

Let K be a totally real number field and A be a denite quaternion algebra over

K . The ring of integers of K and the discriminant of K are denoted \mathcal{O}_{K} and d_{K},

respectively. Also, the maps \mathrm{t}\mathrm{r}_{K}, N_{K} mean the trace map and the norm map dened

on K.

Now, if I is an ideal in A and  $\alpha$ is a totally positive element in  K
,

then we have a

positive denite quadratic form Q_{ $\alpha$} : I\rightarrow \mathbb{Q} given by

Q_{ $\alpha$}(x)=\mathrm{t}\mathrm{r}_{K}( $\alpha$ x\mathrm{X}) ,

where \overline{x} is the conjugate of x in A . In this case, we let (I;  $\alpha$) denote the lattice associated

to the quadratic form Q_{ $\alpha$} . Moreover, the associated symmetric bilinear form is given

by

B(x, y)=\mathrm{t}\mathrm{r}_{K}( $\alpha$ \mathrm{t}\mathrm{r}(x\overline{y})) .

For example, the maximal order \displaystyle \mathcal{O}=\mathbb{Z}+\mathbb{Z}i+\mathbb{Z}j+\mathbb{Z}\frac{1+i+j+ij}{2} in the Hamilton quaternions

over \mathbb{Q}, A=(\displaystyle \frac{-1,-1}{\mathbb{Q}}) ,
and the number 1 forms a lattice (; 1) with density 1/8. In

particular, this lattice is isomorphic to D_{4}.

§3.2. Determinant formula

As the determinant formula in the case of ideal lattice (I;  $\alpha$) from number field,

\det I=|dN(I)N() ,
we have a similar result for the lattices obtained by quater‐

nion algebra.

Proposition 3.1. Let K be a totally real algebraic number field with discrimi‐

nant d_{K} . Let A be a quaternion algebra over K and \mathcal{O} be a maximal order of A. If I
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is a right ideal of \mathcal{O} and  $\alpha$ is a totally positive element in  K so that (I;  $\alpha$) is a lattice.

Then we have the following identity

\det M=N(disc (\mathcal{O}))^{2}d_{K}^{4}N_{K}( $\alpha$)N_{K}(N(I))^{4},

where M is the Gram matrix of I associated to the element  $\alpha$, N(I) is norm of the ideal

I, N_{K} is the norm map dened on K over \mathbb{Q} , and disc() is the discriminant of \mathcal{O}.

Proof. First, we need to determine a \mathbb{Z}‐basis for I . Suppose K is of degree n. \mathrm{A}

\mathbb{Z}‐basis for I is  $\beta$=\{$\beta$_{i}v_{j}\} ,
where \{$\beta$_{i}\}_{1\leq i\leq n} is a \mathbb{Z}‐basis for \mathcal{O}_{K} and \{v_{j}\}_{1\leq j\leq 4} is an

\mathcal{O}_{K} ‐basis for I . Then the Gram matrix associated to I with respect to  $\beta$ can be written

as  M=(A_{ij}) ,
where A_{ij}= (apm) is an n by n matrix with entries

a_{lm}=\mathrm{t}\mathrm{r}_{K}( $\alpha$ \mathrm{t}\mathrm{r}($\beta$_{l}v_{i}$\beta$_{m}\overline{v_{j}})) .

Consequently, one can expand a_{\ell m} as

a_{lm}=\displaystyle \sum_{k=1}^{n}$\sigma$_{k}( $\alpha \beta$_{\ell}\mathrm{t}\mathrm{r}(v_{i}\overline{v_{j}}))$\sigma$_{k}($\beta$_{m}) ,

where \{$\sigma$_{k}\} are embeddings of K in \mathbb{C} which fix \mathbb{Q} pointwise. Therefore, this Gram

matrix is a product of these three matrices

M=\left(\begin{array}{l}
B000\\
0B00\\
00B0\\
000B
\end{array}\right) (_{D_{41}}^{D_{11}}..\cdot.\cdot. \cdot.\cdot. \cdot D_{44}D_{14}::)\left(\begin{array}{llll}
B^{t} & 0 & 0 & 0\\
0 & B^{t} & 0 & 0\\
0 & 0 & B^{t} & 0\\
0 & 0 & 0 & B^{t}
\end{array}\right),
where B=($\sigma$_{k}($\beta$_{l})) ,

B^{t} is the transpose of B
,

and

D_{ij}=\left(\begin{array}{lll}
$\sigma$_{1}( $\alpha$ \mathrm{t}\mathrm{r}(v_{i}\overline{v_{j}})) &  & \\
 & \ddots & \\
 &  & $\sigma$_{n}( $\alpha$ \mathrm{t}\mathrm{r}(v_{i}\overline{v_{j}}))
\end{array}\right)
is an n by n diagonal matrix. Thus, the determinant of M is equal to (\det BB^{t})^{4}\det D
with D=(D_{ij}) . In order to consider the determinant of D

,
we exchange the rows and

columns of the matrix D so that

\det D=\det\left(\begin{array}{lll}
D_{1} &  & \\
 & \ddots & \\
 &  & D_{n}
\end{array}\right), Dp=($\sigma$_{l}( $\alpha$ \mathrm{t}\mathrm{r}(v_{i}\overline{v_{j}})))_{i,j}
=\displaystyle \prod_{l=1}^{n}$\sigma$_{\ell}(\det( $\alpha$ \mathrm{t}\mathrm{r}(v_{i}\overline{v_{j}})))=N_{K}( $\alpha$)^{4}N_{K} ( \det (tr (v_{i}\overline{v_{j}})) ).
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Notice that \det BB^{t}=d_{K} and \det(\mathrm{t}\mathrm{r}(v_{i}\overline{v_{j}})) is equal to N_{K}(N(I)^{4}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}(\mathcal{O})^{2}) . Hence,

\det M=d_{K}^{4}N()N(N(I))N(disc()^{2})_{:}

\square 

This formula provides us some information and conditions for I and  $\alpha$ . In the next

subsection, we will introduce how we use it to find the lattice which has the best known

center density.

§3.3. Examples

Notice that if the field  K over \mathbb{Q} is of degree n then the lattice has rank 4n . So,
for example, if we wish to find E_{8} lattice, we must find a real quadratic extension over

\mathbb{Q} . Here, we construct E_{8} lattice using the ideal lattice via the quaternion algebra

A=(\displaystyle \frac{-1,-1}{\mathbb{Q}(\sqrt{2})}) .

Example 3.2. The E_{8} lattice. Let I be the ideal

I=\displaystyle \mathcal{O}_{K}+\mathcal{O}_{K}\frac{1+i}{\sqrt{2}}+\mathcal{O}_{K}\frac{1+j}{\sqrt{2}}+\mathcal{O}_{K}\frac{1+i+j+ij}{2}
of the quaternion algebra A=(\displaystyle \frac{-1,-1}{\mathbb{Q}(\sqrt{2})}) and choose  $\alpha$=\displaystyle \frac{2+\sqrt{2}}{4} . Then (I $\alpha$) forms a

lattice with a free \mathbb{Z}‐basis

\displaystyle \{1, \sqrt{2}, \frac{1+i}{\sqrt{2}}, 1+i, \frac{1+j}{\sqrt{2}}, 1+j, \frac{1+i+j+ij}{2}, \frac{1+i+j+ij}{\sqrt{2}}\}
Observe that the norm of the elements 1, \displaystyle \frac{1+i}{\sqrt{2}}, \displaystyle \frac{1+j}{\sqrt{2}}, \displaystyle \frac{1+i+j+ij}{2} are integers, and the trace

of \displaystyle \frac{2+\sqrt{2}}{4} is 1. Hence, the value of B(x, x)=2\mathrm{t}\mathrm{r}(\mathrm{N}(\mathrm{x})) is even for any x\in I . It

is known that an even denite unimodular lattice having rank 8 is isomorphic to E_{8}

lattice. Therefore, the lattice (I; \displaystyle \frac{2+\sqrt{2}}{4}) is isomorphic to E_{8} and its center density is

1/16.

The following constructions are concerned with totally real subelds of cyclotomic
fields. Here, we let $\zeta$_{m} denote a primitive mth root of unity, $\eta$_{m}=$\zeta$_{m}+$\zeta$_{m}^{-1} ,

for m>1,
and \mathbb{Q}($\zeta$_{m})^{+} the maximal real subeld of \mathbb{Q}($\zeta$_{m}) . We also use Magma to find ideal

lattices.

Example 3.3. The Coxeter‐Todd lattice K_{12} . In order to find a lattice

isomorphic to K_{12} ,
we choose a quaternion algebra over the totally real field \mathbb{Q}($\zeta$_{7})^{+},

which has three real innity places and d_{K}=49 . According to the determinant formula

and the center density for K_{12} ,
we have

\displaystyle \frac{1}{3^{6}}=$\delta$^{2}=\frac{\min \mathrm{i}\mathrm{m}\mathrm{a}1\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}^{12}}{2^{24}\cdot 7^{8}\cdot N_{K}( $\alpha$)^{4}N_{K}(N(I))^{4}N_{K}(\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}(\mathcal{O})^{2})}.
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Since the minimal norm is an integer, comparing the RHS and LHS, we shall choose

the quaternion algebra to be (\displaystyle \frac{-1,-3}{K}) ,
which is ramied at all of 3 real innity places

and the finite place 3. Hence, we have the equality

\underline{1}=\underline{\min \mathrm{i}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}^{12}}
3^{6} 2^{24}\cdot 7^{8}\cdot 3^{6}\cdot N_{K}( $\alpha$)^{4}N_{K}(N(I))^{4}

This gives us the condition for (I;  $\alpha$) . Finally, we find that we can choose I to be

 I=\displaystyle \mathcal{O}_{K}\langle$\eta$^{2}- $\eta$-2, ($\eta$^{2}- $\eta$-2)i, \frac{-3+4i+j}{2}, \frac{4+3i+k}{2}\rangle
with  N_{K}(N(I))=7,  $\eta$=$\eta$_{7} ,

and  $\alpha$=1/7 . Essentially, the ideal I is a right unimodular

\displaystyle \mathbb{Z}[\frac{1+j}{2}] ‐lattice of rank 6 and the theta series associated to I is

$\theta$_{I}() =1+756q^{2}+4032q^{3}+20412q^{4}+\cdots ;  q=e^{2 $\pi$ i $\tau$}

According to the results in [9], we conclude that the Coxeter‐Todd lattice K_{12} can be

realized as the ideal lattice (I; 1/7).

Example 3.4. The $\Lambda$_{16} lattice. Let K be the totally real subeld of \mathbb{Q}($\zeta$_{17}) of

degree 4 over \mathbb{Q} and the quaternion algebra is A= (\displaystyle \frac{-1,-1}{K}) . Set K=\mathbb{Q}( $\omega$) ,
where the

minimal polynomial of  $\omega$ is  x^{4}+x^{3}-6x^{2}-x+1. \mathrm{A} \mathbb{Z}‐basis for \mathcal{O}_{K} is \displaystyle \{1,  $\omega,\ \omega$^{2}, \frac{1+$\omega$^{3}}{2}\}.
The ideal we chosen is

I=\mathcal{O}_{K}\langle 1+ $\omega$, (1+ $\omega$)j, \displaystyle \frac{$\omega$^{3}+4+i}{2}, \displaystyle \frac{(3$\omega$^{3}-42 $\omega$+78)-17i+(3$\omega$^{3}+6)j+k}{6}\rangle
with  N_{K}(N(I))=4 ; the totally positive element we picked is  $\alpha$=3+ $\omega$-\displaystyle \frac{1+$\omega$^{3}}{2} with

minimal polynomial x^{4}-17x^{3}+68x^{2}-85x+17 . Then the minimal norm of this ideal

lattice (I;  $\alpha$/17) is 4, and the lattice is a 2‐elementary totally even lattice. Hence, we

can conclude that it is just the $\Lambda$_{16} ‐lattice from [12, 13].

Example 3.5. The Leech lattice $\Lambda$_{24} . Here, we let K=\mathbb{Q}($\zeta$_{13})^{+}, A=

(\displaystyle \frac{-1,-1}{K}) ,
and I be the ideal of A with the free \mathcal{O}_{K} ‐basis

$\eta$^{2}- $\eta$-2, ($\eta$^{2}- $\eta$-2)i, \displaystyle \frac{($\eta$^{4}+$\eta$^{3}+2)+($\eta$^{4}+$\eta$^{3}+7)i+j}{2},
\displaystyle \frac{($\eta$^{4}+$\eta$^{3}+7)+($\eta$^{4}+$\eta$^{3}+2)i+k}{2},

with N_{K}(N(I))=13 . We find that the ideal lattice (I; 1/13) is an even unimodular

lattice and has no vector with norm 2. Up to isomorphism, the Leech lattice is the

unique even, unimodular denite lattice of rank 24 and has no vectors with norm 2.

That is, the lattice (I; 1/13) is the Leech lattice.
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Example 3.6. For a rank 32 lattice. We choose the quaternion algebra A=

(\displaystyle \frac{-1,-1}{K}) with K=\mathbb{Q}($\zeta$_{17})^{+} ,
and I the \mathcal{O}_{K} ‐module generated by

(2$\eta$^{5}-8$\eta$^{3}+2$\eta$^{2}+6 $\eta$-4) ,

($\eta$^{5}-4$\eta$^{3}+$\eta$^{2}+3 $\eta$-2)(1+i) ,

\displaystyle \frac{($\eta$^{6}+$\eta$^{4}-32$\eta$^{3}+64$\eta$^{2}+74 $\eta$-7)+($\eta$^{6}+$\eta$^{4}+2$\eta$^{3}-4$\eta$^{2}+6 $\eta$+27)i}{2}+j,
\displaystyle \frac{3$\eta$^{6}+3$\eta$^{4}+23$\eta$^{3}+56$\eta$^{2}-50 $\eta$+64}{2}+\frac{(3$\eta$^{6}+3$\eta$^{4}+57$\eta$^{3}-12$\eta$^{2}+18 $\eta$+98)i+3j+k}{6},
with N_{K}(N(I))=4096 ,

and  $\alpha$ be an element with minimal polynomial  x^{8}-68x^{7}+

1190x^{6}-5202x^{5}+7871x^{4}-5406x^{3}+1819x^{2}-289x+17 . Then the lattice (I;  $\alpha$) has

the highest known center density in dimension 32.

Acknowledgment

The authors would like to thank the anonymous referee for his careful reading of

the manuscript. His suggestions make the article more complete and clearer.

References

[1] Christine Bachoc. Voisinage au sens de Kneser pour les réseaux quaternioniens. Comment.

Math. Helv., 70 (1995), no.3, 350‐374.

[2] Christine Bachoc. Applications of coding theory to the construction of modular lattices.

J. Combin. Theory Ser. A, 78 (1997), no.1, 92‐119.

[3] Christian Batut, Heinz‐Georg Quebbemann, and Rudolf Scharlau. Computations of cy‐

clotomic lattices. Experiment. Math., 4 (1995), no.3, 177‐179.

[4] Eva Bayer‐Fluckiger. Denite unimodular lattices having an automorphism of given char‐

acteristic polynomial. Comment. Math. Helv., 59 (1984), no.4, 509‐538.

[5] Eva Bayer‐Fluckiger. Lattices and number fields. In Algebraic geometry: Hirzebruch

70 (Warsaw, 1998), volume 241 of Contemp. Math., pages 69‐84. Amer. Math. Soc.,
Providence, RI, 1999.

[6] Eva Bayer‐Fluckiger. Determinants of integral ideal lattices and automorphisms of given
characteristic polynomial. J. Algebra, 257 (2002), no.2, 215‐221.

[7] Eva Bayer‐Fluckiger. Ideal lattices. In A panorama of number theory or the view from
Baker�s garden (Zürich, 1999), pages 168‐184. Cambridge Univ. Press, Cambridge, 2002.

[8] Eva Bayer‐Fluckiger and Ivan Suarez. Ideal lattices over totally real number fields and

Euclidean minima. Arch. Math. (Basel), 86 (2006), no.3, 217‐225.

[9] John Horton Conway and Neil J. A. Sloane. The Coxeter‐Todd lattice, the Mitchell

group, and related sphere packings. Math. Proc. Cambridge Philos. Soc., 93 (1983), no.3,
421‐440.

[10] John Horton Conway and Neil J. A. Sloane. Sphere packings, lattices and groups, vol‐

ume 290 of Grundlehren der Mathematischen Wissenschaft en [Fundamental Principles of
Mathematical Sciences]. Springer‐Verlag, New York, third edition, 1999. With additional



Lattice Packing from Quaternion Algebras 237

contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R.

A. Parker, L. Queen and B. B. Venkov.

[11] H.‐G. Quebbemann. An application of Siegel�s formula over quaternion orders. Mathe‐

matika, 31 (1984), no.1, 12‐16.

[12] Heinz‐Georg Quebbemann. Modular lattices in Euclidean spaces. J. Number Theory, 54

(1995), no.2, 190‐202.

[13] Rudolf Scharlau and Boris B. Venkov. The genus of the Barnes‐Wall lattice. Comment.

Math. Helv., 69 (1994), no.2, 322‐333.

[14] J. Tits. Résumé de cours. In Annuaire du Collége de France, pages 80‐81. 1977‐1978.

[15] J. Tits. Four presentations of leech�s lattice. In Finite simple groups II, pages 303‐307.

Academic Press, NY, M.J. Collins (ed.), 1980.

[16] J. Tits. Quaternions over \mathrm{Q}(\sqrt{5}) ,
Leech�s lattice and the sporadic group of Hall‐Janko.

J. Algebra, 63 (1980), no.1, 56‐75.

[17] Stephanie Vance, A Mordell inequality for lattices over maximal orders. Trans. Amer.

Math. Soc., 362 (2010), no.7, 3827‐3839.

[18] Marie‐France Vignéras, Arithmétique des algèbres de quaternions, volume 800 of Lecture

Notes in Mathematics. Springer, Berlin, 1980.


